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Machine learning is a
group of data analysis
tools, algorithms, and
statistics methods that
broadly lies under the
umbrella of Artificial
Intelligence.

Broadly it can be thought
of as any method that
aims to produce a model
to perform a task
(regression or
classification) without
being explicitly coded.
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Unsupervised learning is taking a dataset with little to no prior information or labels and
giving it order or dimensionality reduction.
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K means k
argsminz D flx =

1=1 x£5;
Initial Guess Final Iteration

*

How are points classified?

Whichever centroid (k-mean) is closest to the point by least squared distance
10
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PCA

A Transform that changes the coordinates to a system
where each coordinate is the least correlated to each
other, to a “component.”

XY, Z,.. = PC1, PC2, PC3...

Easiest way to compute is with Singular Value
Decomposition (SVD)
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PCA Example in Python
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import numpy as np; import matplotlib.pyplot as plt;
mean = (5, 2.2)
cov = [[2J _3:|J ['3: 1@]]

np.random.multivariate normal(mean, cov, (1888))
plt.scatter(X[:,0],X[:,1])
U,5,Vt = np.linalg.svd(X- np.mean(X,axis=08))
U eig = np.linalg.eig(np.dot{(X,X.T))

V eig = np.linalg.eig(np.dot(X.T,X))

print(U.shape)

& print(5.shape)

print(Vt.shape)

pca X = np.dot(X- np.mean(X,axis=8),Vt)
plt.scatter({pca X[:,8],pca X[:,1])
plt.legend([ "Original’, "PCA"])
plt.figure()

from sklearn.decomposition import PCA

3 pca = PCA()

pca.fit(X)
pca_X sklearn = pca.transform(X)

6 plt.scatter({pca X sklearn[:,8],pca X sklearn[:,1])

plt.scatter(pca X[:,8],pca X[:,1],marker="x")
plt.legend([ "PCA with sklearn’, 'PCA with np.svd’'])
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PCA is commonly used as a simple dimensionality reduction method, where after PCA
N dimensional data is plotted along principal components 1 and 2 for 2D visualization or

PC1 through 3 for 3D

PC2

b 4
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1.

Calculate probability that points are neighbors,

2. Calculate or learn a dimensional map that keeps this neighbor probability

pca-two
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Autoencoders are a class of neural network that learn a “compression” or latent
space representation of information — they are trained on a loss function of how
different the input and output information is — typically MSE.

Encoder Decoder
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Latent space
representation
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Fashion MNIST principal components vs Linear Autoencoder latent space projection

The Latent space representation learned by the autoencoder can be used to cluster or organize
datasets

it’s a lower dimension representation of information contained in the dataset

PCA Linear Autoencoder

'

By Michela Massi - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=80152034
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Input
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Latent
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You can mix latent representations and
decode for style mixtures!
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Method name
K-Means
Affinity
propagation
Mean-shift

Spectral
clustering

Ward hierarchical
clustering

Agglomerative
clustering

DBSCAN

OPTICS

Gaussian mixtures

BIRCH

Parameters
number of clusters

damping, sample
preference

bandwidth

number of clusters

number of clusters
or distance
threshold

number of clusters
or distance
threshold, linkage
type, distance

neighborhood size

minimum cluster
membership

many

branching factor,
threshold, optional
global clusterer.

Scalability

Very large n_samples,
medium n_clusters
with

MiniBatch code

MNot scalable with
n_samples

Mot scalable with
n_samples

Medium n_samples,
small n_clustars

Large n_samples and
n_clusters

Large n_samples and
n_clusters

Very large n_samples,
medium n_clusters

Very large n_samples,
large n_clusters

Mot scalable

Large n_clusters and
n_samples

Usecase

General-purpose, even cluster
size, flat geometry,
not too many clusters, inductive

Many clusters, uneven cluster
size, non-flat geometry, inductive

Many clusters, uneven cluster
size, non-flat geometry, inductive

Few clusters, even cluster size,
non-flat gecmetry, transductive

Many clusters, possibly con-
nectivity constraints, transductive

Many clusters, possibly con-
nectivity constraints, non Euc-
lidean

distances, transductive

Non-flat geometry, uneven
cluster sizes, transductive

MNon-flat {_5|e-:nmetr3[r]r uneven
cluster sizes, variable cluster
density,

transductive

Flat geometry, good for density
estimation, inductive

Large dataset, outlier removal,
data reduction, inductive

https://scikit-learn.org/stable/modules/clustering.html

Geometry (metric used)
Distances between points

Graph distance (e.g.
nearest-neighbor graph)
Distances between points

Graph distance (e.g.
nearest-neighbor graph)

Distances between points

Any pairwise distance

Distances between nearest
points

Distances between points

IMahalanobis distances to
centers

Euclidean distance
between points

18
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Bioinformatics

« Codon bias

* Proteomics /
Transcriptomics

« Epigenomics

Quality control

Number of cells

T I T I
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Challenges in unsupervised clustering of single-cell RNA-seq data. Kiselev et al.
Nature Reviews Genetics 2019. https://www.nature.com/articles/s41576-018-0088-9
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Autoencoders are often used
to produce latent space
representations for use in later
deep learning classification
models.

Using latent space
representations can help
denoise large datasets (such
as RNA-seq provides) and
provide a smaller dimensional
dataset — speeding up training
and hyperparameter searches
for models.

In the figure to the right a
learned “Cell Identity Code”
(8D latent space
representation) allows for
clearer clustering of mMRNA
profiles of cancer biopsies
than the original dataset.

PCA

t-SNE

Second Component
o

Full dataset (transcriptome)
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CIC - Latent space

-100 -50 ) 0 50 100
First Component

Disease

ACC
BLCA
BRCA
CESC
CHOL
COAD
DLBC
ESCA
HNSC
KICH
KIRC
KIRP
LAML
LGG
LIHC
LUAD
LUSC
MESO
Normal
oV
PAAD
PCPG
PRAD
READ
SARC
SKCM
STAD
TGCT
THCA
THYM
UCEC
UCS
UvVM
WITU

DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome.

Azarkhalili et al. Scientific Reports 2019. https://www.nature.com/articles/s41598-019-52937-5
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What i hi . . .
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Examples:

Melanoma Classification
« > 5000 papers
* Predominantly CNN based

Protein Folding

» Holy grail of machine learning
» Sequence to structure

« CASP

Cardiac Pathology Diagnosis
« EKG Signal to detect defects

Disease state (Cancer) Diagnosis

» Label Global mRNA expression
profiles to train classification of
tumors

* Proteomics + RNA-seq

Genomics
 Splice site recognition

Sequence
and MSA
features

Deep neural
network

[
1
|
|

v

L x L 2D covariation features
€m—mm

Tiled L x 7 1D sequence and profile features

Distance and torsion
distribution predictions

j

l64 blnsdeep
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280

Gradient descent on
protein-specific potential
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80
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— r.m.s.d.

— 1

0 200 400 600 800 1,000 1,200
Gradient descent steps

Z1m IEmIN |

Noisy restarts

10' 102 10°
Iteration

0 1 01110
Prediction x~'

Alpha Fold - Improved protein structure prediction using potentials from deep learning.
Senior et al. eLife Nature 2020. DOI: https://doi.org/10.1038/s41586-019-1923-7

SpliceAl training

m— );IK — e M
a1
pre-mRNA K GENCODE
sequences GTEx
Identify cryptic splice mutations
~ —»{ SpliceAl |~
wildtype
* *
AG - —»| SpliceAl » ——m——— m———
mutant

Predicting Splicing from Primary Sequence with Deep Learning. Jaganathan et al. Cell 2019.

DOI: https://doi.org/10.1016/j.cell.2018.12.015



Regression vs Classification uq-bio

i 10 Discrete labels (y)
» What is machine
learning? 0.81 ¢
> Unsupervised ° o “Given these features or photos, what is the
Learning vs 0.6 house color?”
Supervised vs * .
isi 0.4+ _ :
Ee?r‘#(s)'r%g:n - Y: [p(white), p(black), p(red), p(blue), .... Etc]
[ ]
> Regression vs 0-2 Other examples:
e e house or apartment?
> Simple Perceptron 0.0 = == - " City or rural?
> Neural Networks ] ] | )
» Common Neural 100+ .
Networks Continuous output (y)
» Activation Functions 801
> Common Loss “Given these features, what is the market
functions 60 1 price of this house?”
> Common o _
Optimizers 401 ol Y:0-X$
» Machine Learning R
in the context of 207 . | Other examples:
images * What’s the square footage?
> Ethics o1 i _ _ i i i How big is the yard?
0 5 10 15 20 25 30 How long will it take to sell? 25
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Martin Thoma, CCO, via Wikimedia Commons

Vv

X — data of shape n_features by n_samples
Y - labels of class -1 or 1 (for case with a decision
threshold at 0)

Iteration 100 [teration 10

15.0

12.5 -

1000 1
1.5 1
5.0 1

25 1

001 o

—-2.5 -

-5.0 -2.5 0.0 25 5.0 75 10.0 125
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Dz rirides

2\ 2
.

Outputs

Myelin sheat

Myelinated axon

Inputs

By Egm4313.s12 (Prof. Loc Vu-Quoc) - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=72816083

Martin Thoma, CCO, via Wikimedia Commons
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Feed Forward Neural Networks

What if one daisy chains a ton of perceptrons together?

28



Neural Networks uq-bhio

Outline Feed Forward Neural Networks = FFNNSs learn neuron activations based on features given, for
example a label for pupil shape may activate neurons specific
towards pushing probability towards cat, or paw size for dog.
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XY

_ Note, it’'s more complicated, but this is a simple conceptual visualization of their function.
> Ethics Features hit activations with different weights that overall lead to a learned decision 29

» Common
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CNN

(Input — kernel window )/strides x
(Input — kernel window )/strides x
Filters

16x16x32

8x8x32

Max pool

Max pool

128x128x3 64x64x64
Filters = 64
kernel = 3x3 Label Percent

186 .0608
8.0000
8.8888
8.8008
8.a0e8
e.8a6e
8.8008

sunflower:
buttercup:
dandelion:
colts foot:
daffodil:
tulip:
tiger lily:

strides = (2,2)

Layer 1: (128-3)/2 + 1 = 64

Filters = 32 crocus: ©.0088
daisy: ©.8688
kernel = 2x2 softmax windflower: ©.8000

a.eg8e
a.8808

&.8800
g.800e

cowlisp:
snowdrop:
fritillary:
lily valley:
iris: ©.6688
bluebell: @.8@88
pansy: ©.8888

strides = (2,2)

Layer 2: (32-2)/2 + 1 =16

Probability label O, Probability label 1 ...., Probability label N
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A convolutional neural network for the prediction and forward design of
ribozyme-based gene-control elements. C Schmidt and C Smolke. eLife
2021. DOI: 10.7554/eLife.59697

0| O | O | > N

OO O C ESE () NS )

Goal: Predict and design
RNA Ribozyme Elements

Training data:
Computational folded
Sequence then labeled
with loop and branch sizes
Into a secondary structure
feature set
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https://Imb.informatik.uni-freiburg.de/people/ronneber/u-net/
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Cellpose: a generalist algorithm for cellular segmentation. Stringer (et al)
Nature Methods 2020. DOI: 10.1038/s41592-020-01018-x

Cell Pose

Architecture: Extension of
the U-Net with gradient
flow

Goal: produce masks of
cell images

Training data: hand
labeled masks + diffusion
simulations
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Activation Functions

10

Leaky RelL U
max(0.1z, x)

Maxout
max(wi x + by, wa x + bo)

10 10

ELU

T x>0
ae*—1) =<0

Source: Shruti Jadon - https://medium.com/@shrutijadon10104776/survey-on-activation-
functions-for-deep-learning-9689331ba092
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RelLU

» Extreme speed ups of
stochastic descent optimizers

« Computationally simple

« Can fail with large gradients —
“Dying RelLu”

Leaky RelLU

* Fixes Dying ReLU*

« Computationally simple, but
more expensive than ReLU

Random RelLU
* Leaky RelLU with random
alphas

Tanh

Like the Sigmoid, but centered
at 0 with -1 and 1

Better than the Sigmoid in
almost every instance

Sigmoid

Expensive

Can flatten a gradient, making
all outputs zero or one
Analogous to neuron firing
Almost never used anymore

Activation functions are application dependent; Take care to
either do a literature search for which activation functions are
used and why -- or spend time to test different activation

function performances on your problem!

https://stats.stackexchange.com/questions/115258/comprehensive-list-of-

activation-functions-in-neural-networks-with-pros-cons
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How well is the machine learning? Lower the loss, the better!

Mean Squared Error
* The classic!

Log Likelihood
* Probability of data given the model

Cross Entropy Loss

» Binary Classification

« Simplifies from Log Likelihood
to an easy expression in the
case of labels 0 and 1

MSE = li(n =

100

801

60 -

40 -

20

25 30

H(p,q) = =) Jpfloda] = —ylogd — (1 - y)log(1 - 4)

E— probability of labels / True labels

— probability of prediction / Predicted labels

36



Loss Functions

>

>

Outline

What is machine
learning?

Unsupervised
Learning vs
Supervised vs
Decision /
reinforcement

Regression vs
Classification

Simple Perceptron
Neural Networks

Common Neural
Networks

Activation Functions

Common Loss
functions

Common
Optimizers

Machine Learning in
the context of
images

Ethics

Hinge loss

« Multiclass classification
* Best for SVM

« Best for labels —1 to 1

Categorical Cross Entropy
 Multiclass classification

Sparse Categorical Cross Entropy
» Multiclass classification
* One hot encoding on labels

Kullback Leibler Divergence
» Multiclass classification
* One hot encoding on labels

And many more...

Functions

KLD(...) : Computes Kullback-Leibler divergence loss between y_true and y_pred .

MAE( . ..) : Computes the mean absolute error between labels and predictions.

MAPE( .. .) : Computes the mean absolute percentage error between y_true and y_pred.

MSE( . ..) : Computes the mean squared error between labels and predictions.

MSLE( .. .) : Computes the mean squared logarithmic error between y_true and y_pred.
binary_crossentropy(...) : Computes the binary crossentropy loss.
categorical_crossentropy(...) : Computes the categorical crossentropy loss.
categorical_hinge(...) : Computes the categorical hinge loss between y_true and y_pred.
cosine_similarity(...) : Computes the cosine similarity between labels and predictions.
deserialize(...) : Deserializes a serialized loss class/function instance.

get(...) :Retrieves a Keras loss as a function/Loss class instance.

hinge(...) : Computes the hinge loss between y_true and y_pred.

huber(...): Computes Huber loss value.

kl_divergence(...) : Computes Kullback-Leibler divergence loss between y_true and y_pred.
kld(...) : Computes Kullback-Leibler divergence loss between y_true and y_pred .
kullback_leibler_divergence( .. .) : Computes Kullback-Leibler divergence loss between y_true and y_pred.
log_cosh(...) : Logarithm of the hyperbolic cosine of the prediction error.

logeosh(...) : Logarithm of the hyperbolic cosine of the prediction error.

mae( . ..) : Computes the mean absolute error between labels and predictions.

mape( .. .) : Computes the mean absolute percentage error between y_true and y_pred.

https://www.tensorflow.org/api docs/python/tf/keras/losses
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Functions

KLD(...) : Computes Kullback-Leibler divergence loss between y_true and y_pred .

MAE( . ..) : Computes the mean absolute error between labels and predictions.

MAPE( . ..) : Computes the mean absolute percentage error between y_true and y_pred.

MSE( . ..) : Computes the mean squared error between labels and predictions.

MSLE( . ..) : Computes the mean squared logarithmic error between y_true and y_pred.
binary_crossentropy(...) : Computes the binary crossentropy loss.
categorical_crossentropy(...) : Computes the categorical crossentropy loss.
categorical_hinge(...) : Computes the categorical hinge loss between y_true and y_pred.
cosine_similarity(...) : Computes the cosine similarity between labels and predictions.
deserialize(...) : Deserializes a serialized loss class/function instance.

get(...) :Retrieves a Keras loss as a function/Loss class instance.

hinge(...) : Computes the hinge loss between y_true and y_pred.

huber(...) : Computes Huber loss value.

kl_divergence(...): Computes Kullback-Leibler divergence loss between y_true and y_pred.
kld(...) : Computes Kullback-Leibler divergence loss between y_true and y_pred .
kullback_leibler_divergence(...) : Computes Kullback-Leibler divergence loss between y_true and y_pred.
log_cosh(...) : Logarithm of the hyperbolic cosine of the prediction error.

logcosh( .. .) : Logarithm of the hyperbolic cosine of the prediction error.

mae( . ..) : Computes the mean absolute error between labels and predictions.

mape( . ..) : Computes the mean absolute percentage error between y_true and y_pred.

Once again, loss functions are can get
very granular for your specific
application, once again highlighting
the need for a strong literature search
when setting out to generate new
models. Additionally, you may take a
programmatic search and test
multiple loss functions for your
application, or even use a sum of loss
functions to train.

https://www.tensorflow.org/api docs/python/tf/keras/losses
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CONSIDERATIONS:

* Propensity for local minima
sticking (globalness?)

« Computational Cost

« Dynamic or Static Learning
Rates

« Memory / Batch sizes

Stochastic Gradient Descent
» Stochastically move towards the
minimum based on each new data point

RMSprop

« Adaptive learning rate

« RMS average of the squared
gradients for each weight

Adam

» Adaptive moments that keeps track of
momentum (15t and 2" moments) and
corrects based on a learned decay rate

=== S5GD === RMSPROP ADAM
=== ADAGRAD === ADADELTA

0 20 40 60 80 100
num. iteration

https://towardsdatascience.com/optimizers-for-training-neural-

network-59450d71caf6

https://moodle2.cs.huji.ac.il/nul5/pluginfile.php/316969/mod resour

ce/content/1/adam pres.pdf
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100 Cat photos 100 Dog photos

3 cats mislabeled as dogs
17 dogs mislabeled as cats

Actual Cat

Actual Dog

Confusion Matrix

Accuracy: (97 + 83) / (100 + 100)
Predicted Dog

Predicted Cat

97

17

83
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Evaluating Models

Confusion Matrices — Starting with these a plethora of metrics can be calculated for model selection or

Metrics

reinforcement B
Actual condition

Outline :
_ _ evaluation
» What is machine
S . .
learing? Confusion Matrix
» Unsupervised
Learning vs
Supervised vs Total population
Decision / =P+N

Predicted condition

Predicted condition
positive (FP)

True positive (TP),
hit

False positive (FP),
Type | error,
false alarm,

underestimation

Fredicted condition
negative (FN)

False negative (FN),
Type |l error,
miss, overestimation

True negative (TN),
correct rejection

. =
» Regression vs = | positive (P)
Classification E
o
> Simple Perceptron =
Simple Perceptro S | Actual condition
» Neural Networks S negative (N)
» Common Neural
Networks Prevalence
> Activation Functions = 5ox

» Common Loss
functions Accuracy (ACC)

_TP+TN

» Common PN

Optimizers Balanced accuracy
: (BA)
» Evaluating Models _TPR4TNR
2

> Ethics

Paositive predictive value
(PPV), precision = %
= 1-FDR

False discovery rate (FDR)

_FP_,_
= 55 =1-PPV

2-PPY-TPR _
PPV + TPR
—2F
2ZTP+FP+FN

F, score =

False omission rate
(FOR) = 57 = 1-NPV

Megative predictive
value (NPV) = 1
=1-FOR

Fowlkes—Mallows index

(FM) =+PPV-TPR

Sources: [13][1415]16][1 7I18]19][20] viewtalk -
Prevalence threshold (PT) =
YTPR-FPR-FFR
TPR - FFPR

Informedness, bookmaker informedness (BM)
=TPR+TNR - 1

True positive rate (TPR), recall, sensitivity (SEN),

probability of detection, hit rate, power = %

= 1-FNR

False negative rate (FNR),

miss rate = Z5 = 1-TPR

. - True negative rate (TNR),
False positive rate (FPR), probability of false alarm,

= —

specificity (SPC), selectivity = —

fall-out = £ = 1-TNR SRR TN
=1-FPR

MNegative likelihood ratio (LR-)

Positive likelinood ratio (LR+) = 158 _FNR
TNR
Markedness (MK), deltaP (Ap) = PPV + NPV -1 Diagnostic odds ratio (DOR) = Elt

. _ Matthews correlation
Threat score (TS), critical success index (CSI1) coefficient (MCC) =

_ 1w VTPR-TNR-PPV-NPV -
TP+FN+FP VFNR FPR-FOR-FDR

https://en.wikipedia.org/wiki/Confusion_matrix
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Receiver Operator Characteristic (ROC Curve)

Standard way to compare model performances (accuracy wise, not computational wise)

Binary classification

Mutliclass
Some extension of Receiver operating characteristic to multi-class
1.0
0.8 1
W
]
@
ik} 0.6 T
=
]
‘W
(=]
=8
i)
0.4 1
=
‘mom micro-average ROC curve (area = 0.73)
= = macro-average ROC curve (area = 0.78)
0.2 1 w ROC curve of class 0 (area = 0.91)
= ROC curve of class 1 (area = 0.60)
= ROC curve of class 2 (area = 0.79)
D.U 1 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
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Reinforcement of socioeconomic trends

Uncomprehensive datasets

Responsibility and Liability

Lack of transparent internal workings (without much scrutiny)

Consent in dataset building

Resources:
https://www.nature.com/articles/s41599-020-0501-9

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962261/

http://www3.weforum.org/docs/WEF 40065 White Paper How to Prevent Discrimin

atory Outcomes in Machine Learninqg.pdf
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