
And apologies. Slides are 
dense to serve as future 

references…



My Goal

Teach you the concepts, the language and provide the 
references to start googling and implementing your own analysis 
code



Resources

videolectures.net (Amazing lectures presented at different levels,  
from simple to advanced presented…on a poorly designed website). 

Simple+ intermediate: 

1) Sivia and Skilling, Data Analysis: A Bayesian Introduction, Second edition, 2011.  

2) Bishop, Pattern Recognition and Machine Learning, 2006.  

Harder: 

3) Gelman et al., Bayesian Data Analysis, Third Edition, 2014.  

I am writing a book on stochastic processes and data analysis.  
One year to go! Until then, see above.

Tailored for Natural Sciences:



Resources



As Physical/Biological Scientists & Engineers here is 
what we…

Learn Improvise

Chemistry

Physics

Biology

Biochemistry

Data Analysis

Statistics

…



Punchline: 

It is only possible to see what approximate way 
is needed once the correct way is written 
down.

*There is only one right way to  analyze your 
data*

Wrong ways should only be used for 
computational tractability (provided your 
conclusions are not qualitatively affected by 
your short-cuts).

*It is normally not possible to analyze your data 
in this way*



Why should this sound so controversial? 



Why should this sound so controversial? 

*There is only one right way to write down an 
electrodynamics problem that satisfies 
Maxwell’s equations (and the built-in  Lorentz 
invariance) and boundary conditions*

Wrong ways should only be used for 
computational tractability (provided your 
conclusions are not qualitatively affected by 
your short-cuts).

It is only possible to see what approximate way 
is needed once the correct way is written 
down.



Outline

Setting up the problem

System models and observation models

Likelihoods and EM algorithm

Bayesian methods, priors

Latent variables and graphical models

Monte Carlo, Metropolis-Hastings



Setting up the Problem

Imagine a coin flip experiment w HTHHHTH 
and we want to determine the probability of  heads and tails

The N outcomes of  this experiment are random variables.

Chapter 1

Introduction to modeling and inference

1.1 Random variables and sampling

It is often said that the term random variables is a misnomer as random variables are neither random nor variables.
As we will see, random variables are numbers (or arrays of numbers), not variables, and they are not random.
Rather, they are sampled from probability distributions that we will describe.

Random variables may be discrete integers – dice rolls, coin flips, photon counts – or continuous, such as in
the case of temperatures, pressures or forces. A random variable, y, is the outcome of a repeated experiment or,
in statistical jargon, a process. All the processes we consider here will be stochastic processes. That is, processes
whose output are random variables.

We denote a collection of outcomes by the vector, y1:N = {y1, y2, · · · yN }, where the 1 : N subscript indicates
the range of outcomes. Unless explicitly needed to help draw attention to the subscript, this notation will be
suppressed for clarity.

The order in which these random variables are measured may be important, in the case of an experiment on a
time-dependent process, such as successive measurements of cell numbers in a growing cell culture. Or the order
may be irrelevant in the case of an array of test scores or measurements of adult heights collected from a group
of adults at one time describing, in more precise language, a time-independent process often called a stationary
process.

Now, if random variables were all we ever cared about, then no experiment would require modeling or interpre-
tation and the remainder of this discussion would be unnecessary. But quantum mechanics is not self-evident from
the outcome of a Young’s two-slit interference experiment and interpretation – or model-building – is needed.

This is because random variables are indirectly – and more generally, probabilistically – related to desired model
parameters. For example, the mean of a normally distributed sequence of random variables is only probabilistically
related to each measured value. For the example of the normally distributed sequence, what we call the “model”
is the normal distribution and its parameters are the mean and variance of the Gaussian. The mean, µ, and
variance, ‡

2, collectively described by the vector of desired quantities ◊ = {µ, ‡
2
} may indeed be the desired

model parameters we wish to estimate from y. These quantities, in turn, may depend on additional parameters.
More generally we denote parameters by the vector ◊ = {◊1, ◊2, · · · , ◊K}.

Random variables may be probabilistically related to quantities we care about because experiments are noisy or
more precisely because of extrinsic heterogeneity. They may also be probabilistically related to quantities we care
about because the quantity we care is itself distributed. For example, human heights measured are themselves
fundamentally distributed. In the sciences, this is call quantities such as these intrinsically heterogeneous. As a
less trivial example, the number of photons emitted by a light emitting particle – if all photons could somehow
be successfully collected and no stray photon were ever miscounted – within some fixed time interval would be
di�erent for di�erent time intervals. This is because of quantum mechanics, as we have already assumed no
extrinsic heterogeneity.

Thus, we must deal with stochastic output not just because the output of an experiment may be corrupted
by measurement noise but because Nature itself is stochastic.

The question immediately arises, how do we learn, i.e. infer, quantities of interest from time-ordered or

9

= {H,T,H,H,H, · · · }

In other words        is heads with probability y1 p

is tails with probability 1� p



Setting up the Problem

To determine the probability of  heads/tails, we ask:

What is the likelihood of  having observed the sequence of  
outcomes HTHHHTH?

likelihood = p5(1� p)2



Setting up the Problem

likelihood = 

p5(1� p)2

p
0 0.5 1



Setting up the Problem

likelihood = 

p5(1� p)2

p
0 0.5 1

*

5/7



Step 1) Write down the model.

Setting up the Problem

Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Step 3) Maximize your likelihood to determine 
the parameters of  your model

Steps 1-3 are involved in performing “Maximum 
Likelihood”



Slightly more complicated problem 
(Step 2 is harder)
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From a single particle track, we want to 
determine it’s diffusion coefficient

Step 1) Write down the model.



Inserting Eq. (2.102) into Eq. (2.107) we recover

≠m
ˆ

2

ˆt2 p̄ + 1
3m

Ò2Èp2Í ≠ ˆ

ˆx · (≠ÒU(x)p̄) ≠ ’
ˆ

ˆt
p̄ = 0. (2.111)

The above is still not a closed set of equations as it depends on Èp2Í. The next logical step would to evaluate the
evolution equation for Èp2Í just as we had before for the first moment.

Instead what we do is to assume a moment closure relation and assume that the momentum degrees of freedom
are at equilibrium. In other words,

1
3m

Ò2Èp2Í = 1
3m

Ò2
⁄

dpp(x, p)p2 (2.112)

= 1
3m

Ò2
p(x)

⁄
dpp(p)p2 (2.113)

= 3mkBT
1

3m
Ò2

p(x). (2.114)

Thus, we finally have

≠m
ˆ

2

ˆt2 p̄ + kBT Ò2
p̄ ≠ ˆ

ˆx · (≠ÒU(x)p̄) ≠ ’
ˆ

ˆt
p̄ = 0 (2.115)

Re-writing in more convenient form, we have

ˆp̄

ˆt
= 1

’

ˆ

ˆx · (ÒU(x)p̄) + kBT

’
Ò2

p̄ ≠ m

’

ˆ
2

ˆt2 p̄ (2.116)

where we interpret kBT/’ as the di�usion coe�cient. Eq. (2.116) is called a Fokker-Planck equation.
We can ask, where has the e�ect of the random force gone since it seemed to have vanished by integration or

averaging? It has been set by the magnitude of the expectation of Èp2Í.

Following an argument similar to the one before, and comparing the relative magnitude of both terms ˆp̄
ˆt and

m
’

ˆ2

ˆt2 p̄ in the case of rapid momentum randomization, we simplify Eq. (2.116) to

ˆp̄

ˆt
= 1

’

ˆ

ˆx · (ÒU(x)p̄) + kBT

’
Ò

2
p̄ (2.117)

when inertial e�ects are negligible (ṗ = 0). The above is called also called a Fokker-Planck equation and it can
be solved given one initial conditions (as it has one time derivatives) and boundary conditions.

For the simple case of normal isotropic di�usion in a homogeneous medium, we have
ˆp̄

ˆt
= DÒ

2
p̄ (2.118)

which is a partial equation that we can solve under the appropriate initial and boundary conditions.
Assuming open boundary conditions (define open boundary conditions), one solution to the di�usion equation,

Eq. (2.118), is the Gaussian given earlier

p(xt|xt≠”t, D, ”t) = 1
(4fiD”t)3/2 e

≠
(xt≠xt≠”t)2

4D”t (2.119)

2.7 Model and observation likelihoods

2.7.1 Conceptual: Maximum Likelihood

In the previous sections, we looked at many models. All SDE and associated observation processes were, in
themselves, “models”. A model has a mathematical structure and it also has parameters, ◊, which we wish to

31

Step 1) Write down the model.

Slightly more complicated problem 
(Step 2 is harder)



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

P (y1,y2, · · · ,yN |D)

Slightly more complicated problem 
(Step 2 is harder)

yi = {xi, yi, zi}

Now data points are vectors/positions in 3D



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

For coin flip, we had…

But that doesn’t make sense for diffusion. How 
can we pick positions at random? Where we 
land at time t depends on where we just were!

Slightly more complicated problem 
(Step 2 is harder)

P (y1,y2, · · · ,yN |p) = P (y1|p)P (y2|p) · · ·P (yN |p)



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

P (y2|y1, D)P (y1)P (y1,y2|D) =

Slightly more complicated problem 
(Step 2 is harder)



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

P (y1,y2, · · · ,yN |D) = P (yN |yN�1, D) · · ·P (y3|y2, D)P (y2|y2, D)P (y1)

Slightly more complicated problem 
(Step 2 is harder)

What are                              ?P (yt|yt��t, D)



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Slightly more complicated problem 
(Step 2 is harder)

What are                              ?

The model tells us (requires solving the PDE):

P (yt|yt��t, D) =
1

(4⇡D�t)3/2
e�

(yt�yt��t)
2

4D�t

P (yt|yt��t, D)



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Slightly more complicated problem 
(Step 2 is harder)

Now we can write down the full-likelihood:

p(y1:N |D) =
1

(4⇡D�t)3(N�1)/2
e�

PN
i=2

(yi�yi�1)2

4D�t p(y1)



Slightly more complicated problem 
(Step 2 is harder)

log p(y1:N |D, �t) = �3(N � 1)

2
log (4⇡D�t)�

NX

i=2

(yi � yi�1)2

4D�t
+ log p(y1)

Take derivative with respect to D and set to 0

�3(N � 1)

2D
+

NX

i=2

(xi � xi�1)2

4D2�t
= 0

Step 3) Maximize your likelihood to determine 
the parameters of  your model



Slightly more complicated problem 
(Step 2 is harder)

Take derivative with respect to D and set to 0

6D =
1

N � 1

NX

i=2

(yi � yi�1)2

�t

�3(N � 1)

2D
+

NX

i=2

(yi � yi�1)2

4D2�t
= 0

Step 3) Maximize your likelihood to determine 
the parameters of  your model



Graphical Models

· · ·y1 y2 y3 yN

Diffusion · · ·

Diffusion w  
measurement  
noise

· · ·

x1

y1 y2 y3 yN

y1 y2 y3 yN

x2 x3 xN· · ·

Coin flips
iid = identical  
independently  
distributed



Slightly more complicated problem 
(Steps 2+3 are harder)

Inserting Eq. (2.102) into Eq. (2.107) we recover

≠m
ˆ

2

ˆt2 p̄ + 1
3m

Ò2Èp2Í ≠ ˆ

ˆx · (≠ÒU(x)p̄) ≠ ’
ˆ

ˆt
p̄ = 0. (2.111)

The above is still not a closed set of equations as it depends on Èp2Í. The next logical step would to evaluate the
evolution equation for Èp2Í just as we had before for the first moment.

Instead what we do is to assume a moment closure relation and assume that the momentum degrees of freedom
are at equilibrium. In other words,

1
3m

Ò2Èp2Í = 1
3m

Ò2
⁄

dpp(x, p)p2 (2.112)

= 1
3m

Ò2
p(x)

⁄
dpp(p)p2 (2.113)

= 3mkBT
1

3m
Ò2

p(x). (2.114)

Thus, we finally have

≠m
ˆ

2

ˆt2 p̄ + kBT Ò2
p̄ ≠ ˆ

ˆx · (≠ÒU(x)p̄) ≠ ’
ˆ

ˆt
p̄ = 0 (2.115)

Re-writing in more convenient form, we have

ˆp̄

ˆt
= 1

’

ˆ

ˆx · (ÒU(x)p̄) + kBT

’
Ò2

p̄ ≠ m

’

ˆ
2

ˆt2 p̄ (2.116)

where we interpret kBT/’ as the di�usion coe�cient. Eq. (2.116) is called a Fokker-Planck equation.
We can ask, where has the e�ect of the random force gone since it seemed to have vanished by integration or

averaging? It has been set by the magnitude of the expectation of Èp2Í.

Following an argument similar to the one before, and comparing the relative magnitude of both terms ˆp̄
ˆt and

m
’

ˆ2

ˆt2 p̄ in the case of rapid momentum randomization, we simplify Eq. (2.116) to

ˆp̄

ˆt
= 1

’

ˆ

ˆx · (ÒU(x)p̄) + kBT

’
Ò

2
p̄ (2.117)

when inertial e�ects are negligible (ṗ = 0). The above is called also called a Fokker-Planck equation and it can
be solved given one initial conditions (as it has one time derivatives) and boundary conditions.

For the simple case of normal isotropic di�usion in a homogeneous medium, we have
ˆp̄

ˆt
= DÒ

2
p̄ (2.118)

which is a partial equation that we can solve under the appropriate initial and boundary conditions.
Assuming open boundary conditions (define open boundary conditions), one solution to the di�usion equation,

Eq. (2.118), is the Gaussian given earlier

p(xt|xt≠”t, D, ”t) = 1
(4fiD”t)3/2 e

≠
(xt≠xt≠”t)2

4D”t (2.119)

2.7 Model and observation likelihoods

2.7.1 Conceptual: Maximum Likelihood

In the previous sections, we looked at many models. All SDE and associated observation processes were, in
themselves, “models”. A model has a mathematical structure and it also has parameters, ◊, which we wish to
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Step 1) Write down the model.

Kinetic model



Step 1) Write down the model.

Kinetic model

Slightly more complicated problem 
(Steps 2+3 are harder)

xt|xt��t, D ⇠ 1p
4⇡D�t

e�
(xt�xt��t)

2

4D�t



Step 1) Write down the model.

Kinetic model

Slightly more complicated problem 
(Steps 2+3 are harder)

xt|xt��t, D ⇠ 1p
4⇡D�t

e�
(xt�xt��t)

2

4D�t

yt|yt��t, D ⇠ 1p
4⇡D�t

e�
(yt�yt��t)

2

4D�t

zt|zt��t, D ⇠ 1p
4⇡D�t

e�
(zt�zt��t)

2

4D�t



Step 1) Write down the model.

Observation model

Slightly more complicated problem 
(Steps 2+3 are harder)

Kinetic model xt|xt��t, D ⇠ 1p
4⇡D�t

e�
(xt�xt��t)

2

4D�t

yt|xt,�
2 ⇠ 1

(2⇡�2)3/2
e�

(yt�xt)
2

2�2



Step 1) Write down the model.

Observation model

Kinetic model

Assumptions: measurement error in all directions is 
the same. Diffusion is isotropic, only one diffusion 
coefficient etc…

Slightly more complicated problem 
(Steps 2+3 are harder)

emission distribution

xt|xt��t, D ⇠ 1p
4⇡D�t

e�
(xt�xt��t)

2

4D�t

yt|xt,�
2 ⇠ 1

(2⇡�2)3/2
e�

(yt�xt)
2

2�2



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Slightly more complicated problem 
(Steps 2+3 are harder)

P (y1,y2, · · · ,yN |D,�2)

Diffusion w  
measurement  
noise

· · ·

x1

y1 y2 y3 yN

x2 x3 xN· · ·



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Slightly more complicated problem 
(Steps 2+3 are harder)

x1 x2 x3 xN

P (x1,x2, · · · ,xN |D)= P (xN |xN�1, D) · · ·P (x2|x1, D)P (x1)

· · ·



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Slightly more complicated problem 
(Steps 2+3 are harder)

x1 x2 x3 xN

P (x1,x2, · · · ,xN |D)= P (xN |xN�1, D) · · ·P (x2|x1, D)P (x1)

P (x1) = �(x1 � 0)

· · ·



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Slightly more complicated problem 
(Steps 2+3 are harder)

· · ·

x1

y1 y2 y3 yN

x2 x3 xN

P (yN |xN ,�2)P (xN |xN�1, D) · · ·P (y2|x2,�
2)P (x2|x1, D)P (y1|x1,�

2)P (x1)

· · ·



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Slightly more complicated problem 
(Steps 2+3 are harder)

· · ·

x1

y1 y2 y3 yN

x2 x3 xN

P (yN |xN ,�2)P (xN |xN�1, D) · · ·P (y2|x2,�
2)P (x2|x1, D)P (y1|x1,�

2)P (x1)

P (x1, · · · ,xN ,y1, · · · ,yN |D,�2) =

· · ·



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Slightly more complicated problem 
(Steps 2+3 are harder)

P (x1, · · · ,xN ,y1, · · · ,yN |D,�2)

P (y1, · · · ,yN |D,�2)

Complete-data likelihood

Incomplete-data likelihood



Step 2) Write down the likelihood of  your data 
under the assumption of  your model.

Slightly more complicated problem 
(Steps 2+3 are harder)

P (x1, · · · ,xN ,y1, · · · ,yN |D,�2)

P (y1, · · · ,yN |D,�2)

=

Z
dx1 · · · dxN

ObservationHidden/latent 
variables

We marginalize over the complete-data 
likelihood to get the incomplete-data likelihood



Slightly more complicated problem 
(Steps 2+3 are harder)

Step 3) Maximize your likelihood to determine 
the parameters of  your model

logP (y1, · · · ,yN , |D,�2)
@

@�2

@

@D
logP (y1, · · · ,yN , |D,�2)

= 0

= 0



Slightly more complicated problem 
(Steps 2+3 are harder)

Step 3) Maximize your likelihood to determine 
the parameters of  your model

For 1 data point…

6D =
(y2 � y1)2

�t
�5�2

�t

true for small �2



Slightly more complicated problem 
(Steps 2+3 are harder)

6D =
(y2 � y1)2

�t
�5�2

�t

Intuitively this makes sense. If  measurement noise is large, we overestimate 
diffusion coefficient and have to correct for the fact that the true diffusion 
coefficient appears artificially large.

Diffusive  
trajectory

Measurement



Slightly more complicated problem 
(Steps 2+3 are harder)

Figure 1: A conceptual illustration of the pitfalls of independent de-drifting in the analysis of single molecule
measurements. Here, the axes represent abstractions of a single molecule’s states and drift. Color coded is shown the
model’s likelihood or posterior probability distribution. Preprocessing drift independently of the states (i.e. restricting along
the dashed line) may lead to suboptimal state estimation. Especially, when the likelihood or posterior probability has
multiple lodes. By contrast, simultaneous processing of the states and drift can identify the global maximum.

iHMM, may recruit – from an infinite pool – new states on the basis of the available data [1, 10, 33] without ever
prespecifying a total number as would be the case with the HMM.42

While promising, the iHMM’s flexibility – lending the iHMM its intrinsic ability to learn the number of
conformational states, say, visited by a single molecule – can become an important weakness. As an example,44

iHMMs would deal with drift, encountered throughout single molecule experiments, by adding “artifact states”.
To date, just as it is common to prespecify the number of states in an HMM, it is also common practice to de-drift46

(or de-trend) the time traces and subsequently analyze the data with an HMM [16]. In principle, the same may
be done with iHMMs. The catch however is that, at best, de-drifting separately from the rest of the data analysis48

leads to a subsequent estimation of the states conditioned on the de-drifting procedure which, in turn, may again
lead to suboptimal estimates for the states as conceptually illustrated in Fig. 1. In fact, it is specifically to avoid50

such suboptimal estimates (in this case to estimate noise properties while estimating transition probabilities) that
HMMs exist in the first place: they learn transition probabilities while de-noising a time trace self-consistently.52

Here we take the same logic some steps further and adapt the iHMM to make it useful to single molecule
Biophysics. In particular, we provide a novel fully Bayesian formulation for iHMMs. Our single molecule iHMMs54

(ICON) can: i) incorporate information from multiple traces (e.g. recordings from di�erent channels) – typically
available in many setups such as FRET measurements – and; ii) infer the drift simultaneously, and thus self-56

consistently, while learning the number of states along with their transition kinetics and emission properties.
The remainder of this paper is organized as follows. In Section 2, we present selected applications of the58

proposed ICON using both synthetic and experimental datasets. In Section 3, we present the formulation of the
iHMM and its extensions leading to ICON required for the analysis of Section 2. Lastly, In Section 4, we discuss60

the broader potential of the method to Biophysics.
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In general calculating the incomplete-data likelihood is 
very difficult

P (x1, · · · ,xN ,y1, · · · ,yN |D,�2)=

Z
dx1 · · · dxN

Z
dx1:N



In general calculating the incomplete-data likelihood is 
very difficult

P (x1, · · · ,xN ,y1, · · · ,yN |D,�2)=

Z
dx1 · · · dxN

Z
dx1:N x1:N ,y1:N |D,�2)✓)



◊
⁄

dx1 · · · dxN e
≠x1:N ·AÕ(D)·xT

1:N +By1:N ·xT
1:N ≠y1:N ·C·yT

1:N (2.135)

Ã D
≠3(N≠1)/2 · e

≠y1:N ·C·yT
1:N · 1

DetAÕ(D)
· e

B2y1:N ·AÕ≠1(D)·yT
1:N (2.136)

where only those portions of the prefactor depending on D have been retained. While this expression in itself is
not di�cult to evaluate on a computer, it is needlessly tedious analytically.

To gain physical intuition, we try the simpler expression

p(y1:2|D, ”t, ◊o) =
⁄

dx1dx2
1

(2fi‡2)3 · 1
(4fiD”t)3/2 (2.137)

◊e
≠

y2
1

2‡2 e
≠

x2
2

4D”t e
≠ (y2≠x2)2

2‡2 ”(x1) (2.138)

Ã 1
D

Ô
2D”t + ‡2

e
≠

y2
2

2(2D”t+‡2) . (2.139)

where all terms independent of D were dropped in the proportionality.
Taking the derivative with respect to D yields a quadratic equation with two solutions for D only one of which

exhibits the correct limit of 6D = y2
2/”t as ‡ æ 0

6D =
y2

2 ≠ 5‡
2 +


y4

2 ≠ 10y2
2‡2 + ‡4

2”t
¥ y2

2
”t

≠ 5‡
2

”t
. (2.140)

Intuitively, this result makes sense. It tells us that if lots of noise is present in the observation process, this might be
interpreted as an enhanced di�usion coe�cient. Thus, to correct for this, we need to subtract out a contribution
due to the noise variance from the di�usion coe�cient.

(For future reference, I should now di�erentiate with respect to sigma as well)

We can also envision a scenario where we are missing observations. That is, we are missing portion yi:j from
y1:N . In other words, y1:N = {y1:i≠1, yj+1:N }.

This problem is again treated very similarly to the problem above involving marginal likelihoods. That is, using
a di�using particle once more as an example, we have

p({y1:i≠1, yj+1:N }|D, ”t, ◊o) (2.141)

=
⁄

dyi · · · dyjdx1 · · · dxN

A
NŸ

i=2
p(yi|xi, ◊o)p(xi|xi≠1, D, ”t)

B
p(y1|x1, ◊o)p(x1). (2.142)

Intuitively, the net e�ect of incomplete data likelihoods is to reduce the e�ective data set size from y1:N to
y1:N≠(j≠i) by assuming that the unknown measurements could have taken on any value.

2.7.3 Sketch of the EM algorithm

In constructing the complete-data likelihood so far we have had the advantage of being able to integrate over the
latent variable x. In general, this integration (or sum for a discrete data likelihood) is di�cult. Instead we start
by considering log p(y1:N , x1:N |◊) and consider an approximate likelihood maximization called the expectation-
maximization algorithm or EM for short. EM occurs in two iterative steps.

The E step: we first compute the expectation
s

dx1:N p(x1:N |y1:N , ◊) log p(y1:N , x1:N |◊).
The M step: we maximize this expectation with respect to the unknown parameters ◊.

To turn this procedure into an iterative recipe, we start by initiating ◊ to some value ◊0 where the subscript
denotes the iteration number. The iterative EM is then as follows:

The E step: we first compute the expectation Q(◊j≠1, ◊j) =
s

dx1:N p(x1:N |y1:N , ◊j≠1) log p(y1:N , x1:N |◊j).
The M step: we maximize this expectation with respect to the unknown parameters ◊j .
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Intuitively, this result makes sense. It tells us that if lots of noise is present in the observation process, this might be
interpreted as an enhanced di�usion coe�cient. Thus, to correct for this, we need to subtract out a contribution
due to the noise variance from the di�usion coe�cient.

(For future reference, I should now di�erentiate with respect to sigma as well)

We can also envision a scenario where we are missing observations. That is, we are missing portion yi:j from
y1:N . In other words, y1:N = {y1:i≠1, yj+1:N }.

This problem is again treated very similarly to the problem above involving marginal likelihoods. That is, using
a di�using particle once more as an example, we have
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Intuitively, the net e�ect of incomplete data likelihoods is to reduce the e�ective data set size from y1:N to
y1:N≠(j≠i) by assuming that the unknown measurements could have taken on any value.

2.7.3 Sketch of the EM algorithm

In constructing the complete-data likelihood so far we have had the advantage of being able to integrate over the
latent variable x. In general, this integration (or sum for a discrete data likelihood) is di�cult. Instead we start
by considering log p(y1:N , x1:N |◊) and consider an approximate likelihood maximization called the expectation-
maximization algorithm or EM for short. EM occurs in two iterative steps.

The E step: we first compute the expectation
s

dx1:N p(x1:N |y1:N , ◊) log p(y1:N , x1:N |◊).
The M step: we maximize this expectation with respect to the unknown parameters ◊.

To turn this procedure into an iterative recipe, we start by initiating ◊ to some value ◊0 where the subscript
denotes the iteration number. The iterative EM is then as follows:

The E step: we first compute the expectation Q(◊j≠1, ◊j) =
s

dx1:N p(x1:N |y1:N , ◊j≠1) log p(y1:N , x1:N |◊j).
The M step: we maximize this expectation with respect to the unknown parameters ◊j .
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Intuitively, this result makes sense. It tells us that if lots of noise is present in the observation process, this might be
interpreted as an enhanced di�usion coe�cient. Thus, to correct for this, we need to subtract out a contribution
due to the noise variance from the di�usion coe�cient.

(For future reference, I should now di�erentiate with respect to sigma as well)

We can also envision a scenario where we are missing observations. That is, we are missing portion yi:j from
y1:N . In other words, y1:N = {y1:i≠1, yj+1:N }.

This problem is again treated very similarly to the problem above involving marginal likelihoods. That is, using
a di�using particle once more as an example, we have

p({y1:i≠1, yj+1:N }|D, ”t, ◊o) (2.141)
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Intuitively, the net e�ect of incomplete data likelihoods is to reduce the e�ective data set size from y1:N to
y1:N≠(j≠i) by assuming that the unknown measurements could have taken on any value.

2.7.3 Sketch of the EM algorithm

In constructing the complete-data likelihood so far we have had the advantage of being able to integrate over the
latent variable x. In general, this integration (or sum for a discrete data likelihood) is di�cult. Instead we start
by considering log p(y1:N , x1:N |◊) and consider an approximate likelihood maximization called the expectation-
maximization algorithm or EM for short. EM occurs in two iterative steps.

The E step: we first compute the expectation
s

dx1:N p(x1:N |y1:N , ◊) log p(y1:N , x1:N |◊).
The M step: we maximize this expectation with respect to the unknown parameters ◊.

To turn this procedure into an iterative recipe, we start by initiating ◊ to some value ◊0 where the subscript
denotes the iteration number. The iterative EM is then as follows:

The E step: we first compute the expectation Q(◊j≠1, ◊j) =
s

dx1:N p(x1:N |y1:N , ◊j≠1) log p(y1:N , x1:N |◊j).
The M step: we maximize this expectation with respect to the unknown parameters ◊j .
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where only those portions of the prefactor depending on D have been retained. While this expression in itself is
not di�cult to evaluate on a computer, it is needlessly tedious analytically.
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Intuitively, this result makes sense. It tells us that if lots of noise is present in the observation process, this might be
interpreted as an enhanced di�usion coe�cient. Thus, to correct for this, we need to subtract out a contribution
due to the noise variance from the di�usion coe�cient.

(For future reference, I should now di�erentiate with respect to sigma as well)

We can also envision a scenario where we are missing observations. That is, we are missing portion yi:j from
y1:N . In other words, y1:N = {y1:i≠1, yj+1:N }.

This problem is again treated very similarly to the problem above involving marginal likelihoods. That is, using
a di�using particle once more as an example, we have

p({y1:i≠1, yj+1:N }|D, ”t, ◊o) (2.141)

=
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dyi · · · dyjdx1 · · · dxN

A
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i=2
p(yi|xi, ◊o)p(xi|xi≠1, D, ”t)

B
p(y1|x1, ◊o)p(x1). (2.142)

Intuitively, the net e�ect of incomplete data likelihoods is to reduce the e�ective data set size from y1:N to
y1:N≠(j≠i) by assuming that the unknown measurements could have taken on any value.

2.7.3 Sketch of the EM algorithm

In constructing the complete-data likelihood so far we have had the advantage of being able to integrate over the
latent variable x. In general, this integration (or sum for a discrete data likelihood) is di�cult. Instead we start
by considering log p(y1:N , x1:N |◊) and consider an approximate likelihood maximization called the expectation-
maximization algorithm or EM for short. EM occurs in two iterative steps.

The E step: we first compute the expectation
s

dx1:N p(x1:N |y1:N , ◊) log p(y1:N , x1:N |◊).
The M step: we maximize this expectation with respect to the unknown parameters ◊.

To turn this procedure into an iterative recipe, we start by initiating ◊ to some value ◊0 where the subscript
denotes the iteration number. The iterative EM is then as follows:

The E step: we first compute the expectation Q(◊j≠1, ◊j) =
s

dx1:N p(x1:N |y1:N , ◊j≠1) log p(y1:N , x1:N |◊j).
The M step: we maximize this expectation with respect to the unknown parameters ◊j .
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where only those portions of the prefactor depending on D have been retained. While this expression in itself is
not di�cult to evaluate on a computer, it is needlessly tedious analytically.

To gain physical intuition, we try the simpler expression
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Intuitively, this result makes sense. It tells us that if lots of noise is present in the observation process, this might be
interpreted as an enhanced di�usion coe�cient. Thus, to correct for this, we need to subtract out a contribution
due to the noise variance from the di�usion coe�cient.

(For future reference, I should now di�erentiate with respect to sigma as well)

We can also envision a scenario where we are missing observations. That is, we are missing portion yi:j from
y1:N . In other words, y1:N = {y1:i≠1, yj+1:N }.

This problem is again treated very similarly to the problem above involving marginal likelihoods. That is, using
a di�using particle once more as an example, we have

p({y1:i≠1, yj+1:N }|D, ”t, ◊o) (2.141)
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Intuitively, the net e�ect of incomplete data likelihoods is to reduce the e�ective data set size from y1:N to
y1:N≠(j≠i) by assuming that the unknown measurements could have taken on any value.

2.7.3 Sketch of the EM algorithm

In constructing the complete-data likelihood so far we have had the advantage of being able to integrate over the
latent variable x. In general, this integration (or sum for a discrete data likelihood) is di�cult. Instead we start
by considering log p(y1:N , x1:N |◊) and consider an approximate likelihood maximization called the expectation-
maximization algorithm or EM for short. EM occurs in two iterative steps.

The E step: we first compute the expectation
s

dx1:N p(x1:N |y1:N , ◊) log p(y1:N , x1:N |◊).
The M step: we maximize this expectation with respect to the unknown parameters ◊.

To turn this procedure into an iterative recipe, we start by initiating ◊ to some value ◊0 where the subscript
denotes the iteration number. The iterative EM is then as follows:

The E step: we first compute the expectation Q(◊j≠1, ◊j) =
s

dx1:N p(x1:N |y1:N , ◊j≠1) log p(y1:N , x1:N |◊j).
The M step: we maximize this expectation with respect to the unknown parameters ◊j .
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where only those portions of the prefactor depending on D have been retained. While this expression in itself is
not di�cult to evaluate on a computer, it is needlessly tedious analytically.

To gain physical intuition, we try the simpler expression
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Intuitively, this result makes sense. It tells us that if lots of noise is present in the observation process, this might be
interpreted as an enhanced di�usion coe�cient. Thus, to correct for this, we need to subtract out a contribution
due to the noise variance from the di�usion coe�cient.

(For future reference, I should now di�erentiate with respect to sigma as well)

We can also envision a scenario where we are missing observations. That is, we are missing portion yi:j from
y1:N . In other words, y1:N = {y1:i≠1, yj+1:N }.

This problem is again treated very similarly to the problem above involving marginal likelihoods. That is, using
a di�using particle once more as an example, we have

p({y1:i≠1, yj+1:N }|D, ”t, ◊o) (2.141)
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Intuitively, the net e�ect of incomplete data likelihoods is to reduce the e�ective data set size from y1:N to
y1:N≠(j≠i) by assuming that the unknown measurements could have taken on any value.

2.7.3 Sketch of the EM algorithm

In constructing the complete-data likelihood so far we have had the advantage of being able to integrate over the
latent variable x. In general, this integration (or sum for a discrete data likelihood) is di�cult. Instead we start
by considering log p(y1:N , x1:N |◊) and consider an approximate likelihood maximization called the expectation-
maximization algorithm or EM for short. EM occurs in two iterative steps.

The E step: we first compute the expectation
s

dx1:N p(x1:N |y1:N , ◊) log p(y1:N , x1:N |◊).
The M step: we maximize this expectation with respect to the unknown parameters ◊.

To turn this procedure into an iterative recipe, we start by initiating ◊ to some value ◊0 where the subscript
denotes the iteration number. The iterative EM is then as follows:

The E step: we first compute the expectation Q(◊j≠1, ◊j) =
s

dx1:N p(x1:N |y1:N , ◊j≠1) log p(y1:N , x1:N |◊j).
The M step: we maximize this expectation with respect to the unknown parameters ◊j .
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where only those portions of the prefactor depending on D have been retained. While this expression in itself is
not di�cult to evaluate on a computer, it is needlessly tedious analytically.

To gain physical intuition, we try the simpler expression

p(y1:2|D, ”t, ◊o) =
⁄

dx1dx2
1

(2fi‡2)3 · 1
(4fiD”t)3/2 (2.137)

◊e
≠

y2
1

2‡2 e
≠

x2
2

4D”t e
≠ (y2≠x2)2

2‡2 ”(x1) (2.138)

Ã 1
D

Ô
2D”t + ‡2

e
≠

y2
2

2(2D”t+‡2) . (2.139)

where all terms independent of D were dropped in the proportionality.
Taking the derivative with respect to D yields a quadratic equation with two solutions for D only one of which

exhibits the correct limit of 6D = y2
2/”t as ‡ æ 0

6D =
y2

2 ≠ 5‡
2 +


y4

2 ≠ 10y2
2‡2 + ‡4

2”t
¥ y2

2
”t

≠ 5‡
2

”t
. (2.140)

Intuitively, this result makes sense. It tells us that if lots of noise is present in the observation process, this might be
interpreted as an enhanced di�usion coe�cient. Thus, to correct for this, we need to subtract out a contribution
due to the noise variance from the di�usion coe�cient.

(For future reference, I should now di�erentiate with respect to sigma as well)

We can also envision a scenario where we are missing observations. That is, we are missing portion yi:j from
y1:N . In other words, y1:N = {y1:i≠1, yj+1:N }.

This problem is again treated very similarly to the problem above involving marginal likelihoods. That is, using
a di�using particle once more as an example, we have

p({y1:i≠1, yj+1:N }|D, ”t, ◊o) (2.141)
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Intuitively, the net e�ect of incomplete data likelihoods is to reduce the e�ective data set size from y1:N to
y1:N≠(j≠i) by assuming that the unknown measurements could have taken on any value.

2.7.3 Sketch of the EM algorithm

In constructing the complete-data likelihood so far we have had the advantage of being able to integrate over the
latent variable x. In general, this integration (or sum for a discrete data likelihood) is di�cult. Instead we start
by considering log p(y1:N , x1:N |◊) and consider an approximate likelihood maximization called the expectation-
maximization algorithm or EM for short. EM occurs in two iterative steps.

The E step: we first compute the expectation
s

dx1:N p(x1:N |y1:N , ◊) log p(y1:N , x1:N |◊).
The M step: we maximize this expectation with respect to the unknown parameters ◊.

To turn this procedure into an iterative recipe, we start by initiating ◊ to some value ◊0 where the subscript
denotes the iteration number. The iterative EM is then as follows:

The E step: we first compute the expectation Q(◊j≠1, ◊j) =
s

dx1:N p(x1:N |y1:N , ◊j≠1) log p(y1:N , x1:N |◊j).
The M step: we maximize this expectation with respect to the unknown parameters ◊j .
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Intuitively, this result makes sense. It tells us that if lots of noise is present in the observation process, this might be
interpreted as an enhanced di�usion coe�cient. Thus, to correct for this, we need to subtract out a contribution
due to the noise variance from the di�usion coe�cient.

(For future reference, I should now di�erentiate with respect to sigma as well)

We can also envision a scenario where we are missing observations. That is, we are missing portion yi:j from
y1:N . In other words, y1:N = {y1:i≠1, yj+1:N }.

This problem is again treated very similarly to the problem above involving marginal likelihoods. That is, using
a di�using particle once more as an example, we have
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Intuitively, the net e�ect of incomplete data likelihoods is to reduce the e�ective data set size from y1:N to
y1:N≠(j≠i) by assuming that the unknown measurements could have taken on any value.

2.7.3 Sketch of the EM algorithm

In constructing the complete-data likelihood so far we have had the advantage of being able to integrate over the
latent variable x. In general, this integration (or sum for a discrete data likelihood) is di�cult. Instead we start
by considering log p(y1:N , x1:N |◊) and consider an approximate likelihood maximization called the expectation-
maximization algorithm or EM for short. EM occurs in two iterative steps.

The E step: we first compute the expectation
s

dx1:N p(x1:N |y1:N , ◊) log p(y1:N , x1:N |◊).
The M step: we maximize this expectation with respect to the unknown parameters ◊.

To turn this procedure into an iterative recipe, we start by initiating ◊ to some value ◊0 where the subscript
denotes the iteration number. The iterative EM is then as follows:

The E step: we first compute the expectation Q(◊j≠1, ◊j) =
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The M step: we maximize this expectation with respect to the unknown parameters ◊j .
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Figure 1: A synthetic time trace illustrating the trajectory of a hypothetical biomolecule that undergoes conforma-

tional transitions. Left: the state space consists of conformations depicted discretely as ‡1, ‡2, . . . . Middle: time series
of noisy observations xn produced by the biomolecule (blue) and corresponding noiseless trace (red). Over the time trace,
the biomolecule attains only conformations ‡1–‡5, though additional conformations might be visited at subsequent times.
Right: binning the collected observations reveals “emission distributions” F‡k associated with each conformation. These
distributions are highlighted with red lines. The centers (mean values) of the emission distributions are used to obtain the
noiseless trace in the middle panel. The illustration on the left is created using data from Ref. [6].

It has recently been suggested that Bayesian nonparametrics are poised to have a deep impact in Bio-40

physics [14]. But, there is – to our knowledge – no single resource yet available describing the iHMM, its
concepts or implementation, as would be required to bring the power of Bayesian nonparametrics to bare on42

Biophysics and accelerate its inevitable adoption. Indeed, while the iHMM tackles a conceptually simple problem,
it relies on Mathematics whose literature is inaccessible outside a rarified community of statisticians and computer44

scientists.
It is for this reason that we have organized our perspective article as follows: Section 2.1 describes the46

structure of the HMM in its finite (traditional) and infinite (nonparametric) realizations; Section 2.2 presents a
computational algorithm to perform the inference on the iHMM that we make freely available; Section 3 shows48

results of the iHMM on sample time traces; and Section 4 discusses the potential for further applications to
Biophysics.50

2 Methods

2.1 Formulation of the iHMM52

Here we introduce the HMM and its generalization, the iHMM. To facilitate the presentation, we initially describe
the structure of the system’s state space which applies to both HMMs and iHMMs and subsequently formulate54

its dynamics.
In the HMM framework, a system of interest is assumed to alternate successively between di�erent states56

labeled ‡k where the k takes integer values from 1 to some L. Here, L denotes the total number of states
available to the system. For instance, for an experiment on a single protein, the protein is the “system” and the58

“states” are conformations such as open or closed conformations of an ion channel [39]. See Fig. 1 (left).
In the standard HMM, we assume that the system’s transitions are governed by Markovian dynamics [28].60

This means that the system jumps from a state ‡k to a state ‡j in a stochastic manner that depends exclusively
on ‡k and not any other state visited in the past. For this reason, all transitions out of state ‡k are fully described62
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Figure 2: Graphical representation of the HMM. In the HMM, a biomolecule of interest transitions between unobserved
states sn according to the probability vectors fĩsn and generates observations xn according to the probability distributions
Fsn (xn) = F („sn ; xn). Here, following convention, the xn are shaded to denote that these quantities are observed, while
the sn are hidden. Arrows denote the dependences among the model variables and red lines denote the model parameters.

This is a computational overkill for the HMM but otherwise essential to its generalization.90

Within the Bayesian context [14, 44], we assign prior probabilities to model parameters including the emission
parameters „‡k and transition probability vectors fĩ‡k . For instance, we may assume a prior „‡k ≥ H(„‡k ) given92

by a common distribution H(„) for all states. However, assigning a prior to fĩ‡k is more subtle as any choice
of prior must ensure that the predicted transitions stay within the system’s state space S. It is specifically the94

formulation of this prior that fundamentally distinguishes the finite from the infinite variants of the HMM [37],
both of which we describe next.96

In the finite variant of the HMM [9, 28], before setting the prior on fĩ‡k , we must fix L, the total number of
states in S or, in the language of single molecule Biophysics, conformations available to the biomolecule. Once L

is fixed, the symmetric Dirichlet distribution is a common choice

fĩ‡k ≥ DirS
1

–

L
, . . . ,

–

L

2
. (4)

Here, DirS(–/L, . . . , –/L) denotes the Dirichlet distribution supported on S with “concentration parameter”
–. Basically, this prior asserts that lacking any prior information on the system’s kinetics, the model is equally98

likely to pick any possible transition probability vector fĩ‡k out of any state ‡k. The Dirichlet prior o�ers two key
advantages: i) it provides a noninformative prior since no specific transitions between the L states are preferentially100

selected; and ii) it is conjugate to the categorical distribution of Eq. (2) which greatly simplifies model parameter
estimation.102

Although priors such as in Eq. (4) help lessen the computational burden, pre-setting L: i) ignores the data
and thus the arbitrary choice of L may cause under- or over- fitting that, in turn, has far-reaching consequences104

in the estimation of state kinetics; and ii) does not allow the model’s complexity to grow in response to newly
available data (e.g. a rare state visited later in a time series). Resolving issue ii) in a principled fashion would also106

help avoid cherry-picking data sets behaving closer to one’s expected or preferred value of L. It is to resolve such
issues that iHMM has been developed in the first place.108

Now, in the infinite HMM, the key di�erence is that S is assumed infinite in size [1]. To avoid any confusion,
we point out that this assumption is di�erent from forcing the system to visit an infinite number of states, as110

it might appear at first. Regardless of the size of S, the system only visits K di�erent states, where K cannot
exceed, for example, the number of steps N in the collected time series. In practice, of course, we expect K to112

be considerably smaller than N .
As we will see, with an infinite S, the iHMM will recruit as many states as necessary and, in doing so, avoids114
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Figure 8: Illustration of a hypothetical biomolecule with four or potentially more conformational states. Left: the
biomolecule’s conformations ‡k. Upper right: Sequence of conformational changes at each time step, sn. For sake of
illustration here, only conformations ‡1, ‡2, and ‡3 are visited, while ‡4 remains unvisited throughout the time trace. Lower
right: Corresponding emission distributions Fsn (xn) of the visited states – since the system remains in the same state at
time steps 2 and 3, those emission distributions are identical. Dashed lines represent the emissions xn at corresponding
times tn. For the biomolecule’s illustration, we used data from Ref. [6].
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estimation.102

Although priors such as in Eq. (4) help lessen the computational burden, pre-setting L: i) ignores the data
and thus the arbitrary choice of L may cause under- or over- fitting that, in turn, has far-reaching consequences104

in the estimation of state kinetics; and ii) does not allow the model’s complexity to grow in response to newly
available data (e.g. a rare state visited later in a time series). Resolving issue ii) in a principled fashion would also106

help avoid cherry-picking data sets behaving closer to one’s expected or preferred value of L. It is to resolve such
issues that iHMM has been developed in the first place.108

Now, in the infinite HMM, the key di�erence is that S is assumed infinite in size [1]. To avoid any confusion,
we point out that this assumption is di�erent from forcing the system to visit an infinite number of states, as110

it might appear at first. Regardless of the size of S, the system only visits K di�erent states, where K cannot
exceed, for example, the number of steps N in the collected time series. In practice, of course, we expect K to112

be considerably smaller than N .
As we will see, with an infinite S, the iHMM will recruit as many states as necessary and, in doing so, avoids114
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by the probability vector fĩ‡k = (fi‡kæ‡1 , fi‡kæ‡2 , . . . ), where fi‡kæ‡j is the probability of departing from state
‡k and arriving to ‡j .64

A note on our notation is appropriate here. Throughout this survey we adopt tildes to denote vectors with
components over S, the system’s state space {‡1, ‡2, . . . }, such as fĩ‡k . Shortly, we will adopt bars to denote66

vectors with components over time.
Once the system reaches a state ‡k, observations x are emitted stochastically according to a probability

distribution unique to ‡k; see Fig. 1 (right). We call this the “emission distribution” F‡k (x). It is often practical
to model emission distributions by a general family F („; x) and use „ to distinguish its members. For this reason,
we may assume F‡k (x) = F („‡k ; x), where „‡k gathers the specific parameters associated with ‡k. For example,
to model Gaussian emissions, as in Fig. 1, we choose

F („; x) = 1
‡

Ô
2fi

exp
3

≠ (x ≠ µ)2

2‡2

4
(1)

where „ = (µ, ‡) stands for the mean and standard deviation (width) of the observations produced by each state.68

Next, we let sn denote the state of the system at the n
th time step of the experiment and xn its corresponding

observation. Thus, we label with n the states of the system as it evolves through time forming a sequence70

s1 æ s2 æ · · · æ sN , with each sn being equal to some state ‡k chosen from S.
As is it common in the statistical literature – and especially since we will borrow from this notation to introduce

the iHMM – we express the HMM compactly using the following scheme

sn

--sn≠1 ≥ CatS(fĩsn≠1) (2)

xn

--sn ≥ Fsn (3)

and depict it schematically in Fig. 2. Here, Eq. (2) denotes a sampling from a categotical probability distribution72

that is supported on S, i.e. sn equals a state ‡k that is taken from S with probability fisn≠1æ‡k . For completeness,
we may also assume that, before the first measurement, the system is at a default state which we denote as ‡0.74

As can be seen from Eqs. (2) and (3), the HMM models the experimental output in a doubly stochastic
manner: i) the state of the system sn evolves stochastically within S, as expressed by Eq. (2); and ii) the76

observations xn from each sn are also emitted stochastically, as expressed by Eq. (3). In particular, for single
molecule experiments, these two characteristics allow the HMM to elegantly capture: i) the seemingly random78

biomolecular state switching; and ii) the noise corrupting the measurements [3, 25].
From the experimental measurements, we gain access only to the observations xn, which take the form of a80

time series x̄ = (x1, x2, . . . , xN ) over some regularly spaced time intervals tn. In the most general case, the goal

of the HMM is to estimate: i) the underlying state sequence s̄ = (s1, s2, . . . , sN ) which is unobserved during82

the measurements; and ii) all model parameters which include „‡k of the emission distributions F‡k (x) and the
state transition probabilities fi‡kæ‡j associated with the states in S.84

Normally, this is the extent of the HMM. That is, one fixes L, i.e. the size of the state space S, writes down
the likelihood of observing the sequence of observations x̄ = (x1, x2, . . . , xN ), and maximizes this likelihood to86

estimate the quantities of interest. Extensive literature – that has made its way into standard textbooks, for
example Ref. [2] – explain each of these steps in detail.88

However, in preparation for the iHMM, we take a Bayesian route [14] to accomplish the goals of the HMM.

3

In summary, the iHMM – together with its priors illustrated in Fig. 3 – takes the following form

—̃ ≥ GEMS(“) (7)

fĩ‡k

--—̃ ≥ DPS(–, —̃) (8)

„‡k ≥ H (9)

sn

--sn≠1, ˜̃fi ≥ CatS(fĩsn≠1) (10)

xn

--sn, „̃ ≥ Fsn (11)

where, for notational simplicity, we use ˜̃fi = {fĩ‡1 , fĩ‡2 , . . . } and „̃ = {„‡1 , „‡2 , . . . } to gather the transition
probability vectors and emission parameters associated with all states in S.130

The iHMM above depends on two positive real numbers (hyperparameters) that set properties of the prior, –

and “. Unlike the finite HMM where we need to be specific about the size of the state space, the iHMM gives132

us the ability to be vague. For instance, larger concentrations are more appropriate for biomolecules with roughly
similar transition rates and several conformations while low concentrations are more appropriate for biomolecules134

with dissimilar transition rates and few conformations. In general, it is possible to sum over the concentrations if
we are truly ignorant of properties of the biomolecule at hand [12, 37].136

As we will see shortly, this powerful formalism allows us to infer state numbers robustly and, even if the
number of states is apparent – something which is rarely the case for more complex problems [27] – avoids the138

critical shortfall of cherry-picking data sets to be analyzed that appear to have similar state numbers.

2.2 Inference on the iHMM140

Prior to describing the analysis of iHMMs, we show how to infer quantities from time traces such as the hidden
state sequence and the parameters. A working implementation of the algorithm described in this section, equipped142

with a user interface, can be found in the supporting materials.
To be clear, on account of the infinite size of S, common methods used in finite state HMMs such as144

Expectation-Maximization or simply EM [28] are inapplicable here. Instead, we focus our discussion on a special-
ized method: the beam sampler [38]. Other methods are also described elsewhere [12, 37].146

The beam sampler is a special instance of the Gibbs sampler [30], and although it is beyond the scope of this
survey, a brief description about its usage might be beneficial here. Similar to all samplers of this family, we can148

use the beam sampler to generate (pseudo) random sequences of the model variables we are interested in inferring.
Specifically, in our case these variables consist of the hidden state sequence s̄ and the model parameters —̃, ˜̃fi, „̃.150

When generating the sequences, we use Eqs. (7)–(11) and the data x̄. As a result, the generated sequences will
have the same statistical properties as if they were consisting of samples from the posterior probability distribution152

P(s̄, —̃, ˜̃fi, „̃|x̄). So, we may use them to compute averages, confidence intervals, maximum a posteriori estimates,
or simply produce histograms that resemble P(s̄, —̃, ˜̃fi, „̃|x̄) as we show in Section 3 below.154

Overall, Gibbs and related samplers provide a more general approach than, for example, EM which provides
only the maximum of P(s̄, —̃, ˜̃fi, „̃|x̄). Instead, with Gibbs sampling, we fully characterize P(s̄, —̃, ˜̃fi, „̃|x̄) over its156

whole domain. For an introduction to the general methodology underlying Gibbs sampling we refer the interested
reader to Ref. [29], while from now on we will focus on the iHMM.158

Suppose we have a time series of experimental observations x̄. Here we describe the steps involved in generating
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Figure 2: Graphical representation of the HMM. In the HMM, a biomolecule of interest transitions between unobserved
states sn according to the probability vectors fĩsn and generates observations xn according to the probability distributions
Fsn (xn) = F („sn ; xn). Here, following convention, the xn are shaded to denote that these quantities are observed, while
the sn are hidden. Arrows denote the dependences among the model variables and red lines denote the model parameters.

This is a computational overkill for the HMM but otherwise essential to its generalization.90

Within the Bayesian context [14, 44], we assign prior probabilities to model parameters including the emission
parameters „‡k and transition probability vectors fĩ‡k . For instance, we may assume a prior „‡k ≥ H(„‡k ) given92

by a common distribution H(„) for all states. However, assigning a prior to fĩ‡k is more subtle as any choice
of prior must ensure that the predicted transitions stay within the system’s state space S. It is specifically the94

formulation of this prior that fundamentally distinguishes the finite from the infinite variants of the HMM [37],
both of which we describe next.96

In the finite variant of the HMM [9, 28], before setting the prior on fĩ‡k , we must fix L, the total number of
states in S or, in the language of single molecule Biophysics, conformations available to the biomolecule. Once L

is fixed, the symmetric Dirichlet distribution is a common choice

fĩ‡k ≥ DirS
1

–

L
, . . . ,

–

L

2
. (4)

Here, DirS(–/L, . . . , –/L) denotes the Dirichlet distribution supported on S with “concentration parameter”
–. Basically, this prior asserts that lacking any prior information on the system’s kinetics, the model is equally98

likely to pick any possible transition probability vector fĩ‡k out of any state ‡k. The Dirichlet prior o�ers two key
advantages: i) it provides a noninformative prior since no specific transitions between the L states are preferentially100

selected; and ii) it is conjugate to the categorical distribution of Eq. (2) which greatly simplifies model parameter
estimation.102

Although priors such as in Eq. (4) help lessen the computational burden, pre-setting L: i) ignores the data
and thus the arbitrary choice of L may cause under- or over- fitting that, in turn, has far-reaching consequences104

in the estimation of state kinetics; and ii) does not allow the model’s complexity to grow in response to newly
available data (e.g. a rare state visited later in a time series). Resolving issue ii) in a principled fashion would also106

help avoid cherry-picking data sets behaving closer to one’s expected or preferred value of L. It is to resolve such
issues that iHMM has been developed in the first place.108

Now, in the infinite HMM, the key di�erence is that S is assumed infinite in size [1]. To avoid any confusion,
we point out that this assumption is di�erent from forcing the system to visit an infinite number of states, as110

it might appear at first. Regardless of the size of S, the system only visits K di�erent states, where K cannot
exceed, for example, the number of steps N in the collected time series. In practice, of course, we expect K to112

be considerably smaller than N .
As we will see, with an infinite S, the iHMM will recruit as many states as necessary and, in doing so, avoids114
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Let’s take a step back and consider useful  
parametric models (fixed & finite # of  parameters): 

Figure 8: Illustration of a hypothetical biomolecule with four or potentially more conformational states. Left: the
biomolecule’s conformations ‡k. Upper right: Sequence of conformational changes at each time step, sn. For sake of
illustration here, only conformations ‡1, ‡2, and ‡3 are visited, while ‡4 remains unvisited throughout the time trace. Lower
right: Corresponding emission distributions Fsn (xn) of the visited states – since the system remains in the same state at
time steps 2 and 3, those emission distributions are identical. Dashed lines represent the emissions xn at corresponding
times tn. For the biomolecule’s illustration, we used data from Ref. [6].
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vectors with components over time.
Once the system reaches a state ‡k, observations x are emitted stochastically according to a probability

distribution unique to ‡k; see Fig. 1 (right). We call this the “emission distribution” F‡k (x). It is often practical
to model emission distributions by a general family F („; x) and use „ to distinguish its members. For this reason,
we may assume F‡k (x) = F („‡k ; x), where „‡k gathers the specific parameters associated with ‡k. For example,
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where „ = (µ, ‡) stands for the mean and standard deviation (width) of the observations produced by each state.68
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—̃ ≥ GEMS(“) (7)

fĩ‡k

--—̃ ≥ DPS(–, —̃) (8)

„‡k ≥ H (9)

sn

--sn≠1, ˜̃fi ≥ CatS(fĩsn≠1) (10)

xn

--sn, „̃ ≥ Fsn (11)
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A workhorse of  Biophysics Data Analysis: 
Hidden Markov Models (HMMs)

Slightly more complicated problem 
(Step 3 is hard)

The Hidden Markov Model

· · ·s1 sN· · · si si+1

Figure 3: ICON can analyze time traces contaminated with both noise and drift and self-consistently learn the
drift while learning the number of states in addition to all other quantities determined by the HMM. Upper panel:
Synthetic time traces with drift were generated as described in Section 2.1. Middle panel: True (solid) and estimated
(dashed) traces for the state sequence means and drift. Lower panel: Corresponding true and estimated trace for the
state sequence means without drift estimation. Note that without drift correction, the iHMM over-interprets drift as the
population of additional states. This over-interpretation is further quantified in Fig. 4 (left panels).
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Figure 1: A synthetic time trace illustrating the trajectory of a hypothetical biomolecule that undergoes conforma-

tional transitions. Left: the state space consists of conformations depicted discretely as ‡1, ‡2, . . . . Middle: time series
of noisy observations xn produced by the biomolecule (blue) and corresponding noiseless trace (red). Over the time trace,
the biomolecule attains only conformations ‡1–‡5, though additional conformations might be visited at subsequent times.
Right: binning the collected observations reveals “emission distributions” F‡k associated with each conformation. These
distributions are highlighted with red lines. The centers (mean values) of the emission distributions are used to obtain the
noiseless trace in the middle panel. The illustration on the left is created using data from Ref. [6].

It has recently been suggested that Bayesian nonparametrics are poised to have a deep impact in Bio-40

physics [14]. But, there is – to our knowledge – no single resource yet available describing the iHMM, its
concepts or implementation, as would be required to bring the power of Bayesian nonparametrics to bare on42

Biophysics and accelerate its inevitable adoption. Indeed, while the iHMM tackles a conceptually simple problem,
it relies on Mathematics whose literature is inaccessible outside a rarified community of statisticians and computer44

scientists.
It is for this reason that we have organized our perspective article as follows: Section 2.1 describes the46

structure of the HMM in its finite (traditional) and infinite (nonparametric) realizations; Section 2.2 presents a
computational algorithm to perform the inference on the iHMM that we make freely available; Section 3 shows48

results of the iHMM on sample time traces; and Section 4 discusses the potential for further applications to
Biophysics.50

2 Methods

2.1 Formulation of the iHMM52

Here we introduce the HMM and its generalization, the iHMM. To facilitate the presentation, we initially describe
the structure of the system’s state space which applies to both HMMs and iHMMs and subsequently formulate54

its dynamics.
In the HMM framework, a system of interest is assumed to alternate successively between di�erent states56

labeled ‡k where the k takes integer values from 1 to some L. Here, L denotes the total number of states
available to the system. For instance, for an experiment on a single protein, the protein is the “system” and the58

“states” are conformations such as open or closed conformations of an ion channel [39]. See Fig. 1 (left).
In the standard HMM, we assume that the system’s transitions are governed by Markovian dynamics [28].60

This means that the system jumps from a state ‡k to a state ‡j in a stochastic manner that depends exclusively
on ‡k and not any other state visited in the past. For this reason, all transitions out of state ‡k are fully described62

2



Slightly more complicated problem 
(Step 3 is hard)

· · ·

· · ·

Observation model

Kinetic model

s1 s2 s3 sN

yNy3y2y1

sn|sn�1 ⇠ Categorical(⇡sn�1!�1 , · · · ,⇡sn�1!�K )

Of course, the initial state of the system s1 is not included as there is no predecessor state to relate to. So typically,
one has to adopt separate probabilities. To maintain our notation uniform, we may denote these probabilities

fĩ‡0 = (fi‡0æ‡1 , fi‡0æ‡2 , . . . , fi‡0æM ) (6.4)

and use the convention s0 = ‡0 to denote an otherwise non-existing state. When the initial state is specified, we
may still maintain the same formulation by simply setting fi‡0æm = 1 for the state that the system stars in, and
fi‡0æm0 for every other one.

introduce ˜̃fi and include fi0 here. Also parametrize the emissions here and introduce „̃.
In summary, the dynamical model described so far is

sn|sn≠1 ≥ Categorical‡1,...,‡M
(fĩ‡m) , n = 1, . . . , N (6.5)

xn|sn ≥ Fsn , n = 1, . . . , N (6.6)

add a graphical model
Explicitly classify model variables and model parameters
Motivate Rabiner’s three problems
To provide answer to these questions generally there are two routes: a frequentist and a Bayesian. These are

described in the sections that follow, but before we move on, we need to mention some of the limitations of the
HMM that may not be apparent at first.

Note on the consequences of the above formulation: fixed dt, loss of memory, homogeneity, and
exponential dwell times. Also note on how to correct for these consequences with higher order Markov
systems, and also how to transform higher order systems to first order again.

Note that discreetness of the state-space is necessary here. Relaxing this assumption requires
fundamentally di�erent approaches that will be treated in later chapters.

6.3 The Hidden Markov Model in the frequentist paradigm

6.3.1 EM

6.3.2 Viterbi algorithm

6.4 The Hidden Markov Model in the Bayesian paradigm

In the Bayesian setting one needs to adopt priors for the model parameters. For a HMM of a given size M , the
parameters include the transition probabilities fĩ‡m and the emission parameters „̃.

The most natural prior for the transition probabilities is o�ered by Dirichlet distributions

fĩ‡m ≥ Dirichlet‡1,...,‡M

1
–

M
,

–

M
, . . . ,

–

M
,

2
, m = 0, 1, . . . , M (6.7)

where – is a positive constant, colloquially termed concentration With this parametrization, the prior weight for
fimæmÕ is –/M same for all states. Here use 3-Dirichlel plot to show the e�ect of a. Note that larger
values of a lead to more concentrated distribution.

The Dirichlet distribution, besides of providing the obvious advantage of generating probability vectors, is
also conjugate to the categorical state transitions, which greatly simplifies the computations described below. To
simplify the notation, we gather every transition probability collectively in ˜̃fi = (fĩ‡1 , fĩ‡2 , . . . , . . . , fĩ‡M , fĩ‡0).

A choice for the emission parameters „̃ depends heavily on the emission distribution which in turn varies
widely between systems. Generally, parameters „‡m associated with each state ‡m are considered independent
and identically distributed. To maintain the generality, here we use

„‡m ≥ H, m = 1, . . . , M (6.8)

where, as we mentioned above, the precise form of H di�ers from problem to problem.
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⇡sn�1!�1 ⇡sn�1!�2 ⇡sn�1!�3

1

⇡sn�1!�4

Slightly more complicated problem 
(Step 3 is hard)

sn|sn�1 ⇠ Categorical(⇡sn�1!�1 , · · · ,⇡sn�1!�K )



⇡�1!�1 ⇡�1!�2
⇡�1!�3 ⇡�1!�4

⇡�2!�1 ⇡�2!�2 ⇡�2!�3 ⇡�2!�4

⇡�3!�1 ⇡�3!�2 ⇡�3!�3 ⇡�3!�4

˜̃⇡ =

Slightly more complicated problem 
(Step 3 is hard)

⇡�4!�4⇡�4!�1 ⇡�4!�2 ⇡�4!�3



Slightly more complicated problem 
(Step 3 is hard)

The idea is always the same…

P (y1:N , s1:N |˜̃⇡, (�2)1:K , µ1:K , ...)

Write down complete-data likelihood

X

s1:N

But we are interested in maximizing the 
incomplete-data likelihood

P (y1:N , s1:N |˜̃⇡, (�2)1:K , µ1:K , ...)

If  we are just interested in the most probable state sequence 
we use the “Viterbi algorithm”



Slightly more complicated problem 
(Step 3 is hard)

X

s1:N

But we are interested in maximizing the 
incomplete data likelihood

P (y1:N , s1:N |˜̃⇡, (�2)1:K , µ1:K , ...)

Since we cannot do this exactly, we will use EM



N.B. for HMM

-People normally use EM to approximately evaluate the 
maximum likelihood and (within EM) use filtering.

-You need to put in by hand: the number of  states, specify 
the emission distribution



Clustering is another example of   
a latent variable model

· · ·

x1

y1 y2 y3 yN

x2 x3 xN· · ·



Clustering is another example of   
a latent variable model

· · ·

x1

y1 y2 y3 yN

x2 x3 xN· · ·

no dynamics…



Clustering is another example of   
a latent variable model

· · ·

x1

y1 y2 y3 yN

x2 x3 xN· · ·

Observation model

System model xn ⇠ Categorical(⇡1,⇡2, · · · ,⇡K)xn|⇡̃ ⇠

yn ⇠ 1
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a latent variable model
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Clustering is another example of   
a latent variable model

Observation model

xn ⇠ Categorical(⇡1,⇡2, · · · ,⇡K)xn|⇡̃ ⇠

yn ⇠ 1

(2⇡�n)3/2
e
� (yn�µn)2

2�2
nyn|µn,�

2
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System model



In clustering, just as with HMMs, we build complete-data 
likelihoods, then derive incomplete-data likelihoods to be 
maximized (this can all be done exactly or approximately, 

e.g. through variational methods such as EM)

y1:N ! ⇡1:K ,µ1:K ,�1:K

Big assumptions: number of  clusters is inputed by hand, 
the emission distribution is specific by hand, etc…



Likelihoods need not only be maximized 

P (y1:N |D = 10µm2/s)

P (y1:N |D = 5µm2/s)

e.g. likelihood ratio test can be used to compare parameter values

e.g. likelihoods’s curvature near maximum value tells you 
something about estimate uncertainty (how sharp the likelihood is 
around the maximum)

@2

@D2
P (y1:N |D)|D=D⇤



Physics dictates likelihoods. 
A good understanding of  the data collection process 
and underlying physics can be used to approximate 

likelihoods

A proper understanding and use of  likelihoods avoids having to  
de-noise the time trace, average down the data etc…



e.g. of  more sophisticated models we cover 
in my class

where ◊s are the collection of system parameters (and for the case of dynamical systems, we can call these kinetic
paramaters).

As a more complex example, we may imagine snapshots x taken with a camera exposure time of tE . Thus
the entire process, as we observe it, is described by

’dx = vdt + BdWt (2.92)
Wt ≠ Wt≠dt ≥ Normal(0, dt) (2.93)

yt = 1
tE

⁄ t

t≠tE

dx(t) + B
Õ(Wt ≠ Wt≠tE ) (2.94)

where B
Õ(Wt ≠ Wt≠tE ) is the measurement noise also called observation noise, assumed Gaussian. The above

is only an example. We can imagine more sophisticated schemes involving camera pixilation, camera shot noise,
complex motor kinetics, that add additional complexity to Eq. (94).

The logic extends equally well to discrete variables where reproducing Eq. (3) in the first line and adding
measurement error we have

zt|zt≠1 = ‡i, fĩ‡i ≥ Cat(fĩ‡i) (2.95)
yt|zt ≥ p(yt|zt, ◊o) (2.96)

describing the evolution of the discrete random variable zt related to the scalar observation, yt, through the
emission distribution p(yt|zt, ◊o). In both cases, the quantity of interest is hidden and is called a latent variable.
In particular, the doubly stochastic process represented by Eq. (96) is of fundamental importance and is the basis
of a model we will re-explore called the hidden Markov model.

2.6 Fokker-Planck and di�usion equation

(I need to discuss Ito and Stratonovich calculus...)
(I need to start with Stokes/Green volume integral in phase space)

Here we derive transition matrices for Markov processes that we will use in the evaluation of of trajectory
likelihoods from models of stochastic dynamics describing the stochastic evolution of ẋ.

We begin with the conservation of probability and write

d

dt
p(x(t), p(t)|x(0), p(0), ◊o) = 0 (2.97)

where ◊ denotes all parameters on which the dynamics depend. Re-writing

d

dt
æ

ˆ

ˆt
+ ˆ

ˆxẋ · + ˆ

ˆpṗ· (2.98)

we have

ˆ

ˆt
p + ˆ

ˆx · (ẋp) + ˆ

ˆp · (ṗp) = 0 (2.99)

where we re-wrote p = p(x(t), p(t)|x(0), p(0), ◊) for simplicity.

Example 2.8

Inserting dynamics for ẋ and ṗ into Eq. (99), we in principle now have a partial di�erential equation – in general
one only solvable numerically – whose solution provides us with transition probabilities.

29

-the above is relevant if  you have finite exposure time
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ˆpṗ· (2.98)

we have

ˆ

ˆt
p + ˆ

ˆx · (ẋp) + ˆ

ˆp · (ṗp) = 0 (2.99)

where we re-wrote p = p(x(t), p(t)|x(0), p(0), ◊) for simplicity.

Example 2.8
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Example 2.7: Mean square displacement

Our goal now is to relate the di�usion coe�cient, D, to B. We first need to define the di�usion coe�cient D. In
the absence of a potential, the di�usion coe�cient is directly related to the average displacement squared covered
by a particle (averaged over trajectories of that particle), x(t) ≠ x(t ≠ ”t), per unit time, ”t. In other words, in an
isotropic homogeneous medium, it is defined as

6D © È(x(t) ≠ x(t ≠ ”t))2Í
”t

. (2.75)

In the most general case, when space is not isotropic, we have a di�usion tensor which we do not deal with here.
We start from Eq. (73), assume no potential (U = 0) and integrate once

x(t) ≠ x(t ≠ ”t) = ”t

’

⁄ t

t≠”t

dsFp(s). (2.76)

Taking the square of both sides and averaging over noise yields

È(x(t) ≠ x(t ≠ ”t))2Í = 1
’2

s t

t≠”t
ds

s t

t≠”t
ds

ÕÈFp(s) · Fp(sÕ)Í (2.77)

= 3B2

’2
s t

t≠”t
ds

s t

t≠”t
ds

Õ
”(s ≠ s

Õ) = 3B2”t
’2 . (2.78)

Since È(x(t) ≠ x(t ≠ ”t))2Í/”t = 6D, we have

6D = 3B
2

’2 . (2.79)

Since, from Eq. (71) we have B
2 = 2’kBT , then

D = kBT

’
. (2.80)

Upon rapid randomization by the environment, we have

’
dx
dt

¥ ≠ÒU(x(t)) + Fp(t) (2.81)

which describes a Brownian process (i.e. free di�usion) when U = 0 where D = kT/’.
For a harmonic potential, U(x) = mÊ

2(x ≠ µ)2
/2, in Eq. (81), the resulting sequence of random variables

generated from such a Langevin equation is called the Ornstein-Uhlenbeck process and it describes the motion of
a particle inside a harmonic trap.

(show plot of OU process. Give example of a harmonic trap.)
(show transition matrix for Ornstein-Uhlenbeck)
Just like we have in the previous section, we can now introduce a doubly stochastic process and assume that

the di�usion itself is a stochastic process sampled from a categorical distribution

‡n|‡n≠1, fĩn≠1 ≥ Cat(fĩn≠1) (2.82)
Wt ≠ Wt≠dt ≥ Normal(0, dt) (2.83)

’dx = ≠ÒU‡n(x)dt + B‡ndWt. (2.84)

(show pseudo-code for how to simulate the above)
The above is an example of a stochastic linear dynamic switch since the dynamical model (in this case

the potential and di�usion coe�cients) stochastically switch according to the parameters of the Categorical
distribution.

(show a plot here)
(provide an example between a transcription factor bound and freely di�using or molecular motor hopping

between bound a linear motion along the cytoskeleton)
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(write down a single molecule reaction-di�usion equation).
(discuss Brownian bridge)

2.4.1 From stochastic trajectories to probabilities

The generative models above provide recipes for coding up and simulating stochastic trajectories. But why
bother with generating stochastic trajectories given that experimental data supplies us already with stochastic
trajectories?

The purpose of generative models is not simply to generate stochastic trajectories. Models are mathematical
expressions of what we believe is happening at the relevant microscopic level even if the parameters (for example
the di�usion coe�cient) are, so far, unknown. Having a mathematical model allows us to use the data we have
at our disposal to estimate unknown properties of that model.

For example, assume a process is di�usive, and we have positions of a particle in time, x. As we will see in
later sections, knowing the Langevin equation describing the process allows us to write a probability of observing
the sequence x assuming di�erent di�usion coe�cients. The di�usion coe�cient that maximizes the probability
of observing the sequence x must be closer to the true di�usion coe�cient barring measurement error.

Indeed, this brings us to our next topic: measurement error. That is, do far we have assumed that every
position of a di�using particle, say, coincides with the outcome of the measurement. But, this is almost never the
case.

Measurement almost always introduces a probabilistic relationship between the variable we care about and
the measurement outcome. For example the measurement outcome, y, may only be related to the position, x,
through

y|x ≥ p(y|x, ◊o) (2.85)

where ◊o are parameters of this observation distribution often called an emission distribution.
It is specifically because the observation probability is rarely a delta function that simplifications, such as

estimating di�usion coe�cients from mean square displacements, are rarely advisable.
We now turn to observation processes.

2.5 Observation processes

Let’s reconsider a simple di�usion with drift

’dx = vdt + BdWt (2.86)
Wt ≠ Wt≠dt ≥ Normal(0, dt) (2.87)

where the velocity is constant. The above describes the motion of particle with a bias in the direction of the drift
velocity v. For example, the above may describe, somewhat coarsely, the motion of a small vesicle being actively
transported by a molecular motor moving along a direction aligned with that of the cytoskeleton.

In experiments, x may not be directly observed. Rather, we may instead observe y which is only probabilistically
related to x due to measurement error. In other words,

’dx = vdt + BdWt (2.88)
yt|xt ≥ p(yt|xt, ◊o) (2.89)

where, just as before, ◊o are parameters describing the observation process. As a concrete example,

p(yt|xt, ◊o) Ã e
≠ (yt≠xt)2

2‡2 (2.90)

where ◊ in this case denotes a single parameter (the variance of the measurement).
The combined parameters describing the system and the observation process are

◊ = {{v, B, ’}, ◊o} = {◊s, ◊o} (2.91)

28

-the above is relevant if  you switch between behaviors



Everything we have done so far is frequentist.

-we have assumed that there exists true parameter values (as 
opposed to assuming that parameters themselves are random 
variables distributed according to some probability distribution)

-frequentist (at least as our discussion here goes) means maximum 
likelihood 

-we may want to calculate a full distribution over parameters 
… like                             instead of  just  P (D|y1:N ) D
-we may want to bias our estimates for the parameter by inputting  
prior knowledge (e.g. we may have a range to within a order of  
magnitude what the diffusion coefficient should be).

-we may want to grow the dimensionality of  our model based on 
the the data…

However…



prior posterior

P (✓) P (✓|y1:N )!

The Bayesian paradigm…from Laplace!

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 



P (✓)P (✓|y1:N ) P (y1:N |✓)P (y1:N ) =

Bayes’ theorem

posterior priorlikelihood

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

The Bayesian paradigm…from Laplace!



P (✓)P (✓|y1:N ) P (y1:N |✓)P (y1:N ) =

Bayes’ theorem

posterior priorlikelihood

specified by hand - or 
dictated by physics 
outside the 
experiment 
generating the data

dictated  
by physics 
of  the 
experiment 
at hand

what we 
want

normalization

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

The Bayesian paradigm…from Laplace!



P (✓)P (✓|y1:N ) P (y1:N |✓)/

P (y1|✓)P (✓|y1) / P (✓)

Imagine repeated experiments…

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

The Bayesian paradigm…from Laplace!



P (✓)P (✓|y1:N ) P (y1:N |✓)/

P (y1|✓)P (✓|y1) / P (✓)

P (✓|y1)P (y2|✓,y1)/P (✓|y1,y2)

Imagine repeated experiments…

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

The Bayesian paradigm…from Laplace!



P (✓)P (✓|y1:N ) P (y1:N |✓)/

P (y1|✓)P (✓|y1) / P (✓)

P (✓|y1)P (y2|✓,y1)/P (✓|y1,y2)

P (y2|✓,y1)/P (✓|y1,y2) P (y1|✓)P (✓)

Imagine repeated experiments…

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

The Bayesian paradigm…from Laplace!



P (✓)

This motivates the idea that all “priors” (which become posteriors 
for the next iteration)  should have the same form…

P (✓|y1)

P (✓|y1,y2)

P (✓|y1,y2,y3)

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

The Bayesian paradigm…from Laplace!



Model parameters, ✓
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"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

Laplace Book II, Chapter VI, Page 370

P (✓)

The Bayesian paradigm…from Laplace!
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Laplace Book II, Chapter VI, Page 370

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

P (✓|y1)

The Bayesian paradigm…from Laplace!



Model parameters, ✓
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Laplace Book II, Chapter VI, Page 370

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

P (✓|y1,y2)

The Bayesian paradigm…from Laplace!



Model parameters, ✓
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Laplace Book II, Chapter VI, Page 370

"26. La probabilité de la plupart des événements simples est inconnue: en 
la considérant a priori, elle nous paraît susceptible de toutes les valeurs com-
prises entre zéro et l 'unité; mais, si l'on a observé un résultat composé de plu-
sieurs de ces événements, la manière dont ils y entrent rend quelques-unes de 
ces valeurs plus probables que les autres. Ainsi, à mesure que le résultat 
observé se compose par le développement des événements simples, leur vraie 
possibilité se fait de plus en plus connaître, et il devient de plus en plus pro-
bable qu'elle tombe dans des limites qui, se resserrant sans cesse, finiraient par 
coïncider, si le nombre des événements simples devenait infini. Pour déterminer 
les lois suivant lesquelles cette possibilité se découvre, nous la nommerons x. 

P (✓|y1,y2,y3)

The Bayesian paradigm…from Laplace!



The Bayesian paradigm

P (✓)P (✓|y1:N ) P (y1:N |✓)/

Thus — once the physics that dictates the likelihood is set —  
it is convenient to select a prior that is conjugate to the likelihood. 
Meaning, we seek a prior that, once multiplied by the likelihood,  
yields a posterior of  the same mathematical form as the prior. 
This simplifies computation considerably.



The Bayesian paradigm

Thus — once the physics that dictates the likelihood is set —  
it is convenient to select a prior that is conjugate to the likelihood. 
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Imagine coin flip experiment w HTHHHTH 
and we want to determine the probability of  heads and tails

The N outcomes of  this experiment are random variables.

Chapter 1

Introduction to modeling and inference

1.1 Random variables and sampling

It is often said that the term random variables is a misnomer as random variables are neither random nor variables.
As we will see, random variables are numbers (or arrays of numbers), not variables, and they are not random.
Rather, they are sampled from probability distributions that we will describe.

Random variables may be discrete integers – dice rolls, coin flips, photon counts – or continuous, such as in
the case of temperatures, pressures or forces. A random variable, y, is the outcome of a repeated experiment or,
in statistical jargon, a process. All the processes we consider here will be stochastic processes. That is, processes
whose output are random variables.

We denote a collection of outcomes by the vector, y1:N = {y1, y2, · · · yN }, where the 1 : N subscript indicates
the range of outcomes. Unless explicitly needed to help draw attention to the subscript, this notation will be
suppressed for clarity.

The order in which these random variables are measured may be important, in the case of an experiment on a
time-dependent process, such as successive measurements of cell numbers in a growing cell culture. Or the order
may be irrelevant in the case of an array of test scores or measurements of adult heights collected from a group
of adults at one time describing, in more precise language, a time-independent process often called a stationary
process.

Now, if random variables were all we ever cared about, then no experiment would require modeling or interpre-
tation and the remainder of this discussion would be unnecessary. But quantum mechanics is not self-evident from
the outcome of a Young’s two-slit interference experiment and interpretation – or model-building – is needed.

This is because random variables are indirectly – and more generally, probabilistically – related to desired model
parameters. For example, the mean of a normally distributed sequence of random variables is only probabilistically
related to each measured value. For the example of the normally distributed sequence, what we call the “model”
is the normal distribution and its parameters are the mean and variance of the Gaussian. The mean, µ, and
variance, ‡

2, collectively described by the vector of desired quantities ◊ = {µ, ‡
2
} may indeed be the desired

model parameters we wish to estimate from y. These quantities, in turn, may depend on additional parameters.
More generally we denote parameters by the vector ◊ = {◊1, ◊2, · · · , ◊K}.

Random variables may be probabilistically related to quantities we care about because experiments are noisy or
more precisely because of extrinsic heterogeneity. They may also be probabilistically related to quantities we care
about because the quantity we care is itself distributed. For example, human heights measured are themselves
fundamentally distributed. In the sciences, this is call quantities such as these intrinsically heterogeneous. As a
less trivial example, the number of photons emitted by a light emitting particle – if all photons could somehow
be successfully collected and no stray photon were ever miscounted – within some fixed time interval would be
di�erent for di�erent time intervals. This is because of quantum mechanics, as we have already assumed no
extrinsic heterogeneity.

Thus, we must deal with stochastic output not just because the output of an experiment may be corrupted
by measurement noise but because Nature itself is stochastic.

The question immediately arises, how do we learn, i.e. infer, quantities of interest from time-ordered or

9

= {H,T,H,H,H, · · · }

In other words        is heads with probability y1 p

is tails with probability 1� p

The likelihood is a Bernoulli distribution. So our conjugate 
prior will be Beta distribution. 

Setting up the problem within the 
Bayesian paradigm



To determine the posterior probability of  heads/tails, we ask

What is the likelihood of  having observed the sequence of  
outcomes HTHHHTH?

likelihood = p5(1� p)2

We set our prior

prior = 
1

B(↵,�)
p↵�1(1� p)��1
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To determine the posterior probability of  heads/tails, we ask

What is the likelihood of  having observed the sequence of  
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hyperparameters

Setting up the problem within the 
Bayesian paradigm
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You can do much more than maximize a posterior.  
You can obtain a full distribution over all unknowns  
where the error is rigorously propagated from your emission 
distribution that contains all features of  the measurement model.



Exact Sampling

Most simple functions can be sampled from directly 
using the inverse cdf  method 
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Exact Sampling

Most simple functions can be sampled from directly 
using the inverse cdf  method 
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Exact Sampling

For the exponential the y starts from 0. However for 
a Gaussian spanning all real numbers the integral 
would start from         . �1

Most simple functions can be sampled from directly 
using the inverse cdf  method 
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into an exponential random variable, A.
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as selecting the functional form of g(r), are straightforward. However, unlike this example, where a computational
recipe for sampling the random variable of interest R was already available, e.g. eqs. (5.6) and (5.7), generally
obtaining samples from an arbitrary target fi(r) is a demanding task.

For this reason, we focus the rest of this chapter on the development of generic sampling schemes that can
be used for the simulation of the sequence r

(j) in the first place. In this chapter, we will go into greater detail
and describe a particular class of MC methods, namely Markov chain Monte Carlo (MCMC), that are particularly
suited for the solution of inference problems.

Note 5.2: What is a Markov chain Monte Carlo method?

MC methods are commonly used for simulation and data analysis to characterize complicated probability distribu-
tions. The idea is that, even if we are unable to evaluate the distribution of interest analytically, we can generate
random samples from this distribution and, as we will see shortly, use these samples to derive relevant quantities,
such as point statistics and histograms.

MCMC algorithms, however, do not generate independent samples from the distribution of interest, but rather
generate Markov chains of samples. This is the reason for its appellation as Markov chain Monte Carlo (MCMC).
The main distinction between MC and MCMC is that the former generates independent samples; while, as will see
shortly, the latter generates dependent samples.

5.1.2 Markov chain Monte Carlo methods

As it is suggested by their name, MCMC simulations are performed in a sequential manner. Namely, each new
sample r

(j+1) of our targeted random variable R ≥ ⇧ is generated in a stochastic way that depends on the
immediate previous sample r

(j). Formally, this means that every MCMC method relies on successive samples

r
(0)

æ r
(1)

æ r
(2)

æ · · · æ r
(j)

æ r
(j+1)

æ · · · æ r
(J)

in a Markov chain. So, our focus from now on shifts to the description of appropriate implementation schemes
for the transitions · · · æ r

(j≠1)
æ r

(j)
æ r

(j+1)
æ · · · . Similar to MC, the MCMC samples r

(j) carry the same
statistical value as the target distribution itself ⇧. So, even when we are unable to evaluate fi(r) directly, for
example because it does not have a tractable formula or we are unable to evaluate it directly, we can still utilize
the sequence of samples r

(j) for the same purpose. However, unlike MC samples that are uncorrelated, MCMC
samples are correlated. For this reason, to use approximations like eq. (5.2) we need to ensure that our Markov
chain satisfies certain requirements that we highlight below.

Before delving into finer details, we first lay down some prerequisites. Similar to the ideas we encountered in
chapter 2, Markov chains are best studied as sequences of random variables

R
(0)

æ R
(1)

æ R
(2)

æ · · · æ R
(j)

æ R
(j+1)

æ · · · æ R
(J)

and from this perspective, each MCMC sample r
(j) is a realization of a random variable R

(j) in this sequence.
To simplify our presentation from now on, instead of R

(j) and R
(j+1), we will use the more intuitive R

old and
R

new to denote a random variance in this chain and its immediate successor. Similarly, we will be using r
old and

r
new to denote realized values of these variables.

We will designate a sample’s value r as feasible when it is allowed by the target, i.e. fi(r) > 0. We will
designate a chain as ergodic when its samples, in the long run, approach any feasible value, i.e. as the chain grows
larger, formally at the limit J æ Œ, samples r

(j) pass or come arbitrarily close to any feasible r.
Similar to any Markov chain, the transition rules leading from one MCMC sample to the next one take the

form of conditional probability densities p(rnew
|r

old). These densities quantify how likely a current sample r
old is

to move to the next one r
new and generally say little about how the chain got into r

old which, due to the Markov
property, is unimportant. To avoid any notational confusion, we will use Trold(rnew) to denote the transition
densities of our MCMC chain and Trold to denote their corresponding distributions, i.e. in the convention we will
be using from now on Tr(j)(r(j+1)) = p(r(j+1)

|r
(j)) and R

(j+1)
|r

(j)
≥ Tr(j) . Additionally, as we silently did
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As a result, we generate a Markov chain of  samples using Markov Chain Monte 
Carlo (MCMC)

Goal: sample from a target distribution,           , whose cdf  cannot be computed⇡(r)
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as selecting the functional form of g(r), are straightforward. However, unlike this example, where a computational
recipe for sampling the random variable of interest R was already available, e.g. eqs. (5.6) and (5.7), generally
obtaining samples from an arbitrary target fi(r) is a demanding task.

For this reason, we focus the rest of this chapter on the development of generic sampling schemes that can
be used for the simulation of the sequence r

(j) in the first place. In this chapter, we will go into greater detail
and describe a particular class of MC methods, namely Markov chain Monte Carlo (MCMC), that are particularly
suited for the solution of inference problems.

Note 5.2: What is a Markov chain Monte Carlo method?

MC methods are commonly used for simulation and data analysis to characterize complicated probability distribu-
tions. The idea is that, even if we are unable to evaluate the distribution of interest analytically, we can generate
random samples from this distribution and, as we will see shortly, use these samples to derive relevant quantities,
such as point statistics and histograms.

MCMC algorithms, however, do not generate independent samples from the distribution of interest, but rather
generate Markov chains of samples. This is the reason for its appellation as Markov chain Monte Carlo (MCMC).
The main distinction between MC and MCMC is that the former generates independent samples; while, as will see
shortly, the latter generates dependent samples.

5.1.2 Markov chain Monte Carlo methods

As it is suggested by their name, MCMC simulations are performed in a sequential manner. Namely, each new
sample r

(j+1) of our targeted random variable R ≥ ⇧ is generated in a stochastic way that depends on the
immediate previous sample r

(j). Formally, this means that every MCMC method relies on successive samples
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statistical value as the target distribution itself ⇧. So, even when we are unable to evaluate fi(r) directly, for
example because it does not have a tractable formula or we are unable to evaluate it directly, we can still utilize
the sequence of samples r

(j) for the same purpose. However, unlike MC samples that are uncorrelated, MCMC
samples are correlated. For this reason, to use approximations like eq. (5.2) we need to ensure that our Markov
chain satisfies certain requirements that we highlight below.

Before delving into finer details, we first lay down some prerequisites. Similar to the ideas we encountered in
chapter 2, Markov chains are best studied as sequences of random variables
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To simplify our presentation from now on, instead of R
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(j+1), we will use the more intuitive R
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new to denote a random variance in this chain and its immediate successor. Similarly, we will be using r
old and
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new to denote realized values of these variables.

We will designate a sample’s value r as feasible when it is allowed by the target, i.e. fi(r) > 0. We will
designate a chain as ergodic when its samples, in the long run, approach any feasible value, i.e. as the chain grows
larger, formally at the limit J æ Œ, samples r

(j) pass or come arbitrarily close to any feasible r.
Similar to any Markov chain, the transition rules leading from one MCMC sample to the next one take the

form of conditional probability densities p(rnew
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old). These densities quantify how likely a current sample r
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to move to the next one r
new and generally say little about how the chain got into r

old which, due to the Markov
property, is unimportant. To avoid any notational confusion, we will use Trold(rnew) to denote the transition
densities of our MCMC chain and Trold to denote their corresponding distributions, i.e. in the convention we will
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Figure 5.2: Illustration of example 5.2. Panel A: truncated Normal target fi(r) with Normal and Gamma proposals
Q

rold (rprop). Panel B: MCMC approximation of fi(r) produced by Normal proposals. Panel C: MCMC approximation of
fi(r) produced by Gamma proposals. Panels B and C also show parts of the generated Markov chains · · · æ r

(j≠1)
æ

r
(j)

æ r
(j+1)

æ · · · . For clarity, only small segments of the two chains are shown.

137



5.2 Basic MCMC samplers

In this section we present two general strategies of obtaining MCMC samplers. Namely, those that rely on the
Metropolis-Hastings algorithm and those that rely on Gibbs sampling. In essence, both strategies utilize the same
theoretical foundations; but, since their implementation di�ers, we discuss them separately.

As we will see, in both strategies, the target density fi(r) need not be normalized. So, we may apply them even
if the target is specified only up to a multiplicative constant, i.e. a factor that does not depend on r, as usually is
the case in Bayesian applications. To distinguish a target that may not be normalized, we will write fī(r). Given an
unnormalized target fī(r), we can readily recover the corresponding normalized one by fi(r) = fī(r)/

s
rÕ dr

Õ
fī(rÕ),

and for this reason, we use fi(r) and fī(r) interchangeably.

Note 5.4: Unnormalized targets

When we operate on an unnormalized target, fī(r), it is critical to recall that this target is associated with a
probability distribution ⇧. Accordingly, we must ensure that our fī(r) passes a simple sanity check, namely, that it
is fī(r) is normalizable. This holds as long as

0 <

⁄

r

dr fī(r) < Œ

with both inequalities being important, otherwise fī(r) is meaningless alongside any results derived from it.

5.2.1 Metropolis-Hastings family of samplers

Samplers in this family can be used to generate MCMC samples r
(j) from virtually any random variable R ≥ ⇧.

These include univariate or multivariate ones.

Metropolis-Hastings sampler

Given a target fī(r), to begin a Metropolis-Hastings sampler, a choice for the initial sample r
(0) needs to be made.

This can be achieved either by assigning a fixed value or sampling a value from a specified probability distribution
which need not necessarily be ⇧. In the later case, the chosen distribution must exclude infeasible values. In any
case, irrespective of how r

(0) is computed, the sampler remains valid as long as fī(r(0)) > 0. Next, r
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unnormalized target fī(r), we can readily recover the corresponding normalized one by fi(r) = fī(r)/
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s
rÕ dr

Õ
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Algorithm 5.1: Metropolis-Hastings sampler for arbitrary targets

Given a target fī(r), a proposal Q
rold (rprop), and a feasible initial sample r

(0), the
Metropolis-Hastings sampler proceeds as follows:
For each j from 1 to J :

• Generate a proposal r
prop

≥ Q
r(j≠1) .

• Compute the acceptance ratio A
r(j≠1) (rprop).

• Generate u ≥ Uniform[0,1].
• If u < A

r(j≠1) (rprop); set r
(j) = r

prop, else set r
(j) = r

(j≠1).

We emphasize that in every iteration, whenever the proposal r
prop is rejected, it is necessary to maintain r

old.
In other words, in a correct implementation of the Metropolis-Hastings sampler, following a rejection, we must

use r
new = r

old. As we will see in the next section, if we neglect such repetition, the sampler will fail to provide
correct results.

Example 5.2: Two Metropolis-Hastings schemes for the truncated Normal distribution

Consider a random variable R distributed according to a Normal distribution with mean µ and variance ‡
2

truncated below 0. That is, R has a probability density given by

fi(r) Ã fī(r) =

I
1Ô

2fi‡2 exp
1

≠
(r≠µ)2

2‡2

2
, r Ø 0

0, r < 0
.

It might be surprising, but despite its simplicity, there are no standard ways of simulating this target. So, to draw
samples r

(j) from fi(r) we may develop a Metropolis-Hastings sampler.
One convenient choice of the proposal is o�ered by Q

rold = Normal(rold
, ⁄

2); that is, a Normal with mean on
the previous sample r

old and a pre-set variance ⁄
2. This choice of proposal leads to the acceptance ratio

A
rold (rprop) =

I
exp

1
(r

old≠µ)2≠(r
prop≠µ)2

2‡2

2
, r

prop
Ø 0

0, r
prop

< 0
.

Of course, when implementing algorithm 5.1 we need not consider cases with x
old

< 0 in the acceptance ratio,
since r

old is ensured to be positive already. If this was not true, an acceptance of an infeasible value in the previous
iteration or an infeasible initialization must had occurred, none of which is allowed.

One possible drawback of the Normal proposal used above is that it may often propose negative values r
prop,

especially if µ is close to 0, and so it may lead to considerable rejections. A di�erent choice that avoids such
unnecessary rejections is o�ered by a Q

rold = Gamma(–, r
old

/–); that is, a Gamma distribution with mean on the
previous sample r

old and a pre-set shape –, which is ensured to propose only positive values. This choice leads to
the acceptance ratio

A
rold (rprop) =

I
exp

1
(r

old≠µ)2≠(r
prop≠µ)2

2‡2 + –

1
r

prop

rold ≠
r

old
rprop

22 !
r

prop

rold

"1≠2–

, r
prop

Ø 0
0, r

prop
< 0

.

Figure 5.2 illustrates both proposal choices. The target distribution is obtained with µ = 1, ‡ = 1 and the
proposals are implemented with ⁄

2 = 0.2 and – = 4. For both cases, sampling starts from r
(0) = 1 and continued

for a total of J = 105 samples. As can be seen, independently of the choice of the proposals, the target distribution
is well characterized by the generated MCMC chains.
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Example 5.2: Two Metropolis-Hastings schemes for the truncated Normal distribution

Consider a random variable R distributed according to a Normal distribution with mean µ and variance ‡
2

truncated below 0. That is, R has a probability density given by

fi(r) Ã fī(r) =

I
1Ô

2fi‡2 exp
1

≠
(r≠µ)2

2‡2

2
, r Ø 0

0, r < 0
.

It might be surprising, but despite its simplicity, there are no standard ways of simulating this target. So, to draw
samples r

(j) from fi(r) we may develop a Metropolis-Hastings sampler.
One convenient choice of the proposal is o�ered by Q

rold = Normal(rold
, ⁄

2); that is, a Normal with mean on
the previous sample r

old and a pre-set variance ⁄
2. This choice of proposal leads to the acceptance ratio

A
rold (rprop) =

I
exp

1
(r

old≠µ)2≠(r
prop≠µ)2

2‡2

2
, r

prop
Ø 0

0, r
prop

< 0
.

Of course, when implementing algorithm 5.1 we need not consider cases with x
old

< 0 in the acceptance ratio,
since r

old is ensured to be positive already. If this was not true, an acceptance of an infeasible value in the previous
iteration or an infeasible initialization must had occurred, none of which is allowed.

One possible drawback of the Normal proposal used above is that it may often propose negative values r
prop,

especially if µ is close to 0, and so it may lead to considerable rejections. A di�erent choice that avoids such
unnecessary rejections is o�ered by a Q

rold = Gamma(–, r
old

/–); that is, a Gamma distribution with mean on the
previous sample r

old and a pre-set shape –, which is ensured to propose only positive values. This choice leads to
the acceptance ratio

A
rold (rprop) =

I
exp

1
(r

old≠µ)2≠(r
prop≠µ)2

2‡2 + –

1
r

prop

rold ≠
r

old
rprop

22 !
r

prop

rold

"1≠2–

, r
prop

Ø 0
0, r

prop
< 0

.

Figure 5.2 illustrates both proposal choices. The target distribution is obtained with µ = 1, ‡ = 1 and the
proposals are implemented with ⁄

2 = 0.2 and – = 4. For both cases, sampling starts from r
(0) = 1 and continued

for a total of J = 105 samples. As can be seen, independently of the choice of the proposals, the target distribution
is well characterized by the generated MCMC chains.
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Figure 5.4: Illustration of example 5.4. Two Metropolis-Hastings MCMC chains are computed for the evaluation of the
same target. For the chain in panel A1 and the corresponding histogram, only J = 5◊102 samplers are used. By contrast,
the chain in panel B2 and the corresponding histogram, contains J = 5 ◊ 106 samples. As can be seen, only the latter
chain fully samples the target.
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Example 5.3: MCMC for the conjugate Normal-Gamma model

To demonstrate the application of the Metropolis-Hastings sampler in the Bayesian context, consider the same
setting as in example 5.1. Specifically, observations w1:N are normally distributed and our task is to estimate the
center and the spread of the generating distribution. As before, parametrizing the underlying normal by mean µ

and precision · and placing a Normal-Gamma prior on them, we arrive at the model

· ≥ Gamma(–, —)

µ|· ≥ Normal
3

›,
1

Â0·

4

wn|µ, · ≥ Normal
1

µ,
1
·

2
, n = 1, . . . , N

where –, —, ›, Â0 are hyper-parameters of known values as before.
To generate posterior samples r

(j) = {µ
(j)

, ·
(j)

}, this time using a Metropolis-Hastings scheme, we may
consider proposals of the form

Q
µold,·old = Normal2

35
µ

old

·
old

6
,

5
⁄

2
µ, 0

0, ⁄
2
·

64

that is, the proposals µ
prop

, ·
prop are sampled jointly from a bivariate normal with mean on the previous sample

and some pre-set variances ⁄
2
µ and ⁄

2
· . With this choice, the acceptance log-ratio becomes

L
µold,·old (µprop

, ·
prop) =

Y
_______]

_______[

1
2

q
N

n=1
!
·

old(µold
≠ wn)2

≠ ·
prop(µprop

≠ wn)2"

+ N+2–≠1
2 log ·

prop

·old

+ Â0
2

!
·

old(µold
≠ ›)2

≠ ·
prop(µprop

≠ ›)2"

+—

!
·

old
≠ ·

prop"
, ·

prop
> 0

≠Œ, ·
prop

Æ 0

.

As an illustrative example consider a total of N = 10 observations wn, generated through Normal(5, 1). Such
observations are similar to example 5.1 and, for completeness, are also shown in fig. 5.3A. As before, we also
use the same hyper-parameters: – = 2, — = 1, › = 2, Â0 = 1. A total of J = 500 samples are generated with
⁄

2
µ = ⁄

2
· = 1, and shown in fig. 5.3BC. As can be seen, although the sampler starts at a point µ

(0) = 1, ·
(0) = 1 of

low posterior probability, the chain quickly moves towards and eventually remains near the posterior mode located
around µ = 4.5, · = 1.

The Metropolis-Hastings sampler is a powerful tool in Bayesian inference as it can be used to sample from any

posterior irrespective of whether the prior and likelihood are conjugate. Nevertheless, its practical implementation
in a complex setting is often challenging as the proposal Qrold(rprop) used dictates the algorithm’s performance.
To wit, it is always possible to devise theoretically valid proposals, but a judicious choice and extensive calibration
are typically critical requirements for the algorithm to appropriately sample from the posterior in a reasonable
computational time. Unfortunately, with most naive choices, the number of MCMC samples, J , required to
adequately characterize a target may be exuberantly large and, even for moderate scale applications, may involve
infeasible computational cost.

Example 5.4: Choice of proposals in MCMC

To illustrate just how important the proposal is in allowing the sampler to cover the entire support of the target
within few iterations, we consider a bivariate target fi(x, y) with a mixture form

⇧ = 0.3 Normal2
35

≠1
0

6
,

5
0.252 0

0 0.252

64

140
+ 0.3 Normal2
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+1
0

6
,
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0 0.252

64

+ 0.4 Normal2
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0
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6
,

5
0.252 0

0 0.252

64

consisting of three well separated modes. Although there are much more e�cient methods to simulate from such
a target, here we consider a naive Metropolis-Hastings scheme with proposal

Q
xold,yold = Normal2

35
x

old

y
old

6
,

5
0.32 0

0 0.32

64
.

Figure 5.4 illustrates MCMC approximations of the target produced by two di�erent chains: a shorter chain
containing J = 5 ◊ 102 samples and a longer one containing J = 5 ◊ 106 samples. For this choice of proposal,
only the latter chain samples all three modes.

For this illustrative example, each iteration of the sampler comes at low computation cost; the most costly
operations being the two Normal draws. As such, a large number of samples, such as ¥ 106 in the second chain,
can be obtained in reasonable time. However, in more complex applications, where each iteration may involve
many costly operations, this number of samples may remain purely aspirational.

Metropolis sampler

The Metropolis sampler is a special version of the Metropolis-Hastings sampler that we already saw in the
previous section and its implementation is identical to algorithm 5.1. In this version of the sampler, the proposal
Qrold(rprop) is symmetric with respect to r

old and r
prop, i.e. Qrold(rprop) = Qrprop(rold) for any feasible r

old and
r

prop. Due to this symmetry, the acceptance ratio simplifies to

Arold(rprop) = fī(rprop)
fī(rold) , (5.11)

since the last factor in eq. (5.9) now becomes unity. Similarly, when the target fī(r) is the posterior of a Bayesian
model, eq. (5.10) reduces to

Arold(rprop) = p(w|r
prop)

p(w|rold)¸ ˚˙ ˝
likelihood

p(rprop)
p(rold)¸ ˚˙ ˝

prior

. (5.12)

Example 5.5: MCMC under a Cauchy prior

Consider scalar observations w1:N normally distributed around some unknown mean µ. For convenience, also
assume that wn and µ are scaled such that the variance is 1. In this example, the goal is to estimate µ, but instead
of making the common prior choice, we place a Cauchy distribution which is much wider. The entire model is

µ ≥ Cauchy(0, 1)
wn|µ ≥ Normal(µ, 1), n = 1, . . . , N.

Under this model, the posterior is

fi(µ) = p(µ|w1:N ) Ã

C
Ÿ

n

p(wn|µ)

D
p(µ) Ã

exp
!
≠

1
2

q
n

(wn ≠ µ)2"

1 + µ2 .

Although we can easily visualize this posterior due to the analytic form above, it is still hard to quantify point
estimates from our posterior since we cannot analytically compute expectations with such a density. Instead, we
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As an illustrative example consider a total of N = 10 observations wn, generated through Normal(5, 1). Such
observations are similar to example 5.1 and, for completeness, are also shown in fig. 5.3A. As before, we also
use the same hyper-parameters: – = 2, — = 1, › = 2, Â0 = 1. A total of J = 500 samples are generated with
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· = 1, and shown in fig. 5.3BC. As can be seen, although the sampler starts at a point µ

(0) = 1, ·
(0) = 1 of

low posterior probability, the chain quickly moves towards and eventually remains near the posterior mode located
around µ = 4.5, · = 1.

The Metropolis-Hastings sampler is a powerful tool in Bayesian inference as it can be used to sample from any

posterior irrespective of whether the prior and likelihood are conjugate. Nevertheless, its practical implementation
in a complex setting is often challenging as the proposal Qrold(rprop) used dictates the algorithm’s performance.
To wit, it is always possible to devise theoretically valid proposals, but a judicious choice and extensive calibration
are typically critical requirements for the algorithm to appropriately sample from the posterior in a reasonable
computational time. Unfortunately, with most naive choices, the number of MCMC samples, J , required to
adequately characterize a target may be exuberantly large and, even for moderate scale applications, may involve
infeasible computational cost.

Example 5.4: Choice of proposals in MCMC

To illustrate just how important the proposal is in allowing the sampler to cover the entire support of the target
within few iterations, we consider a bivariate target fi(x, y) with a mixture form
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Step 1) Write down the model.

Step 2) Write down the likelihood of  your data 
under the assumption of  your model. Pick a 
prior which is either conjugate or otherwise 
informed by some physics.

Step 3) Compute your posterior to find the 
probability of  your model parameters

Steps 1-3 are collectively called Bayesian 
model learning/training

Setting up the problem within the 
Bayesian paradigm



Step 3) Compute your posterior to find the 
probability of  your model parameters

Setting up the problem within the 
Bayesian paradigm

P (✓|y1:N ) P (✓1, · · · , ✓K |y1:N )=
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Steve Pressé and Ioannis Sgouralis

(This draft was last modified on June 8, 2021)


