1st Annual Undergraduate Quantitative Biology Summer School

Module 3: Clustering and **Machine Learning**

Instructor: Zach Fox e-mail: email@lanl.gov

Instructor: Huy Vo e-mail: Huy.Vo@colostate.edu

Instructor: William Raymond

e-mail: wsraymon@rams.colostate.edu

Machine Learning

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images

R	Machine Learning	
	Clustering Clustering Clustering Clustering Clustering Wealt Supervision Naive Bayes Decision Trees Nets Nets	
	• Bultzmann machines • Auto encodors • hopfeill • hopfeill • hopfeill	

Machine learning is a group of data analysis tools, algorithms, and statistics methods that broadly lies under the umbrella of Artificial Intelligence.

Broadly it can be thought of as any method that aims to produce a model to perform a task (regression or classification) without being explicitly coded.

Machine Learning Models

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers

Ethics

 Machine Learning in the context of images

- Machine Learning Prediction X (DATA)→ MODEL → Understanding Decision

4

Machine Learning Models

- Common \geq **Optimizers**
- Machine Learning in the context of images

Ethics

 \geq

 \geq

 \geq

 \geq

 \geq

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers
- Machine Learning in the context of images
- ➢ Ethics

Unsupervised Learning

Unsupervised Learning

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs
 Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers
- Machine Learning in the context of images

Unsupervised learning is taking a dataset with little to no prior information or labels and giving it order or dimensionality reduction.

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers
- Machine Learning in the context of images

uq-bío

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers
- Machine Learning in the context of images

K means

"Giving you n centers, minimize the distance of those centers to its surrounding cluster points" N=2

Ethics

images

Ethics

 \geq

How are points classified? Whichever centroid (k-mean) is closest to the point by least squared distance

Outline

PCA

Х,

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images

Ethics

A Transform that changes the coordinates to a system where each coordinate is the least correlated to each other, to a "component."

Easiest way to compute is with Singular Value Decomposition (SVD)

X = USV' PCA = US or XV

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs
 Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images

PCA Example in Python

1 import numpy as np; import matplotlib.pyplot as plt;

3 mean = (5, 2.2)
4 cov = [[2, -3], [-3, 10]]
5 X = np.random.multivariate_normal(mean, cov, (1000))
6
7 plt.scatter(X[:,0],X[:,1])
8
9 U,S,Vt = np.linalg.svd(X- np.mean(X,axis=0)) #decomp of centered X
10
11 U_eig = np.linalg.eig(np.dot(X,X.T))
12 V_eig = np.linalg.eig(np.dot(X.T,X))
13

14 15 print(U.shape) 16 print(S.shape) 17 print(Vt.shape) 18 pca_X = np.dot(X- np.mean(X,axis=0),Vt) 19 plt.scatter(pca_X[:,0],pca_X[:,1]) 20 plt.legend(['Original', 'PCA']) 21 plt.figure() 22 from sklearn.decomposition import PCA #comparison with sklearn 23 pca = PCA() 24 pca.fit(X) 25 pca_X_sklearn = pca.transform(X) 26 plt.scatter(pca_X[:,0],pca_X[:,1],marker='x')

28 plt.legend(['PCA with sklearn', 'PCA with np.svd'])

Original 10.0 PCA 7.5 5.0 2.5 0.0 -2.5 -5.0-7.5-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0PCA with sklearn 3 -PCA with np.svd 2 -0 -1 --2 -

0.0

2.5

5.0

7.5

12.5

-3

-10.0 - 7.5 - 5.0 - 2.5

Ethics

10.0

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs
 Classification
- Simple Perceptron

W

- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers

Ethics

 Machine Learning in the context of images PCA is commonly used as a simple dimensionality reduction method, where after PCA N dimensional data is plotted along principal components 1 and 2 for 2D visualization or PC1 through 3 for 3D

X

PC1

13

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images
- Ethics

t-SNE

pca-two

Utilized widely in bioinformatics and genomics

- 1. Calculate probability that points are neighbors,
- 2. Calculate or learn a dimensional map that keeps this neighbor probability

MNIST Digits

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images

> Ethics

Fashion MNIST principal components vs Linear Autoencoder latent space projection

The Latent space representation learned by the autoencoder can be used to cluster or organize datasets

Linear Autoencoder

it's a lower dimension representation of information contained in the dataset

PCA

Latent Space Aside

Clustering in Python

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs
 Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers
- Machine Learning in the context of images

\triangleright	Eth	ics
\triangleright	Eth	ics

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters, inductive	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry, inductive	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry, inductive	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry, transductive	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters or distance threshold	Large n_samples and n_clusters	Many clusters, possibly con- nectivity constraints, transductive	Distances between points
Agglomerative clustering	number of clusters or distance threshold, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly con- nectivity constraints, non Euc- lidean distances, transductive	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes, transductive	Distances between nearest points
OPTICS	minimum cluster membership	Very large n_samples, large n_clusters	Non-flat geometry, uneven cluster sizes, variable cluster density, transductive	Distances between points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation, inductive	Mahalanobis distances to centers
BIRCH	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction, inductive	Euclidean distance between points
4				

https://scikit-learn.org/stable/modules/clustering.html

Unsupervised learning in Biological Contexts

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers
- Machine Learning in the context of images

Bioinformatics

Challenges in unsupervised clustering of single-cell RNA-seq data. Kiselev et al. Nature Reviews Genetics 2019. https://www.nature.com/articles/s41576-018-0088-9

➢ Ethics

AÎ ()

Unsupervised learning in Biological Contexts

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images

Ethics

Autoencoders are often used to produce latent space representations for use in later deep learning classification models.

Using latent space representations can help denoise large datasets (such as RNA-seq provides) and provide a smaller dimensional dataset – speeding up training and hyperparameter searches for models.

In the figure to the right a learned "Cell Identity Code" (8D latent space representation) allows for clearer clustering of mRNA profiles of cancer biopsies than the original dataset.

DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome. Azarkhalili et al. Scientific Reports 2019. https://www.nature.com/articles/s41598-019-52937-5

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers
- Machine Learning in the context of images
- ➢ Ethics

Supervised Learning

Supervised Learning

Outline

- What is machine learning?
- Unsupervised Learning vs Supervised vs **Decision** / reinforcement
- **Regression vs** Classification
- Simple Perceptron \geq
- **Neural Networks**
- **Common Neural** Networks
- **Activation Functions**
- Common Loss functions
- Common \geq **Optimizers**
- Machine Learning in the context of images
- Ethics

Supervised Learning- Biological Contexts

Outline

- What is machine learning?
- Unsupervised
 Learning vs
 Supervised vs
 Decision /
 reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers

Ethics

 Machine Learning in the context of images Examples:

Melanoma Classification

- > 5000 papers
- Predominantly CNN based

Protein Folding

- Holy grail of machine learning
- Sequence to structure
- CASP

Cardiac Pathology Diagnosis

• EKG Signal to detect defects

Disease state (Cancer) Diagnosis

- Label Global mRNA expression profiles to train classification of tumors
- Proteomics + RNA-seq

Genomics

• Splice site recognition

Alpha Fold - Improved protein structure prediction using potentials from deep learning. Senior et al. eLife Nature 2020. DOI: https://doi.org/10.1038/s41586-019-1923-7

Predicting Splicing from Primary Sequence with Deep Learning. Jaganathan et al. Cell 2019. DOI: https://doi.org/10.1016/j.cell.2018.12.015

Regression vs Classification

Simple Perceptron

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs
 Classification
- > Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers
- Machine Learning in the context of images

Martin Thoma, CC0, via Wikimedia Commons

X – data of shape n_features by n_samples Y – labels of class -1 or 1 (for case with a decision threshold at 0)

> Ethics

The "Neural" in Neural Nets

Bias

Outline

- What is machine learning?
- Unsupervised Learning vs Supervised vs Decision / reinforcement
- Regression vs
 Classification
- > Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers

Ethics

 Machine Learning in the context of images

Martin Thoma, CC0, via Wikimedia Commons

By Egm4313.s12 (Prof. Loc Vu-Quoc) - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=72816083

Neural Networks

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images

Feed Forward Neural Networks

What if one daisy chains a ton of perceptrons together?

Neural Networks

Outline

- What is machine \geq learning?
- Unsupervised \geq Learning vs Supervised vs Decision / reinforcement
- **Regression vs** \geq Classification
- Simple Perceptron \geq
- **Neural Networks** \geq
- Common Neural \geq Networks
- **Activation Functions**
- Common Loss \geq functions
- Common \geq **Optimizers**
- Machine Learning \geq in the context of images

Feed Forward Neural Networks

FFNNs learn neuron activations based on features given, for example a label for pupil shape may activate neurons specific towards pushing probability towards cat, or paw size for dog.

Note, it's more complicated, but this is a simple conceptual visualization of their function. Features hit activations with different weights that overall lead to a learned decision

Ethics

Convolutional Neural Networks

- What is machine \geq learning?
- Unsupervised \geq Learning vs Supervised vs Decision / reinforcement
- **Regression vs** \geq Classification
- Simple Perceptron \geq
- **Neural Networks** \geq
- Common Neural **Networks**
- **Activation Functions** \geq
- Common Loss \geq functions
- Common \geq **Optimizers**
- Machine Learning \geq in the context of images

30

pansy: 0.0000

CNN - Biological Contexts

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images

A convolutional neural network for the prediction and forward design of ribozyme-based gene-control elements. C Schmidt and C Smolke. eLife 2021. DOI: 10.7554/eLife.59697

Goal: Predict and design RNA Ribozyme Elements

Training data: Computational folded Sequence then labeled with loop and branch sizes into a secondary structure feature set

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

U-Net (Segmentation CNN)

Outline

- What is machine \geq learning?
- Unsupervised \geq Learning vs Supervised vs Decision / reinforcement
- **Regression vs** \geq Classification
- Simple Perceptron \geq
- **Neural Networks** \geq
- **Common Neural Networks**
- **Activation Functions** \geq
- Common Loss \geq functions
- Common \geq **Optimizers**
- Machine Learning \geq in the context of images

Ethics

Specific CNN / encoder with a style concatenation of the original feature map in the expansion step. Original implemented for segmenting biomedical images.

input

tile

572 x 572

U-Net - Biological Contexts

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs
 Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images

Cellpose: a generalist algorithm for cellular segmentation. Stringer (et al) Nature Methods 2020. DOI: 10.1038/s41592-020-01018-x

Cell Pose

Architecture: Extension of the U-Net with gradient flow

Goal: produce masks of cell images

Training data: hand labeled masks + diffusion simulations

Activation Functions

uq-bío

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs
 Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images
- Ethics

Source: Shruti Jadon - https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Activation Functions

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images
- Ethics

ReLU

- Extreme speed ups of stochastic descent optimizers
- Computationally simple
- Can fail with large gradients "Dying ReLu"

Leaky ReLU

- Fixes Dying ReLU*
- Computationally simple, but more expensive than ReLU

Random ReLU

 Leaky ReLU with random alphas Tanh

- Like the Sigmoid, but centered at 0 with -1 and 1
- Better than the Sigmoid in almost every instance

Sigmoid

- Expensive
- Can flatten a gradient, making all outputs zero or one
- Analogous to neuron firing
- Almost never used anymore

Activation functions are application dependent; Take care to either do a literature search for which activation functions are used and why -- or spend time to test different activation function performances on your problem!

https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons

Loss Functions

Outline

- What is machine learning?
- Unsupervised Learning vs Supervised vs Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images
- Ethics

How well is the machine learning? Lower the loss, the better!

- Mean Squared Error
- The classic!

Log Likelihood

* Probability of data given the model

Cross Entropy Loss

- Binary Classification
- Simplifies from Log Likelihood
 to an easy expression in the
 case of labels 0 and 1

$$ext{MSE} = rac{1}{n}\sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

 $H(p,q) = -\sum_i p_i \log q_i = -y \log \hat{y} - (1-y) \log (1-\hat{y})$

p – probability of labels / True labels
 q – probability of prediction / Predicted labels

Loss Functions

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Machine Learning in the context of images

Ethics

Hinge loss

- Multiclass classification
- Best for SVM
- Best for labels –1 to 1
- Categorical Cross Entropy
- Multiclass classification

Sparse Categorical Cross Entropy

- Multiclass classification
- One hot encoding on labels

Kullback Leibler Divergence

- Multiclass classification
- One hot encoding on labels

Functions

KLD(...): Computes Kullback-Leibler divergence loss between y_true and y_pred. MAE(...) : Computes the mean absolute error between labels and predictions. MAPE(...): Computes the mean absolute percentage error between y_true and y_pred MSE(...) : Computes the mean squared error between labels and predictions. MSLE(...): Computes the mean squared logarithmic error between y_true and y_pred. binary_crossentropy(...): Computes the binary crossentropy loss. categorical_crossentropy(...): Computes the categorical crossentropy loss. categorical_hinge(...): Computes the categorical hinge loss between y_true and y_pred. **cosine_similarity(...)**: Computes the cosine similarity between labels and predictions. deserialize(...): Deserializes a serialized loss class/function instance. get(...): Retrieves a Keras loss as a function / Loss class instance hinge(...): Computes the hinge loss between y_true and y_pred huber(...): Computes Huber loss value. kl_divergence(...): Computes Kullback-Leibler divergence loss between y_true and y_pred kld(...): Computes Kullback-Leibler divergence loss between y_true and y_pred. kullback_leibler_divergence(...): Computes Kullback-Leibler divergence loss between y_true and y_pred log_cosh(...): Logarithm of the hyperbolic cosine of the prediction error. logcosh(...) : Logarithm of the hyperbolic cosine of the prediction error.

- mae(...): Computes the mean absolute error between labels and predictions
- $mape(\ldots)$: Computes the mean absolute percentage error between y_true and y_pred .

And many more...

https://www.tensorflow.org/api_docs/python/tf/keras/losses

Loss Functions

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs
 Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common
 Optimizers
- Machine Learning in the context of images

Ethics

Functions

KLD(...) : Computes Kullback-Leibler divergence loss between y_true and y_pred. MAE(...) : Computes the mean absolute error between labels and predictions. MAPE(...): Computes the mean absolute percentage error between y_true and y_pred. MSE(...): Computes the mean squared error between labels and predictions. MSLE(...): Computes the mean squared logarithmic error between y_true and y_pred. binary_crossentropy(...): Computes the binary crossentropy loss. categorical_crossentropy(...): Computes the categorical crossentropy loss. categorical_hinge(...) : Computes the categorical hinge loss between y_true and y_pred. **cosine_similarity(...)** : Computes the cosine similarity between labels and predictions. deserialize(...): Deserializes a serialized loss class/function instance. get(...): Retrieves a Keras loss as a function / Loss class instance. hinge(...): Computes the hinge loss between y_true and y_pred. huber(...): Computes Huber loss value. kl_divergence(...): Computes Kullback-Leibler divergence loss between y_true and y_pred kld(...): Computes Kullback-Leibler divergence loss between y_true and y_pred. kullback_leibler_divergence(...): Computes Kullback-Leibler divergence loss between y_true and y_pred log_cosh(...): Logarithm of the hyperbolic cosine of the prediction error. logcosh(...): Logarithm of the hyperbolic cosine of the prediction error.

mae(...): Computes the mean absolute error between labels and predictions.

 $mape(\ldots)$: Computes the mean absolute percentage error between y_true and y_pred .

https://www.tensorflow.org/api_docs/python/tf/keras/losses

Once again, loss functions are can get very granular for your specific application, once again highlighting the need for a strong literature search when setting out to generate new models. Additionally, you may take a programmatic search and test multiple loss functions for your application, or even use a sum of loss functions to train.

Optimizers

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- CommonOptimizers
- Machine Learning in the context of images

Ethics

CONSIDERATIONS:

- Propensity for local minima sticking (globalness?)
- Computational Cost
- Dynamic or Static Learning Rates
- Memory / Batch sizes

Stochastic Gradient Descent

Stochastically move towards the minimum based on each new data point

RMSprop

- Adaptive learning rate
- RMS average of the squared gradients for each weight

Adam

•

 Adaptive moments that keeps track of momentum (1st and 2nd moments) and corrects based on a learned decay rate

https://towardsdatascience.com/optimizers-for-training-neuralnetwork-59450d71caf6

https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resour ce/content/1/adam_pres.pdf

Evaluating Models

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Evaluating Models
- Ethics

100 Cat photos

3 cats mislabeled as dogs 17 dogs mislabeled as cats

100 Dog photos

Confusion Matrix

Accuracy: (97 + 83) / (100 + 100)

Evaluating Models

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs
 Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Evaluating Models
- Ethics

Confusion Matrices – Starting with these a plethora of metrics can be calculated for model selection or evaluation

Сс	onfusion Matr	ix			Metrics
		Predicted o	ondition	Sources: [13][14][15][16][17][18][19][20]	view • talk • edit
	Total population = P + N	Predicted condition positive (PP)	Predicted condition negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) = $\frac{\sqrt{TPR \cdot FPR} - FPR}{TPR - FPR}$
Actual condition	Actual condition positive (P)	True positive (TP), hit	False negative (FN), Type II error, miss, overestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power = $\frac{TP}{P}$ = 1-FNR	False negative rate (FNR), miss rate = $\frac{FN}{P}$ = 1-TPR
	Actual condition negative (N)	False positive (FP), Type I error, false alarm, underestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N}$ = 1-TNR	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1-FPR
	Prevalence = $\frac{P}{P+N}$	Positive predictive value (PPV), precision = $\frac{TP}{PP}$ = 1-FDR	False omission rate (FOR) = $\frac{FN}{PN}$ = 1-NPV	Positive likelihood ratio (LR+) = $\frac{\text{TPR}}{\text{FPR}}$	Negative likelihood ratio (LR-) = <u>FNR</u> TNR
	$\frac{\text{Accuracy (ACC)}}{= \frac{\text{TP} + \text{TN}}{\text{P} + \text{N}}}$	False discovery rate (FDR) = $\frac{FP}{PP}$ = 1-PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1-FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$
	Balanced accuracy (BA) = $\frac{\text{TPR} + \text{TNR}}{2}$	$F_{1} \text{ score} = \frac{2 \cdot \text{PPV} \cdot \text{TPR}}{\text{PPV} + \text{TPR}} = \frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$	Fowlkes–Mallows index (FM) = √PPV·TPR	Threat score (TS), critical success index (CSI) = $\frac{TP}{TP + FN + FP}$	Matthews correlation coefficient (MCC) = √TPR·TNR·PPV·NPV - √FNR·FPR·FOR·FDR

https://en.wikipedia.org/wiki/Confusion_matrix

Evaluating Models

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs
 Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers
- Evaluating Models
- Ethics

Receiver Operator Characteristic (ROC Curve)

Standard way to compare model performances (accuracy wise, not computational wise)

Binary classification

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

Ethics

Outline

- What is machine learning?
- Unsupervised Learning vs
 Supervised vs
 Decision / reinforcement
- Regression vs Classification
- Simple Perceptron
- Neural Networks
- Common Neural Networks
- Activation Functions
- Common Loss functions
- Common Optimizers

Ethics

 Machine Learning in the context of images Reinforcement of socioeconomic trends

Uncomprehensive datasets

Responsibility and Liability

Lack of transparent internal workings (without much scrutiny)

Consent in dataset building

Resources:

https://www.nature.com/articles/s41599-020-0501-9

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962261/

http://www3.weforum.org/docs/WEF_40065_White_Paper_How_to_Prevent_Discrimin atory_Outcomes_in_Machine_Learning.pdf