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Introduction - The Central Dogma of Molecular Biology
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Genetically identical cells in identical environments produce stochastic,
spatial, temporal fluctuations.

Our goal is to measure, model, and predict every stage of these
fluctuations.




Measuring single-cell transcription using Single-Molecule
Fluorescence in situ Hybridization -
(sm FISH) iana 4 Transcription acsh i ?\f){
+ SM-FISH allows qugnt{flcatlon of 48 (20bp) probes/mRNA,
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Measuring single-cell transcription using Single-Molecule
Fluorescence in situ Hybridization
(smFISH)

Protein

+ SM-FISH allows quantification of
endogenous transcription response:

Number of individual mRNA per cell,
3D Location of individual mRNA,

DNA transcription site activity,
Fast (1-2 minute) time resolution,

100s or 1000s of cells per time point
or condition.

o

smFISH provides highly reproducible
& quantitative statistics of (noisy)
single-cell responses.
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Measuring single-cell transcription using Single-Molecule
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FIT Spatial and Temporal Stochastic Data
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RNAP2 Recruitment, Phosphorylation and
Transcription is a Bursty Process
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+ Using MS2/MCP labeling, we observe live
nascent RNA transcription.
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RNAP2 Recruitment, Phosphorylation and

Transcription is a Bursty Process

'RNAP2  RNAP2-Ser5ph
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+ Using MS2/MCP labeling, we observe live
nascent RNA transcription.

Fragmented antibody (FAB) probes allow
us to quantify RNA Polymerase Il (RNAP2)
before (green) and after (green+blue) Ser5
phosphorylation.
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RNAP2 Recruitment, Phosphorylation and
Transcription is a Bursty Process

Linda S. Forero-
Quintero

Tim
Stasevich

£> MCP Label 8 RNAP2-
,RNApz- -Ser5ph

+ Each RNAP2/transcription trajectory is different due
to the intrinsic noise of that particular process.

+ Although we cannot expect a model to match any
individual trajectory, we can ask that models match
key statistics for the signals 1(¢):

« intensity joint distributions: P(/)
+ intensity auto- and cross-covariance:
E{U(®) — upU(t+2) = up"}
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A good model should match all these statistics with a single
(hopefully simple) set of mechanisms and parameters.
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Selecting the best model to reproduce RNAP2 and MS2 dynamics

+  We tried many different extensions to the 2-state bursting gene expression model, fit them
to data and evaluated their uncertainty using the Bayesian Information Criteria (BIC).

Two State Bursting Model
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After fitting many models with different states and mechanisms, we
selected (BIC/AIC) a simple model with four reactions and five parameters:

RNAP2 ¢ Bursty recruitment of RNAP2 with
Bursts Cluster Residence .
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Observing and simulating canonical and non-canonical translation
from a single mRNA. -
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FABs can also be used to quantify Nascent /f;’ !
Protein translation from single mRNA in

living cells.

Different colors can be used to observe
different open reading frames or different
ribosomal entry sites.

+ red — mRNA
+ green — translating proteins
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Canonical Translation Dynamics can be captured
by a simple Codon-Dependent TASEP Model.
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Extending the TASEP to include bursts of non-canonical
translational frame-shifting

Two for the price of one!

HIV and other viruses use frameshift stimulatory

We added a third color in the -1 frame and extended
models to allow bursts of frame-shifting.
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Extending the TASEP to include bursts of non-canonical
translational frame-shifting
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Extending the TASEP to include bursts of non-canonical
translational frame-shifting
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Observations From Measuring and
Modeling Single-cell Processes

* The Central Dogma is a Noisy Process, where mRNA and proteins
are created in discrete bursts.

* Transcription and Translation bursts can be measured in real time, at
single-molecule resolution, and in living cells.

* Simple discrete stochastic models are sufficient to quantitatively
reproduce and often predict every step of these processes.

* By testing multiple models in different stress or drug response
conditions, it is possible to gain insight into which bursting
mechanisms are affected under what experimental perturbations.




That’s all great, BUT...

* Single-cell experiments are expensive, noisy, and there are vast
numbers of possible experiment designs or user-supplied inputs.

Measurement Error Considerations

Experiment Design Considerations « Microscope resolution

Numb(_er of_cells ] * Image processing errors (segmentation, spot

Sampling times or periods detection, track linking)

Choice of fluorophore(s) Photobleaching

Number and placement of probes Autofluorescence

Choice of which genes, mRNA, or Camera exposure time

protein to measure Light source power and wavelength and

Inducer/drug concentrations and optical filters

delivery times Delays due to drug/inducer diffusion or

nuclear import

* To squeeze as much information as possible out of each experiment
we need to use the most appropriate computational analyses.

* We also need systematic tools to choose experiments to minimize
uncertainty about the mechanisms or parameters of interest.
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UQ-Bio — Daily Schedule

Mondays - Fridays

* 09:00 - 10:00 - General Lecture (seminar style)

* 10:15 - 12:15 - Python Tutorial

* 12:15 - 14:00 - Lunch break (NOTE - the CSU Dining Commons
are only open until 13:30).

* 14:00 - 15:00 - Scheduled work time - please work in teams to
discuss workbook assignments.

Monday, Wednesday, Friday
* 15:30 - 17:00 - Hack-a-thon Session

Tuesday and Thursday
* 15:30 - 17:00 - Career Discussion Panel

UQ-Bio Schedule

Module 1 - Fluorescence Microscopy for Single-Cell Analysis
(June 1-3)
« Tutorial 1.1 - Basic Image Manipulation in Python (June 1, 10:15)
+ Lecture 1 - Dr. Linda Forero - Fluorescence Labeling Techniques for
Single-Cell Experiments (June 2, 09:00)
+ Tutorial 1.2 - Single-Cell Segmentation in Python (June 2, 10:15)
+ Lecture 2 - Prof. Douglas Shepherd - Single-Cell Microscopy (June
3, 09:00)
+ Tutorial 1.3 - Single-Molecule Detection and Tracking (June 3, 10:15)

Module 2 - Basic Statistical Analyses (June 5-6)
« Lecture 3 - Dr. Christian Meyer (June 6, 09:00)
+ Tutorial 2.1 - Basic Probability and Statistics (June 6, 10:15)
+ Lecture 4 - Prof. Anushree Chatterjee (June 7, 09:00)
+ Tutorial 2.2 - Basics of Supervised Machine Learning (June 7, 10:15)
« Lecture 5 - Prof. Ashok Prasad (June 8, 09:00)




UQ-Bio Schedule

Module 3 - Simulating Biochemical Reaction Dynamics
(June 8-10)

Tutorial 3.1 - Propensity Functions, Stoichiometries and ODE
Analyses of Biochemical Reactions (June 8, 10:15)

Lecture 6 - Prof. Soham Ghosh (June 9, 09:00)

Tutorial 3.2 - Stochastic Simulations for Single-Cell Gene Regulation
Dynamics (June 9, 10:15)

Lecture 7 - Dr. Tatsuya Morisaki (June 10, 09:00)

Tutorial 3.3 - Totally Asymmetric Simple Exclusion Process Models
for Protein Translation (June 10, 10:15)

UQ-Bio Schedule

Module 4 - Inferring Models from Single-Cell Data (June 13-15)

+ Lecture 8 - Dr. Zachary Fox (June 13, 09:00)
Tutorial 4.1 - Chemical Master Equations and the Finite State
Projection Analysis (June 13, 10:15)

« Lecture 9 - Prof. Elizabeth Read (June 14, 09:00)
Tutorial 5.2 - Maximum Likelihood Estimation for Single-Cell
Dynamics (June 14, 10:15)

- Lecture 10 - Kaan Ocal (June 15, 09:00)

+ Tutorial 5.3 - Bayesian Estimation of Models for Single-Cell Gene
Regulation (June 15, 10:15)




