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Introduction - The Central Dogma of Molecular Biology

Genetically identical cells in identical environments produce stochastic, 
spatial, temporal fluctuations.


Our goal is to measure, model, and predict every stage of these 
fluctuations.
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48 (20bp) probes/mRNA, 

Measuring single-cell transcription using Single-Molecule 
Fluorescence in situ Hybridization  
(smFISH)

• SM-FISH allows quantification of 
endogenous transcription response:

• Number of individual mRNA per cell,

• 3D Location of individual mRNA,

• DNA transcription site activity,
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• SM-FISH allows quantification of 
endogenous transcription response:

• Number of individual mRNA per cell,

• 3D Location of individual mRNA,

• DNA transcription site activity,

• Fast (1-2 minute) time resolution,

• 100s or 1000s of cells per time point 

or condition.

smFISH provides highly reproducible 
& quantitative statistics of (noisy) 
single-cell responses.
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Measuring single-cell transcription using Single-Molecule 
Fluorescence in situ Hybridization  
(smFISH)
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• Using MS2/MCP labeling, we observe live 
nascent RNA transcription.
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RNAP2 Recruitment, Phosphorylation and 
Transcription is a Bursty Process
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• Using MS2/MCP labeling, we observe live 
nascent RNA transcription.


• Fragmented antibody (FAB) probes allow 
us to quantify RNA Polymerase II (RNAP2) 
before (green) and after (green+blue) Ser5 
phosphorylation.
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RNAP2 Recruitment, Phosphorylation and 
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• Each RNAP2/transcription trajectory is different due 
to the intrinsic noise of that particular process.


• Although we cannot expect a model to match any 
individual trajectory, we can ask that models match 
key statistics for the signals :I(t)

• intensity joint distributions: 

• intensity auto- and cross-covariance: 
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A good model should match all these statistics with a single 
(hopefully simple) set of mechanisms and parameters.

RNAP2 Recruitment, Phosphorylation and 
Transcription is a Bursty Process



The best 

Selecting the best model to reproduce RNAP2 and MS2 dynamics

Will Raymond

• We tried many different extensions to the 2-state bursting gene expression model, fit them 
to data and evaluated their uncertainty using the Bayesian Information Criteria (BIC).
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Sup. Fig. 6: Mathematical models tested.
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Models that lacked a separate 
RNAP2 recruitment and 

transcription escape events 
were too simple and could not 

reproduce the data. 

Models that had too many 
parameters (e.g., extra 

phosphorylation steps or distinct 
mRNA elongation/processing 

steps) could not be fully 
constrained by available data.

We select the “Goldilocks Model” 
that minimizes the Bayesian 

Information Criteria (BIC)  
(Akaiki I.C. yields identical result)

Forero-Quintero, Raymond et al., Nat Comms, 2021

After fitting many models with different states and mechanisms, we 
selected (BIC/AIC) a simple model with four reactions and five parameters:

Auto-Correlations Cross-CorrelationsIntensity Distributions

exploration of how each model parameter affects model predictions,
including trajectories, auto- and cross-correlations, distributions of
spot intensities, simulated ChIP data, and several derived quantities
to describe the CTD-RNAP2, Ser5ph-RNAP2, and mRNA burst
dynamics (Supplementary Fig. 9).

Inhibiting distinct steps of the transcription cycle provides
further evidence for the spatiotemporal organization of
RNAP2 phosphorylation. So far, our collective data and mod-
eling suggest a precise temporal ordering of transcription
dynamics, beginning with the recruitment of CTD-RNAP2,
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Fig. 3 Fluorescence auto- and cross-correlations at the HIV-1 reporter gene are well fit by a unifying model of transcription. a, b Measured and
modeled (a) auto-correlation functions ACðτÞ=Gð0Þ for each signal: CTD-RNAP2 (red circles), Ser5ph-RNAP2 (green squares), and mRNA (blue
diamonds). Dwell time is defined as the time at which the autocovariance dropped below 20% of its zero-lag value (vertical full lines). Dwell time
uncertainty is estimated from the model using the standard deviation from 400 simulated data sets, each with 20 cells over 200min with 1 min simulation
resolution (vertical dashed lines). b Cross-correlation function CCðτÞ=Gð0Þ between signal pairs: Ser5ph-RNAP2 and CTD-RNAP2 (cyan squares), mRNA
and CTD-RNAP2 (orange circles), and mRNA and Ser5ph-RNAP2 (purple diamonds) at the transcription site. Model Maximum Likelihood Estimate (MLE)
fit in black and sampled uncertainty in gray. c A simple model to capture RNAP2 fluctuation dynamics at the HIV-1 reporter gene. RNAP2 enters the
transcription cluster with an average geometric burst with average burst size, β, and burst frequency, ω. Phosphorylation of Serine 5 is assumed to be fast
(<<1 min) and/or the RNAP2 enters in a pre-phosphorylated form. RNAP2 can be lost from the cluster with rate kab or escape with rate kesc. RNAP2
completes transcription with rate kc. d Probability distributions for CTD-RNAP2 and Ser5ph-RNAP2 (arbitrary units of fluorescence), and mRNA (units of
mature mRNA) for experimental data (purple) and model MLE predictions (green). e MLE parameters and 95% confidence interval (CI) range. Statistics
presented for the data are the sample means ± S.E.M. n=number of cells/number of independent experiments (20/8). f Simulated trajectory (with shot
noise equal to that of experiments) of CTD-RNAP2 (red), Ser5ph-RNAP2 (green), and mRNA (blue) intensities normalized to have a 95 percentile of unity.
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exploration of how each model parameter affects model predictions,
including trajectories, auto- and cross-correlations, distributions of
spot intensities, simulated ChIP data, and several derived quantities
to describe the CTD-RNAP2, Ser5ph-RNAP2, and mRNA burst
dynamics (Supplementary Fig. 9).

Inhibiting distinct steps of the transcription cycle provides
further evidence for the spatiotemporal organization of
RNAP2 phosphorylation. So far, our collective data and mod-
eling suggest a precise temporal ordering of transcription
dynamics, beginning with the recruitment of CTD-RNAP2,
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Fig. 3 Fluorescence auto- and cross-correlations at the HIV-1 reporter gene are well fit by a unifying model of transcription. a, b Measured and
modeled (a) auto-correlation functions ACðτÞ=Gð0Þ for each signal: CTD-RNAP2 (red circles), Ser5ph-RNAP2 (green squares), and mRNA (blue
diamonds). Dwell time is defined as the time at which the autocovariance dropped below 20% of its zero-lag value (vertical full lines). Dwell time
uncertainty is estimated from the model using the standard deviation from 400 simulated data sets, each with 20 cells over 200min with 1 min simulation
resolution (vertical dashed lines). b Cross-correlation function CCðτÞ=Gð0Þ between signal pairs: Ser5ph-RNAP2 and CTD-RNAP2 (cyan squares), mRNA
and CTD-RNAP2 (orange circles), and mRNA and Ser5ph-RNAP2 (purple diamonds) at the transcription site. Model Maximum Likelihood Estimate (MLE)
fit in black and sampled uncertainty in gray. c A simple model to capture RNAP2 fluctuation dynamics at the HIV-1 reporter gene. RNAP2 enters the
transcription cluster with an average geometric burst with average burst size, β, and burst frequency, ω. Phosphorylation of Serine 5 is assumed to be fast
(<<1 min) and/or the RNAP2 enters in a pre-phosphorylated form. RNAP2 can be lost from the cluster with rate kab or escape with rate kesc. RNAP2
completes transcription with rate kc. d Probability distributions for CTD-RNAP2 and Ser5ph-RNAP2 (arbitrary units of fluorescence), and mRNA (units of
mature mRNA) for experimental data (purple) and model MLE predictions (green). e MLE parameters and 95% confidence interval (CI) range. Statistics
presented for the data are the sample means ± S.E.M. n=number of cells/number of independent experiments (20/8). f Simulated trajectory (with shot
noise equal to that of experiments) of CTD-RNAP2 (red), Ser5ph-RNAP2 (green), and mRNA (blue) intensities normalized to have a 95 percentile of unity.
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Despite its simplicity, this 
model captures the 
distributions, auto- and 
cross-correlations of total 
RNAP2, RNAP2-Ser5ph, 
and nascent mRNA at the 
transcription sites.

• Bursty recruitment of RNAP2 with 
frequency  and average size 


• Aborted attempt with rate 

• Successful escape with rate 

• RNA completion with rate 

ω β
kab

kesc
kc

exploration of how each model parameter affects model predictions,
including trajectories, auto- and cross-correlations, distributions of
spot intensities, simulated ChIP data, and several derived quantities
to describe the CTD-RNAP2, Ser5ph-RNAP2, and mRNA burst
dynamics (Supplementary Fig. 9).

Inhibiting distinct steps of the transcription cycle provides
further evidence for the spatiotemporal organization of
RNAP2 phosphorylation. So far, our collective data and mod-
eling suggest a precise temporal ordering of transcription
dynamics, beginning with the recruitment of CTD-RNAP2,
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Fig. 3 Fluorescence auto- and cross-correlations at the HIV-1 reporter gene are well fit by a unifying model of transcription. a, b Measured and
modeled (a) auto-correlation functions ACðτÞ=Gð0Þ for each signal: CTD-RNAP2 (red circles), Ser5ph-RNAP2 (green squares), and mRNA (blue
diamonds). Dwell time is defined as the time at which the autocovariance dropped below 20% of its zero-lag value (vertical full lines). Dwell time
uncertainty is estimated from the model using the standard deviation from 400 simulated data sets, each with 20 cells over 200min with 1 min simulation
resolution (vertical dashed lines). b Cross-correlation function CCðτÞ=Gð0Þ between signal pairs: Ser5ph-RNAP2 and CTD-RNAP2 (cyan squares), mRNA
and CTD-RNAP2 (orange circles), and mRNA and Ser5ph-RNAP2 (purple diamonds) at the transcription site. Model Maximum Likelihood Estimate (MLE)
fit in black and sampled uncertainty in gray. c A simple model to capture RNAP2 fluctuation dynamics at the HIV-1 reporter gene. RNAP2 enters the
transcription cluster with an average geometric burst with average burst size, β, and burst frequency, ω. Phosphorylation of Serine 5 is assumed to be fast
(<<1 min) and/or the RNAP2 enters in a pre-phosphorylated form. RNAP2 can be lost from the cluster with rate kab or escape with rate kesc. RNAP2
completes transcription with rate kc. d Probability distributions for CTD-RNAP2 and Ser5ph-RNAP2 (arbitrary units of fluorescence), and mRNA (units of
mature mRNA) for experimental data (purple) and model MLE predictions (green). e MLE parameters and 95% confidence interval (CI) range. Statistics
presented for the data are the sample means ± S.E.M. n=number of cells/number of independent experiments (20/8). f Simulated trajectory (with shot
noise equal to that of experiments) of CTD-RNAP2 (red), Ser5ph-RNAP2 (green), and mRNA (blue) intensities normalized to have a 95 percentile of unity.
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• FABs can also be used to quantify Nascent 
Protein translation from single mRNA in 
living cells.


• Different colors can be used to observe 
different open reading frames or different 
ribosomal entry sites.

• red — mRNA

• green — translating proteins

MCP Label
MS2 Hairpin

SM Peptide
FAB Labels

Tim 
Stasevich

Tatsuya 
Morisaki

Kenneth 
Lyon

Luis 
Aguilera

Amanda 
Koch

Observing and simulating canonical and non-canonical translation 
from a single mRNA. 

Lyon, Aguilera, et al, Molecular Cell, 2019
Aguilera, Raymond, et al, PLoS Comp Biol, 2019
Koch, Aguilera et al, Nat. Struct, Mol. Biol., 2020 

Nascent protein dynamics are 
captured by a Totally 
Asymmetric Simple Exclusion 
Process (TASEP).

Aguilera, Raymond, et al, PLoS Comp Biol, 2019
Luis 

Aguilera

Auto-CovariancesSteady-State Distributions

(1549 aa), Č-actin (375 aa), and H2B (128 aa) [6]. Each construct encodes for an N-terminal
10X FLAG ‘Spaghetti Monster’ SM-tag (318 aa) followed by the specific protein of interest
(POI), and the stop codon for each POI was followed by 24 repetitions of the MS2 tag in the 3’
UTR region. For each construct, the MS2 signal was used to track the mRNA motion in three
dimensions, and the co-localized fluorescence intensity of the FLAG SM-tag was quantified as
a function of time. These movies were collected using frame rates of 1 sec for H2B (n = 10), 3
sec for Č-actin (n = 17), and 10 sec for KDM5B (n = 35), and each trajectory was tracked for up
to 300 frames per mRNA. Fig 4A–4C (left) show example time traces (in arbitrary units of
fluorescence) for the nascent protein level per individual mRNA for each of the three genes.
To achieve long trajectories, it is necessary to use low laser power, which introduces higher
variability in signal intensities from one spot to another. Therefore, to account for variability
in imaging settings between tracking experiments, all trajectories were normalized to have a
variance of one prior to auto-covariance analysis.

To quantify the steady-state variability of nascent proteins per mRNA in units of mature
protein (ump), we used a second, independent calibration construct that contains only a single

Fig 4. Fitting single-molecule data with the full stochastic model. Experimental data show the fluctuation dynamics of gene constructs
encoding an N-terminal 10X FLAG ‘Spaghetti Monster’ SM-tag (green) followed by a protein of interest and finally a 24X MS2 tag (red) in
the 3’ UTR region. Three proteins were studied: A) H2B (orange), B) Č-actin (blue) and C) KDM5B (violet). Middle figures show the
simulated (colors) and measured (black) probability distributions for an mRNA to have a fluorescence intensity corresponding to i units of
mature proteins (ump). Right images show the normalized auto-covariance function (G) calculated from experimentally measured (black
error bars) and computationally simulated (colors) autocorrelation functions. Error bars in the experimental data and shadow bars in the
simulated auto-covariance plots represent the standard errors of the mean. Elongation and initiation rates were obtained by parameter
optimization, using the Hooke and Jeeves Algorithm ([29]). Optimized parameters and their uncertainties (see Methods) are provided in
Eq 29.

https://doi.org/10.1371/journal.pcbi.1007425.g004

Computational design and interpretation of single-RNA translation experiments
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The TASEP Model has two 
parameters: 

• initiation rate 
• average elongation rate* 

With just these two parameters, the 
model captures: 

• the distribution of nascent 
proteins per mRNA in units of 
mature protein. 

• the auto-covariance of the 
protein translation signal. 

*Codon-dependent 
translation rates are defined 
by the Codon Adaptation 
Index.

Will 
Raymond

Canonical Translation Dynamics can be captured 
by a simple Codon-Dependent TASEP Model.



HIV and other viruses use frameshift stimulatory 
sequences (FSS) to reduce genome size.  

These FSS cause ribosomes to slip and translate two 
proteins from a single RNA sequence.

Two for the price of one!

HIV-1 FSS

5’... CAUGGUUUUUUAGGGAAGAUCUGGCCU .... 3’
GH F
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We added a third color in the -1 frame and extended 
models to allow bursts of frame-shifting.

Extending the TASEP to include bursts of non-canonical 
translational frame-shifting
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Extending the TASEP to include bursts of non-canonical 
translational frame-shifting
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A single bursting frame-shift model captures:  
(a) survival time of -1 bursts 
(b) the loading of ribosomes per mRNA in each frame 
(c) fraction of mRNA with 0, -1, or both proteins. 
(d) Total production ratio of 0 and -1 frame proteins. 
(e) Run-off dynamics after drug perturbation 
(f) Run-off dynamics for extended construct.

the frameshift state survival times, we fit the rate of koff to be
!0.0013 s"1 (Figure 5B), corresponding to an average frameshift
persistence time of 1/koff !12.8 min.

Using this constrained value for koff, we then fit to find the re-
maining parameters kon, kini, kel, kFSS, and kFSS* (Table 1), with
which the bursty frameshifting model could simultaneously
reproduce all of our observations (Figures 5C–5G), in contrast

to the constitutive model (Figures S5A–S5L). From these param-
eters, we calculate 1/kon !170 min, meaning that RNA encoding
the HIV-1 FSS switch to a frameshifting state rarely, on the time-
scale of a few hours (Table 1, 1/kon). Once an RNA is in the frame-
shifting state, it remains there for tens of minutes on average
(Table 1, 1/koff), occasionally lasting up to an hour ormore. To ac-
count for the different run-off delays seen at frameshifting and

Figure 5. A Model for Bursty Frameshifting
(A) A schematic of the model: kini is the translation initiation rate, kel is the translation elongation rate, kon is the rate at which RNA switch to the frameshifting state,

koff is the rate at which RNA switch to the non-frameshifting state, kFSS is the pause rate at the FSS in the non-frameshifting state, k*FSS is the pause rate at the FSS

in the frameshifting state, and kt is the termination rate (assumed equal to kel).

(B) The survival probability of frameshifting sites through time (black dots) is fit with a single exponential decay (gray line).

(C–G) Simultaneous fit of all data. (C) A bar graph comparing the measured (black) and best-fit model predicted (gray) percentage of non-frameshifting (0F),

frameshifting ("1F), and both frames (BF) translation sites. Error bars represent SEM among cells. (D) A bar graph comparing the measured (black) and best-fit

model predicted (gray) ratio between the total frameshifted and non-frameshifted signal intensity (FS:non-FS signal ratio). (E) A bar graph comparing the

measured (black) and best-fit model predicted (gray) intensity in units of mature protein (u.m.p.) within non-frameshifting (0F), frameshifting ("1F), and both

frames (BF) translation sites. Error bars represent SEM among RNA. (F) Best-fit model (solid lines) of the data from Figure 4A. Error bars represent SEM among

RNA. (G) Best-fit model prediction of the data from Figure 4B. Error bars represent SEM among RNA.

(H) The predicted ribosomal occupancy along the MF tag is shown. The positions of the FSS (red), FLAG (green), and SunTag (blue) epitopes are shown in color.

(I) The predicted ribosomal occupancy along the HA MF tag is shown. The positions of the FSS (red), HA (orange), FLAG (green), and SunTag (blue) epitopes are

shown in color.

See also Figure S5 and Videos S4, S5, and S6.
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!0.0013 s"1 (Figure 5B), corresponding to an average frameshift
persistence time of 1/koff !12.8 min.

Using this constrained value for koff, we then fit to find the re-
maining parameters kon, kini, kel, kFSS, and kFSS* (Table 1), with
which the bursty frameshifting model could simultaneously
reproduce all of our observations (Figures 5C–5G), in contrast

to the constitutive model (Figures S5A–S5L). From these param-
eters, we calculate 1/kon !170 min, meaning that RNA encoding
the HIV-1 FSS switch to a frameshifting state rarely, on the time-
scale of a few hours (Table 1, 1/kon). Once an RNA is in the frame-
shifting state, it remains there for tens of minutes on average
(Table 1, 1/koff), occasionally lasting up to an hour ormore. To ac-
count for the different run-off delays seen at frameshifting and

Figure 5. A Model for Bursty Frameshifting
(A) A schematic of the model: kini is the translation initiation rate, kel is the translation elongation rate, kon is the rate at which RNA switch to the frameshifting state,

koff is the rate at which RNA switch to the non-frameshifting state, kFSS is the pause rate at the FSS in the non-frameshifting state, k*FSS is the pause rate at the FSS

in the frameshifting state, and kt is the termination rate (assumed equal to kel).

(B) The survival probability of frameshifting sites through time (black dots) is fit with a single exponential decay (gray line).

(C–G) Simultaneous fit of all data. (C) A bar graph comparing the measured (black) and best-fit model predicted (gray) percentage of non-frameshifting (0F),

frameshifting ("1F), and both frames (BF) translation sites. Error bars represent SEM among cells. (D) A bar graph comparing the measured (black) and best-fit

model predicted (gray) ratio between the total frameshifted and non-frameshifted signal intensity (FS:non-FS signal ratio). (E) A bar graph comparing the

measured (black) and best-fit model predicted (gray) intensity in units of mature protein (u.m.p.) within non-frameshifting (0F), frameshifting ("1F), and both

frames (BF) translation sites. Error bars represent SEM among RNA. (F) Best-fit model (solid lines) of the data from Figure 4A. Error bars represent SEM among

RNA. (G) Best-fit model prediction of the data from Figure 4B. Error bars represent SEM among RNA.

(H) The predicted ribosomal occupancy along the MF tag is shown. The positions of the FSS (red), FLAG (green), and SunTag (blue) epitopes are shown in color.

(I) The predicted ribosomal occupancy along the HA MF tag is shown. The positions of the FSS (red), HA (orange), FLAG (green), and SunTag (blue) epitopes are

shown in color.

See also Figure S5 and Videos S4, S5, and S6.
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the frameshift state survival times, we fit the rate of koff to be
!0.0013 s"1 (Figure 5B), corresponding to an average frameshift
persistence time of 1/koff !12.8 min.

Using this constrained value for koff, we then fit to find the re-
maining parameters kon, kini, kel, kFSS, and kFSS* (Table 1), with
which the bursty frameshifting model could simultaneously
reproduce all of our observations (Figures 5C–5G), in contrast

to the constitutive model (Figures S5A–S5L). From these param-
eters, we calculate 1/kon !170 min, meaning that RNA encoding
the HIV-1 FSS switch to a frameshifting state rarely, on the time-
scale of a few hours (Table 1, 1/kon). Once an RNA is in the frame-
shifting state, it remains there for tens of minutes on average
(Table 1, 1/koff), occasionally lasting up to an hour ormore. To ac-
count for the different run-off delays seen at frameshifting and

Figure 5. A Model for Bursty Frameshifting
(A) A schematic of the model: kini is the translation initiation rate, kel is the translation elongation rate, kon is the rate at which RNA switch to the frameshifting state,

koff is the rate at which RNA switch to the non-frameshifting state, kFSS is the pause rate at the FSS in the non-frameshifting state, k*FSS is the pause rate at the FSS

in the frameshifting state, and kt is the termination rate (assumed equal to kel).

(B) The survival probability of frameshifting sites through time (black dots) is fit with a single exponential decay (gray line).

(C–G) Simultaneous fit of all data. (C) A bar graph comparing the measured (black) and best-fit model predicted (gray) percentage of non-frameshifting (0F),

frameshifting ("1F), and both frames (BF) translation sites. Error bars represent SEM among cells. (D) A bar graph comparing the measured (black) and best-fit

model predicted (gray) ratio between the total frameshifted and non-frameshifted signal intensity (FS:non-FS signal ratio). (E) A bar graph comparing the

measured (black) and best-fit model predicted (gray) intensity in units of mature protein (u.m.p.) within non-frameshifting (0F), frameshifting ("1F), and both

frames (BF) translation sites. Error bars represent SEM among RNA. (F) Best-fit model (solid lines) of the data from Figure 4A. Error bars represent SEM among

RNA. (G) Best-fit model prediction of the data from Figure 4B. Error bars represent SEM among RNA.

(H) The predicted ribosomal occupancy along the MF tag is shown. The positions of the FSS (red), FLAG (green), and SunTag (blue) epitopes are shown in color.

(I) The predicted ribosomal occupancy along the HA MF tag is shown. The positions of the FSS (red), HA (orange), FLAG (green), and SunTag (blue) epitopes are

shown in color.

See also Figure S5 and Videos S4, S5, and S6.
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the frameshift state survival times, we fit the rate of koff to be
!0.0013 s"1 (Figure 5B), corresponding to an average frameshift
persistence time of 1/koff !12.8 min.

Using this constrained value for koff, we then fit to find the re-
maining parameters kon, kini, kel, kFSS, and kFSS* (Table 1), with
which the bursty frameshifting model could simultaneously
reproduce all of our observations (Figures 5C–5G), in contrast

to the constitutive model (Figures S5A–S5L). From these param-
eters, we calculate 1/kon !170 min, meaning that RNA encoding
the HIV-1 FSS switch to a frameshifting state rarely, on the time-
scale of a few hours (Table 1, 1/kon). Once an RNA is in the frame-
shifting state, it remains there for tens of minutes on average
(Table 1, 1/koff), occasionally lasting up to an hour ormore. To ac-
count for the different run-off delays seen at frameshifting and

Figure 5. A Model for Bursty Frameshifting
(A) A schematic of the model: kini is the translation initiation rate, kel is the translation elongation rate, kon is the rate at which RNA switch to the frameshifting state,

koff is the rate at which RNA switch to the non-frameshifting state, kFSS is the pause rate at the FSS in the non-frameshifting state, k*FSS is the pause rate at the FSS

in the frameshifting state, and kt is the termination rate (assumed equal to kel).

(B) The survival probability of frameshifting sites through time (black dots) is fit with a single exponential decay (gray line).

(C–G) Simultaneous fit of all data. (C) A bar graph comparing the measured (black) and best-fit model predicted (gray) percentage of non-frameshifting (0F),

frameshifting ("1F), and both frames (BF) translation sites. Error bars represent SEM among cells. (D) A bar graph comparing the measured (black) and best-fit

model predicted (gray) ratio between the total frameshifted and non-frameshifted signal intensity (FS:non-FS signal ratio). (E) A bar graph comparing the

measured (black) and best-fit model predicted (gray) intensity in units of mature protein (u.m.p.) within non-frameshifting (0F), frameshifting ("1F), and both

frames (BF) translation sites. Error bars represent SEM among RNA. (F) Best-fit model (solid lines) of the data from Figure 4A. Error bars represent SEM among

RNA. (G) Best-fit model prediction of the data from Figure 4B. Error bars represent SEM among RNA.

(H) The predicted ribosomal occupancy along the MF tag is shown. The positions of the FSS (red), FLAG (green), and SunTag (blue) epitopes are shown in color.

(I) The predicted ribosomal occupancy along the HA MF tag is shown. The positions of the FSS (red), HA (orange), FLAG (green), and SunTag (blue) epitopes are

shown in color.

See also Figure S5 and Videos S4, S5, and S6.
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the frameshift state survival times, we fit the rate of koff to be
!0.0013 s"1 (Figure 5B), corresponding to an average frameshift
persistence time of 1/koff !12.8 min.

Using this constrained value for koff, we then fit to find the re-
maining parameters kon, kini, kel, kFSS, and kFSS* (Table 1), with
which the bursty frameshifting model could simultaneously
reproduce all of our observations (Figures 5C–5G), in contrast

to the constitutive model (Figures S5A–S5L). From these param-
eters, we calculate 1/kon !170 min, meaning that RNA encoding
the HIV-1 FSS switch to a frameshifting state rarely, on the time-
scale of a few hours (Table 1, 1/kon). Once an RNA is in the frame-
shifting state, it remains there for tens of minutes on average
(Table 1, 1/koff), occasionally lasting up to an hour ormore. To ac-
count for the different run-off delays seen at frameshifting and

Figure 5. A Model for Bursty Frameshifting
(A) A schematic of the model: kini is the translation initiation rate, kel is the translation elongation rate, kon is the rate at which RNA switch to the frameshifting state,

koff is the rate at which RNA switch to the non-frameshifting state, kFSS is the pause rate at the FSS in the non-frameshifting state, k*FSS is the pause rate at the FSS

in the frameshifting state, and kt is the termination rate (assumed equal to kel).

(B) The survival probability of frameshifting sites through time (black dots) is fit with a single exponential decay (gray line).

(C–G) Simultaneous fit of all data. (C) A bar graph comparing the measured (black) and best-fit model predicted (gray) percentage of non-frameshifting (0F),

frameshifting ("1F), and both frames (BF) translation sites. Error bars represent SEM among cells. (D) A bar graph comparing the measured (black) and best-fit

model predicted (gray) ratio between the total frameshifted and non-frameshifted signal intensity (FS:non-FS signal ratio). (E) A bar graph comparing the

measured (black) and best-fit model predicted (gray) intensity in units of mature protein (u.m.p.) within non-frameshifting (0F), frameshifting ("1F), and both

frames (BF) translation sites. Error bars represent SEM among RNA. (F) Best-fit model (solid lines) of the data from Figure 4A. Error bars represent SEM among

RNA. (G) Best-fit model prediction of the data from Figure 4B. Error bars represent SEM among RNA.

(H) The predicted ribosomal occupancy along the MF tag is shown. The positions of the FSS (red), FLAG (green), and SunTag (blue) epitopes are shown in color.

(I) The predicted ribosomal occupancy along the HA MF tag is shown. The positions of the FSS (red), HA (orange), FLAG (green), and SunTag (blue) epitopes are

shown in color.

See also Figure S5 and Videos S4, S5, and S6.

8 Molecular Cell 75, 1–12, July 11, 2019

Please cite this article in press as: Lyon et al., Live-Cell Single RNA Imaging Reveals Bursts of Translational Frameshifting, Molecular Cell (2019),
https://doi.org/10.1016/j.molcel.2019.05.002

hypothesized the FSS sequence could be involved in multimeri-
zation. To test this, we co-transfected cells expressing the +FSS
MF tag with a short oligo RNA encoding just the FSS sequence
(FSO; frameshift oligo, Figure 3A). Remarkably, this led to a sig-
nificant increase in the fraction of frameshifting sites translating
just the!1 frame, from 1.6% to 5.6%when 1 mg FSOwas added
(Figure 3B, p < 0.001), and up to 7.8%when 4 mg FSOwas added
(p < 0.0001, Figure 3B). However, in contrast to our expectation,
the FSO did not significantly impact the RNA signal intensities
within frameshifting sites. Instead, irrespective of FSO concen-
tration, the distributions of RNA signal intensities within frame-
shifting (and non-frameshifting) sites remained statistically un-
changed (Figures S3F and S3G). For controls, we repeated
experiments, first with non-specific oligos and second with the
FSO in cells expressing the !FSS control tag. In both cases,
we did not see a significant increase in frameshifting (Figure 3B).
Furthermore, in all experiments the fraction of translating RNA
remained statistically constant (Figure 3C), indicating cellular
stress was not a factor. We therefore conclude the FSS can
somehow interact with other translation sites to facilitate frame-

shifting. While it remains unclear if the interaction is direct or in-
direct, by itself the interaction does not appear to alter the multi-
merization of frameshifting sites.

Translational Output of Frameshifted Ribosomes
The "8% of frameshifted translation sites we observed is
consistent with previous measurements of 5%–10% frame-
shifted protein product (Brierley and Dos Ramos, 2006; Dulude
et al., 2002; Grentzmann et al., 1998; Mouzakis et al., 2013). All
else equal, this implies that frameshifting alone can explain the
steady-state levels of frameshifted protein, without the need
for other regulatory mechanisms, such as protein degradation.
To test this hypothesis, we performed a ribosomal run-off exper-
iment to roughly estimate the elongation rates of frameshifted
and non-frameshifted ribosomes. We used a doubled +FSS
MF tag (2xMF tag) to increase the signal amplification. This al-
lowed us to lower the laser powers and thereby eliminate observ-
able photobleaching. Fits to the post-tag portion of run-off
curves yielded similar run-off times (Figures 4A and S4A). Fluo-
rescence recovery after photobleaching experiments further

Figure 4. Ribosomal Run-Off at Frameshift-
ing and Non-frameshifting Translation Sites
(A) A schematic showing harringtonine-induced ri-

bosomal run-off from the +FSS 2xMF tag with FLAG

(green) and SunTag epitopes (blue) in the 0 and !1

frames, respectively. The normalized total intensity

(a.u.) of nascent chain signals within non-frame-

shifting translation sites (green triangles, 217 FLAG-

only sites initially) and frameshifting sites (cyan cir-

cles, 32 Sun sites initially). Frameshifting translation

sites are distinguished by the presence of a-SunTag

scFv. As these sites contain both FLAG and SunTag

nascent chains, the intensity is the sum of the

a-FLAG Fab and a-SunTag scFv fluorescence.

There is a small but significant difference between

the run-off of non-frameshifting versus frameshifting

ribosomes (p < 0.001 for all time points up to"600 s,

after which the two curves begin to converge to zero

intensity, Mann-Whitney U test, 19 cells). Error bars

represent SEM of all sites.

(B) Similar to (A), but with a modified MF tag with the

addition of 10 HA epitopes (orange, HA MF tag)

upstream of the FSS. The a-HA Fab signals in non-

frameshifting translation sites (orange triangles, 128

HA-only sites initially) and frameshifting translation

sites (orange circles, 42 Sun sites initially). Frame-

shifting translation sites are distinguished by the

presence of a-SunTag scFv. The non-frameshifting

and frameshifting HA run-offs were significantly

different (p < 0.0001 for all time points, Mann-

Whitney U test, 27 cells). Error bars represent SEM

of all sites.

(C) A sample single translation site encoding the

modified HA MF tag (shown in B) after addition of

harringtonine. A montage of image trims shows

the detected RNA-, HA-, and Sun-signals through

time. Below, the normalized total intensity of the

a-HA Fab signal (marking all ribosomes) and the

a-SunTag scFv signal (marking frameshifting ribo-

somes) is plotted through time. Gray arrows and

gray box signify a burst of frameshifting.

See also Figure S4 and Video S3.
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Extending the TASEP to include bursts of non-canonical 
translational frame-shifting

✴ The Central Dogma is a Noisy Process, where mRNA and proteins 
are created in discrete bursts. 

✴ Transcription and Translation bursts can be measured in real time, at 
single-molecule resolution, and in living cells. 

✴ Simple discrete stochastic models are sufficient to quantitatively  
reproduce and often predict every step of these processes. 

✴ By testing multiple models in different stress or drug response 
conditions, it is possible to gain insight into which bursting 
mechanisms are affected under what experimental perturbations.

Observations From Measuring and 
Modeling Single-cell Processes



✴ Single-cell experiments are expensive, noisy, and there are vast 
numbers of possible experiment designs or user-supplied inputs. 

Experiment Design Considerations 
• Number of cells 
• Sampling times or periods 
• Choice of fluorophore(s) 
• Number and placement of probes 
• Choice of which genes, mRNA, or 

protein to measure 
• Inducer/drug concentrations and 

delivery times

Measurement Error Considerations 
• Microscope resolution 
• Image processing errors (segmentation, spot 

detection, track linking) 
• Photobleaching 
• Autofluorescence 
• Camera exposure time 
• Light source power and wavelength and 

optical filters 
• Delays due to drug/inducer diffusion or 

nuclear import

That’s all great, BUT…

✴ To squeeze as much information as possible out of each experiment 
we need to use the most appropriate computational analyses. 

✴ We also need systematic tools to choose experiments to minimize 
uncertainty about the mechanisms or parameters of interest.
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UQ-Bio — Daily Schedule

Mondays - Fridays 
09:00 - 10:00 - General Lecture (seminar style) 
10:15 - 12:15 - Python Tutorial 
12:15 - 14:00 - Lunch break (NOTE - the CSU Dining Commons 
are only open until 13:30). 
14:00 - 15:00 - Scheduled work time - please work in teams to 
discuss workbook assignments. 

Monday, Wednesday, Friday 
15:30 - 17:00 - Hack-a-thon Session 

Tuesday and Thursday 
15:30 - 17:00 - Career Discussion Panel

UQ-Bio Schedule

Module 1 - Fluorescence Microscopy for Single-Cell Analysis 
(June 1-3) 

• Tutorial 1.1 - Basic Image Manipulation in Python (June 1, 10:15)

• Lecture 1 - Dr. Linda Forero - Fluorescence Labeling Techniques for 

Single-Cell Experiments (June 2, 09:00)

• Tutorial 1.2 - Single-Cell Segmentation in Python (June 2, 10:15)

• Lecture 2 - Prof. Douglas Shepherd - Single-Cell Microscopy (June 

3, 09:00)

• Tutorial 1.3 - Single-Molecule Detection and Tracking (June 3, 10:15)


Module 2 - Basic Statistical Analyses (June 5-6) 
• Lecture 3 - Dr. Christian Meyer (June 6, 09:00)

• Tutorial 2.1 - Basic Probability and Statistics (June 6, 10:15)

• Lecture 4 - Prof. Anushree Chatterjee (June 7, 09:00)

• Tutorial 2.2 - Basics of Supervised Machine Learning (June 7, 10:15)

• Lecture 5 - Prof. Ashok Prasad (June 8, 09:00)



UQ-Bio Schedule

Module 3 - Simulating Biochemical Reaction Dynamics 
(June 8-10) 

• Tutorial 3.1 - Propensity Functions, Stoichiometries and ODE 
Analyses of Biochemical Reactions  (June 8, 10:15)


• Lecture 6 - Prof. Soham Ghosh (June 9, 09:00)

• Tutorial 3.2 - Stochastic Simulations for Single-Cell Gene Regulation 

Dynamics (June 9, 10:15)

• Lecture 7 - Dr. Tatsuya Morisaki (June 10, 09:00)

• Tutorial 3.3 - Totally Asymmetric Simple Exclusion Process Models 

for Protein Translation (June 10, 10:15)

UQ-Bio Schedule

Module 4 - Inferring Models from Single-Cell Data (June 13-15) 

• Lecture 8 - Dr. Zachary Fox (June 13, 09:00)

• Tutorial 4.1 - Chemical Master Equations and the Finite State 

Projection Analysis (June 13, 10:15)

• Lecture 9 - Prof. Elizabeth Read (June 14, 09:00)

• Tutorial 5.2 - Maximum Likelihood Estimation for Single-Cell 

Dynamics (June 14, 10:15)

• Lecture 10 - Kaan Öcal (June 15, 09:00)

• Tutorial 5.3 - Bayesian Estimation of Models for Single-Cell Gene 

Regulation  (June 15, 10:15)


