Designing Optimal Microscopy Experiments to Harvest Single-Cell Fluctuation Information while Rejecting Image Distortion Effects

Brian Munsky

Associate Professor, Chemical and Biological Engineering School of Biomedical Engineering Colorado State University

> June 29, 2021 munsky@colostate.edu

Brian Munsky, William S. Hlavacek, and Lev S. Tsimring, editors

QUANTITATIVE BIOLOGY Theory, Computational Methods, and Models

Outline

- 1. Introduction the origin and importance of single-cell noise.
- 2. Motivation progress toward quantitative measuring and modeling every stage of the central dogma of molecular biology and at single-molecule resolution.
- 3. Key challenges:
 - * optimal integration of single-cell experiments and stochastic computational models
 - * estimating and reducing uncertainty in stochastic gene regulation models.

Single-cell measurements may reveal hidden response differences.

Collective responses can exhibit distinctive "fluctuation fingerprints".

Information in fluctuation

Consider a model of bursting gene expression:

 We can compute the expression mean and variability as functions of all parameters.

$$f_{on} = \frac{k_{ON}}{k_{ON} + k_{OFF}}$$
$$\mu = f_{on} \frac{k_m}{g_m}$$
$$\frac{\sigma^2}{\mu} = 1 + \frac{(1 - f_{on}) k_m}{k_{ON} + k_{OFF} + g_m}$$

Munsky, et al, Science, 2012

Information in fluctuation

Consider a model of bursting gene expression:

- We can compute the expression mean and variability as functions of all parameters.
- Tuning k_{Off} or k_{On} can increase expression, but in doing so:
- Tuning k_{Off} increases variability.
- Tuning kon decreases variability.

Outline

- 1. Introduction the origin and importance of single-cell noise.
- 2. Motivation progress toward quantitative measuring and modeling every stage of the central dogma of molecular biology and at single-molecule resolution.
- 3. Key challenges:
 - * optimal integration of single-cell experiments and stochastic computational models
 - * estimating and reducing uncertainty in stochastic gene regulation models.

Fluorescent Proteins to Measure Signaling and Responses

Time lapse fluorescence microscopy measures temporal properties of: **SIGNALS** (in this case a mitogen activated protein kinase, MAPK). **RESPONSES** (in this case STL1-GFP).

Different perturbations yield different MAPK signals and different downstream responses.

Gregor Neuert Hossein Jahnsaz Vanderbilt Vanderbilt Neuert, et al, *Science* 2013 Munsky, et al, *PNAS*, 2018 Jahnsaz, et al, *iScience*, 2020 Jahnsaz, et al, *Star Protocols*, 2021

Fluorescent Proteins to Measure Signaling and Responses

ODE Models can be parametrized to capture these MAPK dynamics as functions of time and environmental conditions.

· SM-FISH allows quantification of

endogenous transcription response:

3D Location of individual mRNA,

DNA transcription site activity,

Number of individual mRNA per cell,

Gregor Neuert Hossein Jahnsaz Vanderbilt Vanderbilt Neuert, et al, *Science* 2013 Munsky, et al, *PNAS*, 2018 Jahnsaz, et al, *iScience*, 2020 Jahnsaz, et al, *Star Protocols*, 2021

Protein

The second second

Single-Molecule Fluorescence in situ Hybridization (smFISH)

Molecula signals

48 (20bp) probes/mRNA,

Neuert, Munsky, et al, *Science* 2013 Munsky, et al, *PNAS*, 2018

Single-Molecule Fluorescence in situ Hybridization (smFISH)

- Molecula signals Transcription Translation Protein
- SM-FISH allows quantification of endogenous transcription response:
 - <u>Number</u> of *individual* mRNA per cell,
 - <u>3D Location</u> of *individual* mRNA,
 - DNA transcription site activity,

Gregor Neuert, Vanderbilt

Neuert, Munsky, et al, *Science* 2013 Munsky, et al, *PNAS*, 2018

Single-Molecule Fluorescence in situ Hybridization (smFISH)

- SM-FISH allows quantification of endogenous transcription response:
 - **<u>Number</u>** of *individual* mRNA per cell,
 - **<u>3D Location</u>** of *individual* mRNA,
 - **DNA transcription site** activity,
 - Fast (1-2 minute) time resolution,
 - 100s or 1000s of cells per time point or condition.

Neuert, Munsky, et al, *Science* 2013 Munsky, et al, *PNAS*, 2018

Single-Molecule Fluorescence in situ Hybridization (smFISH)

- SM-FISH allows quantification of endogenous transcription response:
 - Number of individual mRNA per cell,
 - **<u>3D Location</u>** of *individual* mRNA,
 - DNA transcription site activity,
 - Fast (1-2 minute) time resolution,
 - 100s or 1000s of cells per time point or condition.

Gregor Neuert, Vanderbilt

smFISH yields highly <u>reproducible</u> & <u>quantitative</u> measurements of (noisy) single-cell responses.

Single-Molecule Fluorescence in situ Hybridization (smFISH)

- smFISH is used to label individual mRNA in cells.
- For example, here we examine THP1 cells two hours after induction by bacterial LPS to simulate infection.
- We are interested in the response of two cytokines:
 - red spots IL1b
 - green spots TNFa

Neuert, et al, Science 2013 Munsky, et al, PNAS, 2018 Kalb, Vo et al, Scientific Reports, 2021

MS2/Fab for Live-cell Nascent TRANSCRIPTION Tracking

MS2/Fab for Live-cell Nascent TRANSCRIPTION Tracking

MS2/Fab for Live-cell Nascent TRANSCRIPTION Tracking

The distributions and temporal correlations of RNAP2 localization, RNAP2 phosphorylation, and nascent transcription are well captured with a 2-state Bursting Transcription Model.

RNAP2

cluster

Bursting gene expression models capture the stationary distributions and correlation dynamics of the RNAP2 and transcription dynamics.

MS2/Fab for Live-cell Nascent TRANSLATION Tracking

- Fabs can also be used to quantify Nascent Protein translation in living cells.
- Different colors can be used to observe different open reading frames or different ribosomal entry sites.

MCP Label **№ MS2 Hairpin FAB** Labels **グ SM Peptide** *****

Transcription

mRNA

Gene

activation

signals

Kenneth l uis Amanda Tatsuya Tim Lyon Aguilera Koch **Stasevich Morisaki**

Lyon, Aguilera, et al, Molecular Cell, 2019 Aguilera, Raymond, et al, PLoS Comp Biol, 2019

Koch, Aguilera et al, Nat. Struct, Mol. Biol., 2020

Protein

Translation

MS2/Fab for Live-cell Nascent TRANSLATION Tracking

Watching Fran	ne-Shi	ifting ir	n single)-r	nc	ole	C	ule	e r	'es	60	lu	tic	on
			mRNA		•			•	10	÷	÷.	ΞŰ	÷.	
			0 ORF											
			-1 ORF											E B
			and a	Ŧ		٠	٠			•		•		
							_			-				
			mRNA	٠	٠		-4	×	٠		:*:		٠	÷
			0 ORF		•	jar :	<u>.</u>		2	ġ.	50			
γ	\bigcirc		-1 ORF											
	3			٠	٠	1.	1.		•		•			
0.565														
U SEC											1		1	1
			mRNA	•		· •	. *	۰.	٠				*	÷
			0 ORF	÷.,	•	•	•			•	10	•	<u>.</u>	
			-1 ORF		•	•	•	÷.,	. 9. (1	۰.	۴	*		÷.,
	0	1		٩.	•	•	2	٠	•	٠			٠	•
Kenneth Lyon Luis Aguilera	Tim Tatsuya Stasevich Morisaki			Ly	′on,	Agui	ilera	, et a	al, <i>N</i>	lolec	cular	Cel	<i>l,</i> 201	

Modeling of Live-Cell Frame-Shifting

Lyon, Aguilera, et al, *Molecular Cell*, 2019

Outline

- 1. Introduction the origin and importance of single-cell noise.
- 2. Motivation progress toward quantitative measuring and modeling every stage of the central dogma of molecular biology and at single-molecule resolution.
- 3. Key challenges:
 - optimal integration of single-cell experiments and stochastic computational models
 - * estimating and reducing uncertainty in stochastic gene regulation models.

Experiment Design Considerations

- Number of cells
- Sampling period
- Choice of fluorophore(s)
- Number and placement of probes
- Inducer/drug concentrations and delivery times

Measurement Error Considerations

- Microscope resolution
- Image processing errors (segmentation, spot detection, track linking)
- Photobleaching
- Autofluorescence
- Delays due to drug diffusion and nuclear import
- * We want to get as much insight as possible out of each experiment.
- * We want to choose experiments that minimize uncertainty about the mechanisms or parameters of interest.

The Markov description of gene expression

- At any time, the state of the system is defined by its integer population vector: $\mathbf{x} \in \mathbb{Z}^N$
- Reactions are transitions from one state to another.

The Markov description of gene expression

- At any time, the state of the system is defined by its integer population vector: $\mathbf{x} \in \mathbb{Z}^N$
- Reactions are transitions from one state to another.
- These reactions are random, others could have occurred:

3) Monotonic convergence: $\varepsilon_{J_1}(t) \ge \varepsilon_{J_2}(t)$ for any $J_1 \subseteq J_2$

Munsky et al, JCP 2006

Inferring parameters from single-cell measurements

Consider some arbitrary set of independent data $\mathcal{D} = [d_1, d_2, \ldots]^{\mathrm{T}}$ and a hypothetical probability distribution to explain those data $p(d; \Lambda)$.

The **LIKELIHOOD** of independent cells' data given our model can be written:

For Gaussian distributions with mean μ_k and variance σ^2 (e.g., SEM):

When noise is independent with constant variance, the maximum likelihood estimate (MLE) is the minimum sum of square error (SSE) estimate.

Inferring parameters from single-cell measurements

Consider some arbitrary set of independent data $\mathcal{D} = [d_1, d_2, \ldots]^{\mathrm{T}}$ and a hypothetical probability distribution to explain those data $p(d; \Lambda)$.

The **LIKELIHOOD** of independent cells' data given our model can be written:

$$L(\mathcal{D};\Lambda) = \prod_{j} p(d_{j};\Lambda) \quad \text{or} \quad \log L(\mathcal{D};\Lambda) = \sum_{j} \log p(d_{j};\Lambda)$$
$$0.09 \quad \text{Amin} \quad 0.09 \quad \text{Amin} \quad$$

The FSP provides computable upper and lower bounds on the likelihood of singlecell data given a stochastic model:

 $f_j \ge 0$

$$\sum d_{j} \log P_{j}^{FSP}(\Lambda) \leq \log L(D|\Lambda) \leq \frac{\max}{f_{j} \geq 0} \left(\sum d_{j} \left(\log P_{j}^{FSP}(\Lambda) + f_{j} \varepsilon \right) \right)$$
For et al. (CP)

Fox et al, JCP 2016

Outline

- 1. Introduction the origin and importance of single-cell noise.
- 2. Motivation progress toward quantitative measuring and modeling every stage of the central dogma of molecular biology and at single-molecule resolution.
- 3. Key challenges:
 - * optimal integration of single-cell experiments and stochastic computational models
 - * estimating and reducing uncertainty in stochastic gene regulation models.

Error, Uncertainty (and Bias)

Models that cannot fit data can be invalidated and discarded.

Models that fit to data will still contain uncertainty and errors.

Error is the distance between the best estimate and the actual parameter values.

Uncertainty is the (estimated) variability in the fit parameters for a given data set.

Bias is the average error after fitting to a large (infinite) number of independent experiments.

Error, Uncertainty, and Bias are all affected by choice of estimator!

Estimating Uncertainty from DATA (I. Cross-Validation)

The (Frequentist) **<u>Cross-Validation</u>** approach to estimate model uncertainty:

Conduct multiple replica experiments.

Fit replicas separately and together.

Record best fit parameters for individual and lumped datasets.

Compare parameter and prediction uncertainties.

Cross-Validation to Select Model Structure

(Neuert, Munsky, et al, Science 2013)

Using Cross-Validation to Select Model Structure

Estimating Uncertainty from DATA (II. Bayesian MCMC)

The likelihood $P(D; \Lambda)$ can be computed using known probability functions (e.g., Gaussian) or using the FSP.

We assume a convenient prior (e.g., log normal).

We use Markov Chain Monte Carlo (Gibbs, Metropolis Hastings, Hamiltonian, etc.) to sample the posterior.

We used MCMC quantify uncertainty when a 3-state bursting gene model (above left) was fit to simulated data (above right).

FSP-based likelihood functions resulted in parameter determination that was several orders of magnitude more precise that ODE analyses.

For real smFISH data, the Uncertainty Quantification advantage of the FSP is equally apparent.

Using FSP-MCMC uncertainty quantification, we could fit and predict the **spatio-temporal** dynamics of **nascent** and **mature** mRNA for multiple genes in **multiple conditions**.

Munsky, et al., PNAS, 2018

FSP-Based Fisher Information

The Fisher Information Matrix (FIM) quantifies the information that an observed random variable is expected to have about each model parameter:

$$\mathcal{I}(\theta) = \mathbb{E}_{\mathbf{D}} \left[\left(\nabla_{\theta} \log L(\mathbf{D}; \theta) \right)^T \left(\nabla_{\theta} \log L(\mathbf{D}; \theta) \right) \right]$$

Using the FSP, we can compute the distributions:

 $p(\mathbf{x}_k, t; \theta)$

and the CME sensitivities:

$$\mathbf{s}(t)_i^k = \frac{\partial}{\partial \theta_i} p(\mathbf{x}_k, t; \theta)$$

From these, we can derive the FIM:

$$\mathcal{I}_{i,j} = n_{\text{Cells}} \sum_{k=1}^{N} \frac{1}{p(\mathbf{x}_k; \boldsymbol{\theta})} \mathbf{s}_i^k \mathbf{s}_j^k$$

Fox et al, *PLoS Comp. Biol*, 2019 Fox et al, *Complexity*, 2020

Estimating Expected MLE Uncertainty using Fisher Information

The FIM provides an asymptotic (multivariate Gaussian) estimate for the Maximum Likelihood Estimator.

Asymptotic normality of the MLE: $\sqrt{n}(\hat{\theta} - \theta^*) \xrightarrow{dist} \mathcal{N}(0, I(\theta^*)^{-1})$

The FIM's eigenvalues $\{\lambda_i\}$ and its eigenvectors $\{\mathbf{v}_i\}$ estimate the magnitudes and directions of uncertainty in MLE parameters (Cramer Rao Lower Bound).

Fox et al, *PLoS Comp. Biol*, 2019 Fox et al, *Complexity*, 2020

Using Fisher Information to Design Experiments

Different single-cell experiments reveal different amounts of information about model parameters.

The FIM can estimate which experiments will provide tighter MLE results.

In this case, $|\mathcal{I}_2(\theta)| > |\mathcal{I}_1(\theta)|$

Fox et al, PLoS Comp. Biol, 2019

Using Fisher Information to Design Experiments

Experiments can be optimized by comparing the FIM for different designs (e.g. sampling periods).

The FSP-FIM (blue) correctly identifies the optimal experiments, whereas the moment based approach (purple, green) do not.

Zach Fox

Bursting gene expression

Experimental Validation of FSP-FIM Experiment Design

Huy Vo Vo, et al, *bioRxiv*, 2021

Using FIM to Evaluate Microscope Distortion

The FSP-FIM is easily adapted to consider arbitrary Markov distortion kernels:

Distortion:
$$P^Y = C_{Y|X} P^X$$

 $\mathbf{s}_i^Y = C_{Y|X} \mathbf{s}_i^X$
FIM: $\mathcal{I}_{ij}^Y = \mathbb{E}_y \left\{ \partial_i \log P^Y(y) \partial_j \log P^Y(y) \right\}$
 $= \int \frac{\partial_i P^Y(y) \partial_j P^Y(y)}{P^Y(y)} \, \mathrm{dy}$
 $= \int \frac{s_i^Y(y) s_j^Y(y)}{P^Y(y)} \, \mathrm{dy}$

Including the distortion kernel corrects estimation errors and improves uncertainty quantification.

Vo, et al, bioRxiv, 2021

Distortions Affect Design of Optimal Experiments

Consider three experiment assays with different distortion kernels:

"Perfect smFISH" (C = Identity Matrix) 1000 cells per time point

The choice of experiment assay changes both magnitude and orientation of parameter uncertainty.

Effects of distortion can be taken into account during FIM-based experiment

Huy Vo

Conclusions

- * The Central Dogma is a Noisy Process that can be measured at Single-Molecule resolution.
 - * Single-cell experiments can quantify, and discrete stochastic models can reproduce, every step of these processes.
- * But *experiments are expensive;* there are an infinite number of possible designs; and each choice will affect potential conclusions and uncertainty.
- * The **Fisher Information Matrix (FIM)** can estimate expected uncertainties for potential experiment designs.
- * **Finite State Projection** allows for computation of the FIM even for arbitrary non-Gaussian processes, and for circumstances when data are subject to unavoidable probabilistic distortions.

Acknowledgments and Collaborators (2019-2021)

- Hog Signaling/Transcription Activation Gregor Neuert, Vanderbilt Guoliang Li, Vanderbilt Hossein Jahnsaz, Vanderbilt Jason Hughes, Vanderbilt Douglas Shepherd, ASU
- Single-mRNA Translation Tim Stasevich, CSU Tatsuya Morisaki, CSU Kenneth Lyon, CSU Amanda Koch, CSU Linda Forero Quintero, CSU

Cell Heterogeneity in Algal Biofuels: Babetta Marrone, LANL Claire Sanders, LANL Elaheh Alizadeh, CSU

Cell-free Single-BioMolecule Kinetics: Sabrina Leslie, McGill University Shane Scott, McGill University

MultiScale Bayesian FSP tools: Ania Baetica, CalTech Thomas Catanach, Sandia Soil Microbiome Machine Learning John Dunbar Lab, LANL

Inflammation driven mRNA expression James Werner, LANL Dan Kalb, LANL

q-bio Training and Textbook: William S Hlavacek, LANL Lev S. Tsimring, UCSD Marek Kimmel, Rice University Former students of the 2010-2017 q-bio Summer Schools

<u>Postdocs:</u> Luis Aguilera Linda Forero Quintero Huy Vo

Graduate Students: Zachary Fox Lisa Weber Mohammad Tanhaemami Michael May Jaron Thompson Will Raymond Eric Ron Undergrads: Elliot Djokic Stuart Charis Ellis Katie I Torin Moore Zach Haigh Charlotte Mitchell Joshua Cook Rachel Keating

Stuart McKnight Katie Davis chell

Funding: WMKF NIH/NIGMS DOE/BER NSF CAREER

munsky@colostate.edu

QUANTITATIVE BIOLOGY

Theory, Computational Methods, and Models

An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research.