UQ-Bio Summer School 2022 Measuring, Modeling and Predicting Gene Regulation Dynamics at the Single-Cell Level

Brian Munsky Chemical and Biological Engineering School of Biomedical Engineering Colorado State University

munsky@colostate.edu

June 1, 2022

Munsky, William S. Hlavacek, and Lev S. Tsimring, editor

munsky@colostate.edu

Measuring single-cell transcription using Single-Molecule Fluorescence in situ Hybridization (smFISH)

- SM-FISH allows quantification of endogenous transcription response:
 - Number of individual mRNA per cell,
 - **<u>3D Location</u>** of *individual* mRNA,
 - DNA transcription site activity,

Transcription Translation

Neuert, Munsky, et al, *Science* 2013 Munsky, et al, *PNAS*, 2018

Measuring single-cell transcription using Single-Molecule Fluorescence in situ Hybridization (smFISH)

- SM-FISH allows quantification of endogenous transcription response:
 - **<u>Number</u>** of *individual* mRNA per cell,
 - **<u>3D Location</u>** of *individual* mRNA,
 - DNA transcription site activity,
 - Fast (1-2 minute) time resolution,
 - 100s or 1000s of cells per time point or condition.

smFISH provides highly *reproducible* & *quantitative* statistics of (noisy) single-cell responses.

RNAP2 Recruitment, Phosphorylation and Transcription is a Bursty Process Gene activation Protein mRNA cular signals ŵ Transcription Translation **B** Using MS2/MCP labeling, we observe live nascent RNA transcription. ntensity ()MS2/MCP Label Will Tim a Forero-Quintero Raymond Stasevich Forero, Raymond et al, Nat. Comms., 2021

RNAP2 Recruitment, Phosphorylation and **Transcription is a Bursty Process**

Tim

- Using MS2/MCP labeling, we observe live nascent RNA transcription.
- Fragmented antibody (FAB) probes allow us to quantify RNA Polymerase II (RNAP2) before (green) and after (green+blue) Ser5 phosphorylation.
- MS2/MCP Label **RNAP2-CTD** RNAP2-CTD-Ser5ph

Forero, Raymond et al, Nat. Comms., 2021

RNAP2 Recruitment, Phosphorylation and Transcription is a Bursty Process

MCP Label RNAP2-CTD

RNAP2-CTD-Ser5ph

- · Each RNAP2/transcription trajectory is different due to the intrinsic noise of that particular process.
- Although we cannot expect a model to match any individual trajectory, we can ask that models match key statistics for the signals I(t):
 - intensity joint distributions: P(I)
 - · intensity auto- and cross-covariance:

A good model should match all these statistics with a single (hopefully simple) set of mechanisms and parameters.

ntensity

Will

Quintero Raymond Stasevich

RNAP2

mR

Forero-Tim Stasevich Quintero

Selecting the best model to reproduce RNAP2 and MS2 dynamics

 We tried many different extensions to the 2-state bursting gene expression model, fit them to data and evaluated their uncertainty using the Bayesian Information Criteria (BIC).

After fitting many models with different states and mechanisms, we selected (BIC/AIC) a simple model with four reactions and five parameters:

Observing and simulating canonical and non-canonical translation from a single mRNA.

- FABs can also be used to quantify *Nascent Protein translation* from single mRNA in living cells.
- Different colors can be used to observe different open reading frames or different ribosomal entry sites.
 - red mRNA
 - green translating proteins

- FAB Labels
- 🔁 SM Peptide

5 2 2 A

Kenneth Luis Lyon Aguilera manda Tim Koch Stasevid

Tim Tatsuya Stasevich Morisaki

Lyon, Aguilera, et al, *Molecular Cell*, 2019 Aguilera, Raymond, et al, *PLoS Comp Biol*, 2019 Koch, Aguilera et al, *Nat. Struct, Mol. Biol.*, 2020

Auto-Covariances

100 150

 τ (sec)

Data Model

200

Data

Model

000 000

150 200 250

250

Canonical <u>Translation</u> Dynamics can be captured by a simple Codon-Dependent <u>TASEP Model</u>.

Nascent protein dynamics are captured by a *Totally Asymmetric Simple Exclusion Process* (TASEP).

()(G(0)

(L)

-0.5

0

50

The TASEP Model has two parameters:

- initiation rate
- average elongation rate*

With just these two parameters, the model captures:

- the distribution of nascent proteins per mRNA in units of mature protein.
- the auto-covariance of the protein translation signal.

Index.

*Codon-dependent translation rates are defined

by the Codon Adaptation

2

4 6

0.6

Probability 0.2

Steady-State Distributions

AUG tag H2B stop

128 codons

Data

8 10 12 14

Luis _{Will} Aguilera Raymond

Aguilera, Raymond, et al, PLoS Comp Biol, 2019

 τ (sec)

Extending the TASEP to include bursts of non-canonical translational frame-shifting

Extending the TASEP to include bursts of non-canonical translational frame-shifting $\overset{k_{ini}}{\rightarrow} \boxed{\text{AUG}} \overset{k_{el}}{\rightarrow} \boxed{\text{FSS}} \overset{k_{FSS}}{\rightarrow} \boxed{ \text{AlexX (0 frame)}} \overset{k_{el}}{\rightarrow} \boxed{ \text{stop}}$ $k_{on} \downarrow \uparrow k_{off}$ 0 ORF $\stackrel{k_{ini}}{\Rightarrow} \overline{\text{AUG}} \stackrel{k_{el}}{\Rightarrow} \overline{\text{FSS}^{\star}} \stackrel{k_{rss}}{\longrightarrow} \overline{\text{XXLb1 (-1 frame)}} \stackrel{k_{el}}{\Rightarrow} \overline{\text{stop}}$ -1 ORF 0 ORF -1 ORF 0 sec 0 ORF 2 -1 ORF . ٠ . . Kenneth Tatsuya Tim Lyon Luis Aguilera Stasevich Morisaki Lyon, Aguilera, et al, Molecular Cell, 2019

Observations From Measuring and Modeling Single-cell Processes

- * The Central Dogma is a *Noisy Process*, where mRNA and proteins are created in *discrete bursts*.
- * Transcription and Translation bursts can be measured in <u>real time</u>, at <u>single-molecule resolution</u>, and in <u>living cells</u>.
- * <u>Simple</u> discrete stochastic models are sufficient to quantitatively reproduce and often predict <u>every step</u> of these processes.
- * By <u>testing multiple models</u> in different stress or drug response conditions, it is possible to gain insight into which bursting mechanisms are affected under what experimental perturbations.

That's all great, BUT...

Experiment Design Considerations

- Number of cells
- Sampling times or periods
- Choice of fluorophore(s)
- Number and placement of probes
- Choice of which genes, mRNA, or protein to measure
- Inducer/drug concentrations and delivery times

Measurement Error Considerations

- Microscope resolution
- Image processing errors (segmentation, spot detection, track linking)
- Photobleaching
- Autofluorescence
- Camera exposure time
- Light source power and wavelength and optical filters
- Delays due to drug/inducer diffusion or nuclear import
- * To squeeze as much *information* as possible out of each experiment we need to use the most appropriate computational analyses.
- * We also need systematic tools to <u>choose</u> experiments to <u>minimize</u> <u>uncertainty</u> about the mechanisms or parameters of interest.

Acknowledgments and Collaborators (2019-2022)

- Hog Signaling/Transcription Activation Gregor Neuert, Vanderbilt Guoliang Li, Vanderbilt Hossein Jahnsaz, Vanderbilt Jason Hughes, Vanderbilt Douglas Shepherd, CU Denver
- Single-mRNA Translation Tim Stasevich, CSU Tatsuya Morisaki, CSU Kenneth Lyon, CSU Amanda Koch, CSU Linda Forero Quintero, CSU

Cell Heterogeneity in Algal Biofuels: Babetta Marrone, LANL Claire Sanders, LANL Elaheh Alizadeh, CSU

Cell-free Single-BioMolecule Kinetics: Sabrina Leslie, McGill University Shane Scott, McGill University

MultiScale Bayesian FSP tools: Ania Baetica, CalTech Thomas Catanach, Sandia Soil Microbiome Machine Learning John Dunbar Lab, LANL

Inflammation driven transcription James Werner, LANL Dan Kalb, LANL

q-bio Training and Textbook: William S Hlavacek, LANL Lev S. Tsimring, UCSD Marek Kimmel, Rice University Former students of the 2010-2017 q-bio Summer Schools

<u>Postdocs:</u> Luis Aguilera Linda Forero Quintero Huy Vo

Graduate Students: Zachary Fox Lisa Weber Mohammad Tanhaemami Michael May Jaron Thompson Will Raymond Eric Ron Undergrads: Elliot Djokic Stua Charis Ellis Katie Torin Moore Zach Haigh Charlotte Mitchell Joshua Cook Rachel Keating

Stuart McKnight Katie Davis

Funding: WMKF NIH/NIGMS DOE/BER NSF <u>CAREER</u>

munsky@colostate.edu

UQ-Bio — Daily Schedule

Mondays - Fridays

- * 09:00 10:00 General Lecture (seminar style)
- * 10:15 12:15 Python Tutorial
- * 12:15 14:00 Lunch break (NOTE the CSU Dining Commons are only open until 13:30).
- * 14:00 15:00 Scheduled work time please work in teams to discuss workbook assignments.

Monday, Wednesday, Friday

* 15:30 - 17:00 - Hack-a-thon Session

Tuesday and Thursday

* 15:30 - 17:00 - Career Discussion Panel

UQ-Bio Schedule

Module 1 - Fluorescence Microscopy for Single-Cell Analysis (June 1-3)

- **<u>Tutorial 1.1</u>** Basic Image Manipulation in Python (June 1, 10:15)
- Lecture 1 Dr. Linda Forero Fluorescence Labeling Techniques for Single-Cell Experiments (June 2, 09:00)
- Tutorial 1.2 Single-Cell Segmentation in Python (June 2, 10:15)
- Lecture 2 Prof. Douglas Shepherd Single-Cell Microscopy (June 3, 09:00)
- Tutorial 1.3 Single-Molecule Detection and Tracking (June 3, 10:15)

Module 2 - Basic Statistical Analyses (June 5-6)

- Lecture 3 Dr. Christian Meyer (June 6, 09:00)
- Tutorial 2.1 Basic Probability and Statistics (June 6, 10:15)
- Lecture 4 Prof. Anushree Chatterjee (June 7, 09:00)
- Tutorial 2.2 Basics of Supervised Machine Learning (June 7, 10:15)
- Lecture 5 Prof. Ashok Prasad (June 8, 09:00)

UQ-Bio Schedule

Module 3 - Simulating Biochemical Reaction Dynamics (June 8-10)

- <u>Tutorial 3.1</u> Propensity Functions, Stoichiometries and ODE Analyses of Biochemical Reactions (June 8, 10:15)
- Lecture 6 Prof. Soham Ghosh (June 9, 09:00)
- <u>Tutorial 3.2</u> Stochastic Simulations for Single-Cell Gene Regulation Dynamics (June 9, 10:15)
- Lecture 7 Dr. Tatsuya Morisaki (June 10, 09:00)
- <u>Tutorial 3.3</u> Totally Asymmetric Simple Exclusion Process Models for Protein Translation (June 10, 10:15)

UQ-Bio Schedule

Module 4 - Inferring Models from Single-Cell Data (June 13-15)

- Lecture 8 Dr. Zachary Fox (June 13, 09:00)
- <u>Tutorial 4.1</u> Chemical Master Equations and the Finite State Projection Analysis (June 13, 10:15)
- Lecture 9 Prof. Elizabeth Read (June 14, 09:00)
- <u>Tutorial 5.2</u> Maximum Likelihood Estimation for Single-Cell Dynamics (June 14, 10:15)
- Lecture 10 Kaan Öcal (June 15, 09:00)
- <u>Tutorial 5.3</u> Bayesian Estimation of Models for Single-Cell Gene Regulation (June 15, 10:15)