And apologies. Slides are
dense to serve as future
references...



My Goal

Teach you the concepts, the language and provide the
references to start googling and implementing your own analysis
code



Resources

videolectures.net (Amazing lectures presented at different levels,
from simple to advanced presented...on a poorly designed website).

Simple+ intermediate:
1) Sivia and Skilling, Data Analysis: A Bayesian Introduction, Second edition, 2011.
2) Bishop, Pattern Recognition and Machine Learning, 2006.

Harder:

3) Gelman et al., Bayesian Data Analysis, Third Edition, 2014.

Tailored for Natural Sciences:

| am writing a book on stochastic processes and data analysis.
One year to go! Until then, see above.



Resources

CHRISTOPHER M. BISHOP




As Physical/Biological Scientists & Engineers here is
what we...

Learn Improvise
Chemistry

Physics Data Analysis
Biology Statistics

Biochemistry



Punchline:

*There is only one right way to analyze your
data™

*It is normally not possible to analyze your data
in this way™

Wrong ways should only be used for
computational tractability (provided your
conclusions are not qualitatively affected by
your short-cuts).

It is only possible to see what approximate way
iIs needed once the correct way is written
down.



Why should this sound so controversial?



Why should this sound so controversial?

*There is only one right way to write down an
electrodynamics problem that satisfies
Maxwell’s equations (and the built-in Lorentz
invariance) and boundary conditions™

Wrong ways should only be used for
computational tractability (provided your
conclusions are not qualitatively affected by
your short-cuts).

It is only possible to see what approximate way
iIs needed once the correct way is written
down.



Outline

Setting up the problem

System models and observation models

Latent variables and graphical models

Likelihoods and EM algorithm

Bayesian methods, priors

Monte Carlo, Metropolis-Hastings



Setting up the Problem

Imagine a coin flip experiment w HTHHHTH
and we want to determine the probability of heads and tails

The N outcomes of this experiment are random variables.

Yi:N — {y17y27'“yN}: {H7T7H7H7H7”'}

In other words Y1 is heads with probability P
is tails with probability 1 —p



Setting up the Problem

To determine the probability of heads/tails, we ask:

What is the likelihood of having observed the sequence of
outcomes HTHHHTH?

likelihood = p°(1 — p)°



Setting up the Problem

likelihood =
p°(1 — p)



Setting up the Problem

likelihood =
p°(1 — p)

0 0.5 5/7



Setting up the Problem

Step 1) Write down the model.

Step 2) Write down the likelihood of your data
under the assumption of your model.

Step 3) Maximize your likelihood to determine
the parameters of your model

Steps 1-3 are involved in performing “Maximum
Likelihood”



Slightly more complicated problem
(Step 2 is harder)

Step 1) Write down the model.

From a single particle track, we want to
determine it’s diffusion coefficient



Slightly more complicated problem
(Step 2 is harder)

Step 1) Write down the model.




Slightly more complicated problem
(Step 2 is harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

P(YlaY27”' 7YN‘D)

Now data points are vectors/positions in 3D

yi = {wiayz‘azi}



Slightly more complicated problem
(Step 2 is harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

For coin flip, we had...

P(yi,y2,---,y~nlp) = P(y1lp)P(y2lp) - - - P(yn|p)

But that doesn’t make sense for diffusion. How
can we pick positions at random? Where we
land at time t depends on where we just were!



Slightly more complicated problem
(Step 2 is harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.



Slightly more complicated problem
(Step 2 is harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

P(y1,y2, - ,¥y~n|D) = P(yn|lyn-1,D) --- P(ys|ly2, D)P(y2|y2, D)P(y1)

What are P(y:|y:_s¢, D) ?



Slightly more complicated problem
(Step 2 is harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

What are P(yt‘yt_(st,D) ?

The model tells us (requires solving the PDE):

1 e ye_se)?

P(Yt ’Yt—ét, D) — (47TD51§)3/2 e D5t




Slightly more complicated problem
(Step 2 is harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

Now we can write down the full-likelihood:

1 N (yfi_Yi—l)Q
o ZizQ t
(47 Dot N-D/2° TPy

p(y1.n|D) =



Slightly more complicated problem
(Step 2 is harder)

Step 3) Maximize your likelihood to determine
the parameters of your model

N
3(N — — )?
( )log A7 Dét) (i 4Dy(5t

logp(y1.n|D, d0t) = — + log p(y1)

Take derivative with respectto D and setto 0




Slightly more complicated problem
(Step 2 is harder)

Step 3) Maximize your likelihood to determine
the parameters of your model

Take derivative with respect to D and setto 0




Coin flips

iid = identical
independently
distributed

Diffusion

Diffusion w
measurement
noise

O ® ®

Graphical Models

l

H—- ® ®

l

l

- ©® ®

|



Slightly more complicated problem
(Steps 2+3 are harder)

Step 1) Write down the model.

Kinetic model




Slightly more complicated problem
(Steps 2+3 are harder)

Step 1) Write down the model.

1 (@i g4)°

Kinetic model Te|Ti_se, D

~Y e 4Dt
Var Dot



Slightly more complicated problem
(Steps 2+3 are harder)

Step 1) Write down the model.

. . 1 _ (2t —x¢_5¢)°
Kinetic model Ty|xi_se, D ~ e IDst
Var D6t
‘ D ]_ . (yt_yt—(st)Q
Yt|\Yt—ot, LV ~ e iD5t
Var D6t
1 B (2t —24_5¢)°
z¢|2t—st, D aDot

~ e
VAar D6t



Slightly more complicated problem
(Steps 2+3 are harder)

Step 1) Write down the model.

1 (@i g4)°

Kinetic model Te|Ti_se, D

~Y e 4Dt
Var Dot

1 _ (ye—xp)?

Observation model  y:|xt,0° ~ (27702)3/26 202




Slightly more complicated problem
(Steps 2+3 are harder)

Step 1) Write down the model.

1 (e —2q_g5¢)°
. . :Et :Ijt_ét, D ~ 6— 4Dét
Kinetic model ‘ VAr DSt

. eission distribution

Observation model {

Assumptions: measurement error in all directions is
the same. Diffusion is isotropic, only one diffusion
coefficient etc...



Slightly more complicated problem
(Steps 2+3 are harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

P(Yl,YQ,"' 7YN‘D70-2)

Diffusion w @-’@ — @—> c e —
measurement
noise l l l



Slightly more complicated problem
(Steps 2+3 are harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

OG-0~ - —B

P(x1,X9, -+ ,xn|D)= P(xn|Xn_1,D) - P(x2|x1,D)P(x1)



Slightly more complicated problem
(Steps 2+3 are harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

OG-0~ - —B

P(x1,X9, -+ ,xn|D)= P(xn|Xn_1,D) - P(x2|x1,D)P(x1)

P(Xl) — 5(X1 — O)



Slightly more complicated problem
(Steps 2+3 are harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

PR 7Y
DO - ©

P(yn|xn,0%)P(xn|xn-1, D) - - P(y2|xa,0%) P(x2|x1, D) P(y1|x1,0°) P(x1)



Slightly more complicated problem
(Steps 2+3 are harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

PR 7Y
DO - ©



Slightly more complicated problem
(Steps 2+3 are harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

Complete-data likelihood
P(X17'°° s XNy Y1, " 7YN’D7O-2)

Incomplete-data likelihood
P(y17°'° 7YN‘D70-2)



Slightly more complicated problem
(Steps 2+3 are harder)

Step 2) Write down the likelihood of your data
under the assumption of your model.

P(y17°'° 7YN‘D70-2)

:/dX]_"'dXNP]_7'°', e o

Hidden/latent Observation
variables

We marginalize over the complete-data
likelihood to get the incomplete-data likelihood



Slightly more complicated problem
(Steps 2+3 are harder)

Step 3) Maximize your likelihood to determine
the parameters of your model

0
ﬁlogf’(yh“- aYNa|Da(72) =0
o

%IOgP(YL 7YN7’D70-2) =0



Slightly more complicated problem
(Steps 2+3 are harder)

Step 3) Maximize your likelihood to determine
the parameters of your model

For 1 data point...

(Y2 —Y1)2 502

D = 2
b 5t 5t

true for small o2



Slightly more complicated problem
(Steps 2+3 are harder)

(YQ — Y1)2 b0

D= 2
b 5t 5t

Diffusive

* * trajectory

@ *

Measurement

Intuitively this makes sense. If measurement noise is large, we overestimate
diffusion coefficient and have to correct for the fact that the true diffusion
coefficient appears artificially large.



Slightly more complicated problem
(Steps 2+3 are harder)

noise

Kinetics



In general calculating the incomplete-data likelihood is
very difficult

/Xm;N P(Xb”' y XNy Y1, " 7yN’D70-2)



In general calculating the incomplete-data likelihood is
very difficult

/dxl;N P(x1:n,¥1:N|0)



Conceptual EM algorithm
E Step:

f dX1;Np(X1;N‘Y1:N7 0>10gp(Y1:N7 Xl:N’H)

M Step: Maximize with respectto 0

[ dx1.np(X1:N]Y1:N H)IOgP(YLNa Xl:N‘H)

This maximization is still quite difficult....

Thus we want to iteratively determine the parameters
where we call j the iteration index.



EM algorithm

Initiate 6,_o = 0,
E Step:

Q0,;-1,0;) = fdxlsz(Xl:N|Y1:Naej—1)1ng<y1:N7X1:N|9j)

M Step: Maximize Q(0;_1,6;)
with respect to 0



EM algorithm

Initiate 6,_o = 0,
E Step:

Q0,;-1,0;) = fdxlsz(Xl:N|Y1:Naej—1)1ng<y1:N7X1:N|9j)

M Step: Maximize Q(0;_1,6;)
with respect to 0

0; = f(0;-1)
Iterate away until

05 — 61| <e



EM algorithm

 '9 ogp(y1:n,X1:n|0;)

In general this is hard to calculate...

For dynamical systems, it will require
“filters”

SIS " ‘\

RN RECOGNITION f&




Slightly more complicated problem
(Step 3 is hard)



Slightly more complicated problem
(Step 3 is hard)

TR - 7Y
0O e

Different from diffusion only in so far that
space is discrete and in 1D



Slightly more complicated problem
(Step 3 is hard)

P 7Y
OO - e

Different from diffusion only in so far that
space is discrete and in 1D



Slightly more complicated problem
(Step 3 is hard)

The Hidden Markov Model

@ @_' o @
L] [ ] L]
~~ . ~’ ) . ./F, ,u.\l
L f,‘;\/? o™ ';)\)\‘/L) N (P ~ "\J:/b
L 4 % 4 N ~ y ¥y N » )’)
y W/\—

p,
M %

092 g2 01 01



Slightly more complicated problem
(Step 3 is hard)

The Hidden Markov Model

/: /: IS \) ’Yﬁp '\._.,l\\) !> \)’ﬁ

01

Raw signal

0 100 200 300 400
time step

500



Slightly more complicated problem
(Step 3 is hard)

P 7Y
OO - e

Kinetic model

Sn|sn_1 ~ Categorical (s, | soiy s Ts. 1 o)

Observation model Ynlsn ~ F, (¢s,)



Slightly more complicated problem
(Step 3 is hard)

Sn|sSn_1 ~ Categorical(Ts, | sois s Ts, 1 —s0x)

7T8n_1—>0'1 7T8n_1—>0'2 7T8n_1—>0'3 7T8n_1—>0'4




=R

Slightly more complicated problem
(Step 3 is hard)




Slightly more complicated problem
(Step 3 is hard)

The idea is always the same...

Write down complete-data likelihood
P(:Ul:Na Sl:N‘%a (OZ)I;K, ,Uz]_;K, )

But we are interested in maximizing the
incomplete-data likelihood

ZP(ylzN7 Sl:N‘ﬁ-a (0-2)1:K7 H1: K, )
S1: N
If we are just interested in the most probable state sequence
we use the “Viterbi algorithm”



Slightly more complicated problem
(Step 3 is hard)

But we are interested in maximizing the
incomplete data likelihood

ZP(ylzNa Sl:N’%p (0-2)1;[{, U1K, )

S1:N

Since we cannot do this exactly, we will use EM



N.B. for HMM

-People normally use EM to approximately evaluate the
maximum likelihood and (within EM) use filtering.

-You need to put in by hand: the number of states, specify
the emission distribution



Clustering is another example of
a latent variable model

PR 7Y
0O O - ©



Clustering is another example of
a latent variable model

[T ]
O v o Y

no dynamics...



Clustering is another example of
a latent variable model

Pre ¥
0O O - ©

System model Tp|T ~ Categorical(my, T2, ,TK)

_ 2
1 o (yerZUFQ"n>

. 2 A~ n
Observation model y.|u,,,o0% (27T0n)3/26




Clustering is another example of
a latent variable model

System model |7 ~ Categorical(ny, ma, - ,TK)

“o




Clustering is another example of
a latent variable model

System model |7 ~ Categorical(ny, ma, - ,TK)

1 . (Y —tp)?

~Y (& 20_%

Observation model Yn|Kn, 05, (270, )3/2

“o




In clustering, just as with HMMs, we build complete-data

likelihoods, then derive incomplete-data likelihoods to be

maximized (this can all be done exactly or approximately,
e.g. through variational methods such as EM)

Yi:N — T1.K, Hi.Kk,01:K

Big assumptions: nhumber of clusters is inputed by hand,
the emission distribution is specific by hand, etc...



Likelihoods need not only be maximized

e.g. likelihood ratio test can be used to compare parameter values

P(y1.n|D = 10um?/s)
P(y1.n|D = bum?/s)

e.g. likelihoods’s curvature near maximum value tells you
something about estimate uncertainty (how sharp the likelihood is
around the maximum)

82

WP(YLN\D)\D:D*



Physics dictates likelihoods.
A good understanding of the data collection process

and underlying physics can be used to approximate
likelihoods

A proper understanding and use of likelihoods avoids having to
de-noise the time trace, average down the data etc...



e.g. of more sophisticated models we cover
in my class

(dx = vdt + BdW;
Wy — Wi_aqr ~ Normal(0, dt)
1t
Yt = — dX(t) + B/(Wt — Wt—tE)
tE t—tg

-the above is relevant if you have finite exposure time



e.g. of more sophisticated models we cover
in my class

(dx = vdt + BdW;
Wt — Wt—dt ~ Normal((), dt)

1 t
Yt = — dX(t) + B/(Wt — Wt—tE)
tE t—tg

On|On_1,Tn_1~ Cat(7p_1)
Wy — Wi_aqr ~ Normal(0, dt)
(dx = —VU,, (x)dt + B,, dW;.
yi|xt ~ p(yt|xt, 0o)
-the above is relevant if you switch between behaviors



Everything we have done so far is frequentist.

-we have assumed that there exists true parameter values (as

opposed to assuming that parameters themselves are random
variables distributed according to some probability distribution)

-frequentist (at least as our discussion here goes) means maximum
likelihood

However...

-we may want to calculate a full distribution over parameters
...like P(D|yi.n) instead of just D

-we may want to bias our estimates for the parameter by inputting
prior knowledge (e.g. we may have a range to within a order of
magnitude what the diffusion coefficient should be).

-we may want to grow the dimensionality of our model based on
the the data...




The Bayesian paradigm...from Laplace!

P(@) — P(0lyin)
prior posterior



The Bayesian paradigm...from Laplace!

Bayes’ theorem

POlyi1.n)P(y1:n) = P(y1:n|0)P(0)
posterior likelihood prior



The Bayesian paradigm...from Laplace!

Bayes’ theorem

POly1.n)P(y1.n) = P(y1.n|0)P(0)

posterior

normalization

what we
want

A

dictated
by physics
of the

experiment
at hand

likelihood prior

specified by hand - or
dictated by physics
outside the
experiment
generating the data



The Bayesian paradigm...from Laplace!

POlyi.n) P(y1.n|0)P(0)
Imagine repeated experiments...

P(0ly1) x P(y1]0) P(0)



The Bayesian paradigm...from Laplace!

POlyi.n) P(y1.n|0)P(0)
Imagine repeated experiments...

P(0ly1) x P(y1]0) P(0)

POly1,y2) x P(y2|0,y1)P(0|y1)



The Bayesian paradigm...from Laplace!

POlyi.n) P(yi:n|0)P(0)

Imagine repeated experiments...

P(0ly1) x P(y1]0) P(0)

P(6
P(6

Y1>Y2) X P(Y2
Y1,Y2) X P(Y2

0,y1)P(0)y1)
9,}’1)P(Y1\9)P(9)



The Bayesian paradigm...from Laplace!

This motivates the idea that all “priors” (which become posteriors
for the next iteration) should have the same form...

P(0)
P(0ly1)
P(Oly1,y2)

P(H‘Y17YQ7YS)



The Bayesian paradigm...from Laplace!

IR N

Model parameters, 0

Laplace Book Il, Chapter VI, Page 370



The Bayesian paradigm...from Laplace!

P(0ly1)

J‘.ll ||.|I||I||‘ L]

Model parameters, 0

Laplace Book Il, Chapter VI, Page 370



The Bayesian paradigm...from Laplace!

P(gb’b}’z)
<||.|Il!.IIIII|| L1

Model parameters, 0

Laplace Book Il, Chapter VI, Page 370



The Bayesian paradigm...from Laplace!

P(Oly1,y2,¥3)

<I|| L 1 1 L1 . 1 L1 1

Model parameters, 0

Laplace Book Il, Chapter VI, Page 370



The Bayesian paradigm

Thus — once the physics that dictates the likelihood is set —

itis convenient to select a prior that is conjugate to the likelihood.
Meaning, we seek a prior that, once multiplied by the likelihood,
yields a posterior of the same mathematical form as the prior.
This simplifies computation considerably.

X P(Yl:NW)



The Bayesian paradigm

Thus — once the physics that dictates the likelihood is set —

itis convenient to select a prior that is conjugate to the likelihood.
Meaning, we seek a prior that, once multiplied by the likelihood,
yields a posterior of the same mathematical form as the prior.
This simplifies computation considerably.

X P(Y1:N’9)

Mode! Conjugate Model Conjugate
e Likelihood prior Likelihood prior
o e 77" parameters param

ter:
distribution ameters distribution

lllllllll P (probability) Beta Normal
with known | u (mean) Normal
Binomial P (probability) Beta variance o

binomial Normal
i P (probability) Beta with known | u (mean) Normal

failure number,

Normal

Normal

P (probability
vector), k Scaled i
Pt ith known | o (variance ) - d
chi-squi
categories; i. mean 4
size of p)
P (probability Normal
k
\(Ie 0;)1 ‘ ith known | T (precision; ) | Gamm
number of
categories; i. mean 1
size of p)

https://en.wikipedia.org/wiki/Conjugate prior



N.B. Normalizations

/dH POly1.n) =1
/dH P(6) =1

/dYLN P(yi1.n]0) —1



Setting up the problem within the
Bayesian paradigm

Imagine coin flip experiment w HTHHHTH
and we want to determine the probability of heads and tails

The N outcomes of this experiment are random variables.

Yi:N — {y17y27'“yN}: {H7T7H7H7H7”'}

In other words Y1 is heads with probability P
is tails with probability 1 —p

The likelihood is a Bernoulli distribution. So our conjugate
prior will be Beta distribution.



Setting up the problem within the
Bayesian paradigm

To determine the posterior probability of heads/tails, we ask

What is the likelihood of having observed the sequence of
outcomes HTHHHTH?

likelihood = p°(1 — p)°

We set our prior

1

. a—1r1 _ \B—1
prior = B(oz,ﬁ)p (1—-p)




Setting up the problem within the
Bayesian paradigm

To determine the posterior probability of heads/tails, we ask

What is the likelihood of having observed the sequence of
outcomes HTHHHTH?

hyperparameters
likelihood = p°(1 — p)°

We set our prior

1

. a=1¢1 _ \B—1
prior = B(oz,ﬁ)p (1—-p)




Setting up the problem within the
Bayesian paradigm

posterior < p°(1 —p)? x p® (1 —p)°!

posterior ﬂ

likelihood




Setting up the problem within the
Bayesian paradigm

posterior < p°(1 —p)? x p® (1 —p)°!

9 Jikelihood =0 0 2
a—pleloo— p_5_|_2_7

—posterior =0 —  p= ota—1 _ S+ (a—1)
Op 5+24+a—-1+8—-1 b5+a+8



Setting up the problem within the
Bayesian paradigm

posterior < p°(1 —p)? x p® (1 —p)°!

9 Jikelihood =0 0 2
a—pleloo— p_5_|_2_7

—posterior =0 —  p= ota—1 _ S+ (a—1)
Op 5+24+a—-1+8—-1 b5+a+8

You can do much more than maximize a posterior.

You can obtain a full distribution over all unknowns

where the error is rigorously propagated from your emission
distribution that contains all features of the measurement model.



Exact Sampling

Most simple functions can be sampled from directly
using the inverse cdf method

Bernoulli Categorical 1 A continous distribution

O b= o -




Exact Sampling

Most simple functions can be sampled from directly
using the inverse cdf method

9 ~ P(6)

e.g. P(f) = pb—le 0/

cdf (A) = /O " 6P (0



Exact Sampling

Most simple functions can be sampled from directly
using the inverse cdf method

9 ~ P(6)

e.g. P(f) = pb—le 0/

cdf(A) = Qéid@P(@)

For the exponential the y starts from 0. However for
a Gaussian spanning all real numbers the integral
would start from —oc.



Exact Sampling

Most simple functions can be sampled from directly
using the inverse cdf method

cdf (A)




Exact Sampling

Most simple functions can be sampled from directly
using the inverse cdf method

Step 1) Sample random #, x, uniformly from 0 to 1

Step 2) Find the A to which this corresponds



Exact Sampling

Step 2) Find the A to which this corresponds
P(A) = b te 0/
cdf (A) =1 — e /P



Exact Sampling

Step 2) Find the A to which this corresponds
P(0) =bte /0
cdf (A) =1 — e /P

r=1—e A0

1

1l —=x

A=0bln




Exact Sampling

Step 2) Find the A to which this corresponds

1

1l —=x

A=>bln

You have now converted a uniform random number
(x), which we know how to sample on a computer,
into an exponential random variable, A.



Approximate Sampling

Goal: sample from a target distribution, 7T(7“), whose cdf cannot be computed

As a result, we generate a Markov chain of samples using Markov Chain Monte
Carlo (MCMC)

PO (D Ly @) @) G L ()



Approximate Sampling

Markov chain

PO () ) ) Ly GED L ()

—_
&)

Target
2] MCMC distribution

MCMC samples r )

0.5+

Probability density




How we do Metropolis-Hastings
(a type of MCMC)

Consider a proposal distribution, Q

Q,r.old (Tprop) — p(rprop’Told)

Conditions on Q;

= the simulation of random variables rP™P|r°ld ~ Q, o1 is possible,
= the simulation of random variables rP*P|r°ld ~ Q,.1a allows the generation of any feasible value.

Write down the acceptance ratio:

7 (rPOP) Q,prop (7°14)
ﬁ(TOld) (2 old (Tprop)

\ 7\
TV VO

target proposal

Arold (Tpmp) —




How we do Metropolis-Hastings
(a type of MCMC)

Write down the acceptance ratio:

F(rPP) Quoron (r)

(rold) Qr ld( prop))

-~

target proposal

A, ora (1PTOP) =

Algorithm 5.1: Metropolis-Hastings sampler for arbitrary targets

Given a target 7(r), a proposal Qo (rP*°P), and a feasible initial sample r(©), the
Metropolis-Hastings sampler proceeds as follows:
For each 5 from 1 to J:

= Generate a proposal 7?™P? ~ Q. _-1).

= Compute the acceptance ratio A ;1) (r?™P).

= Generate u ~ Uniformyg y;.

n fu <A 1) (rP™P); set r() = pProP qlse set (7)) = U=




Example 5.2: Two Metropolis-Hastings schemes for the truncated ormal distribution

Consider a random variable R distributed according to a Normal distribution with mean jx and variance o2

truncated below 0. That is, R has a probability density given by

L exp (— (T_*;)2> , r>0
7(r) o« T(r) = { V2mo? ez - .
0, r <0




Example 5.2: Two Metropolis-Hastings schemes for the truncated ormal distribution

Consider a random variable R distributed according to a Normal distribution with mean jx and variance o2

truncated below 0. That is, R has a probability density given by

L exp (— (T_*;)2> , r>0
7(r) o« T(r) = { V2mo? ez - .
0, r <0

Q,01a = Normal(r°'d, \?)

eXp ((’I"Old—,u,)Q—('f’prOp—M)2> ’ rprop Z O

202

A o1 (PP = .
0, PP < ()



—1] Jo252 o0
10 0.252

[T = 0.3 Normals ([ 0

+1] Jo.252 o |
+ 0.3 Normalg( ol | o 0.252 )
0] [0252 0 |
+1|’] 0 0.252

+ 0.4 Normals

MCMC samples (J = 5x102)

<=> Target —*— MCMC

: ©




Monte Carlo

Statistical Christian P. Robert
George Casella

Christian P. Robert
George Casella




Setting up the problem within the
Bayesian paradigm

Step 1) Write down the model.

Step 2) Write down the likelihood of your data
under the assumption of your model. Pick a
prior which is either conjugate or otherwise
informed by some physics.

Step 3) Compute your posterior to find the
probability of your model parameters

Steps 1-3 are collectively called Bayesian
model learning/training



Setting up the problem within the
Bayesian paradigm

Step 3) Compute your posterior to find the
probability of your model parameters

P(H‘YLN):P(HM”' ,QK\YLN)



Thanks!
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