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Intensity signals of nascent protein display fluctuations over time due to 
underlying transcription dynamics

Ribosome

RNA
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Protein
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What changes in a chemical reaction?
How quickly does it change?
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Motivation: What are models good for?

What are dynamic models useful for in biological processes?

1. Mechanistic underpinning of real data
2. Predictive power in new circumstances
3. Biophysical based analysis

Many biological data can be explained by using deterministic or stochastic 
formulations of chemical reactions using the law of mass action!

𝑑𝑥
𝑑𝑡

= 𝑆 𝑊(𝑥, 𝑡)
𝑑𝑃
𝑑𝑡

= 𝐴 𝑃(𝑥, 𝑡)

#

Stoichiometry=[ … ]
Propensity=[ … ]

∅
Biophysical System
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What changes in a dynamic chemical system?

1. Reactions have a propensity to cause a change in species count 
according to the stoichiometry of the system

2. The propensity to react changes depending on the instantaneous state 
of the system

3. The stoichiometry of a reaction tell us how each reaction changes on 
the number of species in the system

What is a ’model’?

A model is a combination of both stoichiometry, and propensity which can 
be used to capture the dynamics of a biological system

Model time dynamics can be analyzed using differential equations, 
stochastic simulation algorithms and chemical master equations



Deterministic
Analysis

Stochastic
Analysis

Mixed
Models

Ordinary Differential
Equation

Chemical Master Equation
Stochastic Simulation Alg.

Compartmental
Models

System of Ordinary 
Differential Equations

Chemical Master Equation
Stochastic Simulation Alg.

Spatial
Models

Partial Differential 
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• Mixed models assume the the space where the chemical reactions occur are well mixed
• Compartmental models break down the space into a set of compartments
• Spatial models assume that each point in space has an associated local concentration

Different levels of model detail give arise to different levels of accuracy and 
complexity 

Less Detail

More Detail

Mid Detail
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Example:
Modeling how sugar dissolves in a cup in 3 different ways

Mixed Model Compartmental Model Spatial Model

Mixed Model:  One value for concentration everywhere
Compartmental Model: Different compartments share the same concentration
Spatial Model: Every point in space has its own concentration



Intro- Deterministic vs Stochastic Models

Ordinary Differential Equations (ODE’s) are used to solve a model. 
ODE modeling methods for chemical reactions do not work well to model noise

𝒅𝒙
𝒅𝒕

= 𝒌 − 𝜸𝒙

𝒅𝒙
𝒅𝒕

=? ? ? ?

Where ODEs can be misleading:
• Molecule counts aren’t continuous, especially for 

small volumes like cells
• Real systems exhibit fluctuations

Learning Objectives

Learning objectives for this lecture:
• Learn to define propensity functions and stoichiometry vectors for chemical reactions
• Learn how to use the law of mass action to estimate propensity functions
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Making chemical reaction sets out of mechanistic models

Example: Model for membrane dimerization

General Biological Process:
1. Monomers are brought to the cell 

membrane
2. Monomers can dimerize into dimers
3. Dimers become phosphorylated and 

become active dimers
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How would you model this using Spatial, Compartmental, or well-mixed?
How would you model this using deterministic vs stochastic assumptions?



Making chemical reactions out of models

∅ → 𝒙𝟏
𝒙𝟏 → ∅

𝒙𝟏 + 𝒙𝟏 → 𝒙𝟐
𝒙𝟐 → 𝒙𝟑
𝒙𝟑 → ∅

Break down the system into five reactions
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Reaction Stoichiometry

∅ → 𝒙𝟏
𝒙𝟏 → ∅

𝒙𝟏 + 𝒙𝟏 → 𝒙𝟐
𝒙𝟐 → 𝒙𝟑
𝒙𝟑 → ∅

Write the Stoichiometry matrix for the chemical reaction set above.

Steps to Defining Stoichiometry Vectors:
• Identify the number of unique species (N=3)
• Identify the number of reactions (M=5)
• The stoichiometry vector of a reaction is the net change of each species
• Stoichiometry matrix is a bundle of all the vectors
There are M stoichiometry vectors, and each is a Nx1 vector.
The stoichiometry of a reaction system can be represented as a NxM matrix:

𝑺 = [𝑠!, 𝑠", … , 𝑠#]
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The stoichiometry matrix shows the net change in molecule count after each 
reaction



Reaction Stoichiometry

∅ → 𝒙𝟏
𝒙𝟏 → ∅

𝒙𝟏 + 𝒙𝟏 → 𝒙𝟐
𝒙𝟐 → 𝒙𝟑
𝒙𝟑 → ∅

Write the Stoichiometry matrix for the chemical reaction set above.

𝒔𝟏 = 𝟏, 𝟎, 𝟎 𝑻

𝒔𝟐 = −𝟏, 𝟎, 𝟎 𝑻

𝒔𝟑 = [−𝟐, 𝟏, 𝟎]T
𝒔𝟒 = [𝟎,−𝟏, 𝟏]T
𝒔𝟓 = 𝟎, 𝟎, −𝟏 𝑻

𝑆 =
1 −1 −2 0 0
0 0 1 −1 0
0 0 0 1 −1
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The stoichiometry matrix shows the net change in molecule count after each 
reaction

Steps to Defining Stoichiometry Vectors:
• Identify the number of unique species (N=3)
• Identify the number of reactions (M=5)
• The stoichiometry vector of a reaction is the net change of each species
• Stoichiometry matrix is a bundle of all the vectors
There are M stoichiometry vectors, and each is a Nx1 vector.
The stoichiometry of a reaction system can be represented as a NxM matrix:

𝑺 = [𝑠!, 𝑠", … , 𝑠#]



Reaction Rates and Propensity Functions

Reaction rates are functions of the state        (x1,x2,...) that describes the 
instantaneous speed of chemical reaction.

• For deterministic models              is the amount that the      
reaction occurs in a time step dt
• is the probability that the        reaction will occur in a time 

step of length     .
• Reaction rate and propensities are usually dependent on the 

current state (x1,x2,...) of the system (e.g., law of mass action).
• Reaction rates and Propensities are always positive

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

Reaction rates and propensities depend on the current state

Outline
• Motivation & Intro
• Mechanistic 

Model
• Reaction 

Stoichiometry
• Reaction 

Propensity
• Law of Mass 

Action
• Putting it all 

Together
• Final Notes
• Example 1
• Example 2
• Example 3
• Example 4



𝑘𝑥" 𝑐ℎ𝑜𝑜𝑠𝑒 0 = 1

Law of Mass Action

The law of mass action states that the rate of a chemical reaction is 
proportional to the number of unique combinations by which reactants can 
combine to form the products:

𝑤+ ∝ -
,-.

/

(𝑥, 𝑐ℎ𝑜𝑜𝑠𝑒 𝑅,+)

• When x is large, x(x-1) is approximately equal to x2.  This is the common form of mass action for ODE analyses.
• When x is small (integer copy numbers), the effect of finite molecule counts is far more important.
• k is an arbitrary proportionality coefficient – in many applications, the integer in the denominator of the 

combinatorial is lumped into this constant.
• Propensity functions depend only on the reactants – the products are irrelevant.

Reaction 𝑥& choose k Propensity equation
𝑟": 𝑥" → 𝑥# 𝑥" 𝑐ℎ𝑜𝑜𝑠𝑒 1 = 𝑥" 𝑘𝑥"

(𝑥" 𝑐ℎ𝑜𝑜𝑠𝑒 2)(𝑥# 𝑐ℎ𝑜𝑜𝑠𝑒 1)

𝑟#: 𝑥" + 𝑥" → 𝑥# 𝑘𝑥"(𝑥" − 1)/2(𝑥" 𝑐ℎ𝑜𝑜𝑠𝑒 2) = 𝑥"(𝑥" − 1)/2

𝑛 𝑐ℎ𝑜𝑜𝑠𝑒 𝑚 =
𝑛!

𝑚! 𝑛 − 𝑚 !
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where 𝑅&' is the number of reactant molecules of species n needed for the mth reaction and k arbitrary

𝑤+ = 𝑘 -
,-.

/

(𝑥, 𝑐ℎ𝑜𝑜𝑠𝑒 𝑅,+)

𝑟$: ∅ → 𝑥"

𝑘𝑥" 𝑥" − 1 𝑥# /2𝑟%: 2𝑥" + 𝑥# → 𝑥%



Use the Law of Mass action to write the propensity of the above reactions.

Reaction Propensity

Propensity is a function of state and time which describes the instantaneous 
rate of reaction of chemical reactions

∅ → 𝒙𝟏
𝒙𝟏 → ∅

𝒙𝟏 + 𝒙𝟏 → 𝒙𝟐
𝒙𝟐 → 𝒙𝟑
𝒙𝟑 → ∅

Each reaction has its own propensity to react.
The propensity vector (W) describes the propensity of each 
reaction in a vector:

𝑤. = …
𝑤2 = …
𝑤… = …
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Use the Law of Mass action to write the propensity of the above reactions.

Reaction Propensity

Propensity is a function of state and time which describes the instantaneous 
rate of reaction of chemical reactions

∅ → 𝒙𝟏
𝒙𝟏 → ∅

𝒙𝟏 + 𝒙𝟏 → 𝒙𝟐
𝒙𝟐 → 𝒙𝟑
𝒙𝟑 → ∅

Each reaction has its own propensity to react.
The propensity vector (W) describes the propensity of each 
reaction in a vector:

𝑤. = …
𝑤2 = …
𝑤… = …

𝒘𝟏(𝒙, 𝒕) = 𝒌𝟏
𝒘𝟐(𝒙, 𝒕) = 𝒌𝟐𝒙𝟏
𝒘𝟑(𝒙, 𝒕) = 𝒌𝟑(𝒙𝟏)(𝒙𝟏 − 𝟏)/2
𝒘𝟒(𝒙, 𝒕) = 𝒌𝟒𝒙𝟐
𝒘𝟓(𝒙, 𝒕) = 𝒌𝟓𝒙𝟑

𝑾 𝒙, 𝒕 =

𝒌𝟏
𝒌𝟐𝒙𝟏

𝒌𝟑(𝒙𝟏)(𝒙𝟏 − 𝟏)/𝟐
𝒌𝟒𝒙𝟐
𝒌𝟓𝒙𝟑

or   𝑾′ 𝒙, 𝒕 =

𝒌𝟏
𝒌𝟐𝒙𝟏

𝒌′𝟑(𝒙𝟏)(𝒙𝟏 − 𝟏)
𝒌𝟒𝒙𝟐
𝒌𝟓𝒙𝟑
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Putting it all together

The “mean field” ODE description for the instantaneous rate of change of 
the average system is given by: 𝒅𝒙

𝒅𝒕
= 𝑺𝑾(𝒙, 𝒕)

𝑆 =
1 −1 −2 0 0
0 0 1 −1 0
0 0 0 1 −1

𝑾 𝒙, 𝒕 =

𝒌𝟏
𝒌𝟐𝒙𝟏

𝒌′𝟑(𝒙𝟏)(𝒙𝟏 − 𝟏)
𝒌𝟒𝒙𝟐
𝒌𝟓𝒙𝟑

Write the equation for 𝒅𝒙
𝒅𝒕

given the S and W defined above.

𝑑𝑥+
𝑑𝑡 =

𝑑𝑥,
𝑑𝑡 =

𝑑𝑥-
𝑑𝑡 =
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Putting it all together

𝑆 =
1 −1 −2 0 0
0 0 1 −1 0
0 0 0 1 −1

𝑾 𝒙, 𝒕 =

𝒌𝟏
𝒌𝟐𝒙𝟏

𝒌′𝟑(𝒙𝟏)(𝒙𝟏 − 𝟏)
𝒌𝟒𝒙𝟐
𝒌𝟓𝒙𝟑

Write the equation for 𝒅𝒙
𝒅𝒕

given the S and W defined above.

𝑑𝑥+
𝑑𝑡 = 𝑘+ − 𝑘,𝑥+ − 2𝑘.-𝑥+(𝑥+ − 1)

𝑑𝑥,
𝑑𝑡 = 𝑘.-𝑥+ 𝑥+ − 1 − 𝑘/𝑥,

𝑑𝑥-
𝑑𝑡 = 𝑘/𝑥, − 𝑘0𝑥-

𝑑𝒙
𝑑𝑡 =

𝑘+ − 𝑘,𝑥+ − 2𝑘.-𝑥+(𝑥+ − 1)
𝑘.-𝑥+ 𝑥+ − 1 − 𝑘/𝑥,

𝑘/𝑥, − 𝑘0𝑥-
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The “mean field” ODE description for the instantaneous rate of change of 
the average system is given by: 𝒅𝒙

𝒅𝒕
= 𝑺𝑾(𝒙, 𝒕)



Putting it all together

𝑆 =
1 −1 −2 0 0
0 0 1 −1 0
0 0 0 1 −1

𝑾′ 𝒙, 𝒕 =

𝒌𝟏
𝒌𝟐𝒙𝟏

𝒌′𝟑(𝒙𝟏)(𝒙𝟏 − 𝟏)
𝒌𝟒𝒙𝟐
𝒌𝟓𝒙𝟑

𝒅𝒙
𝒅𝒕

can be integrated numerically to solve for the 
ODE solution of the model.

scipy.integrate.odeint
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The ODE description for the instantaneous rate of change of the entire 
system is given by: 𝒅𝒙

𝒅𝒕
= 𝑺𝑾(𝒙, 𝒕)



Final Notes: Reaction Stoichiometry

For this reason, the same stoichiometry can correspond to many different 
propensity functions.
Stoichiometry should not be used to guess the propensity – nor vice-versa!

The stoichiometry only measures the net change (increase in products –
decrease in reactants), whereas propensities depend only on reactants.
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Final Notes: Reducing Model Size Using Separation of Timescales

Is the law of mass action required for the definition of propensity functions?

Michaelis-Menten Dynamics:

Law of Mass action is always correct for a completely modeled system, but 
model simplifications can lead to different propensities not given by law of 
mass action

+ →→

Michaelis-Menten Full Dynamics

Propensity is always given by
Law of Mass Action

→

Simplified Dynamics

Propensity appears
to be complex

𝑤′+ =
𝑘-𝑘+𝐸1𝑥+
𝑘+𝑥+ + 𝑘,

𝑟+: 𝑥+ + 𝑥, → 𝑥-
𝑟,: 𝑥- → 𝑥+ + 𝑥,

𝑤+ = 𝑘+𝑥+𝑥,
𝑤, = 𝑘, 𝑥- 𝑟+: 𝑥+ → 𝑥,
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𝑟-: 𝑥- → 𝑥+ + 𝑥/ 𝑤- = 𝑘- 𝑥-

Quasi-steady equilibrium: 
𝑘+𝑥+𝑥, = 𝑘,𝑥-

→

𝑟-: 𝑥/ → ∅ 𝑤- = 𝑘- 𝑥-

Enzyme is Conserved: 
x+ + 𝑥- = 𝐸1 𝑟,: 𝑥, → ∅ 𝑤- = 𝑘- 𝑥-

+



Example 1: Birth Decay Process

𝒓𝟏: ∅ → 𝒙𝟏
𝒓𝟐: 𝒙𝟏 → ∅
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𝒙𝟏: 𝑷𝒓𝒐𝒕𝒆𝒊𝒏



Example 1: Birth Decay Process

𝒔𝟏: [ 𝟏]
𝒔𝟐: [−𝟏]

𝒘𝟏: 𝒌𝟏
𝒘𝟐: 𝒌𝟐𝒙𝟏

𝑺 = [𝟏, −𝟏] 𝐖(𝐱, 𝐭) = 𝒌𝟏
𝒌𝟐𝒙𝟏
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𝒓𝟏: ∅ → 𝒙𝟏
𝒓𝟐: 𝒙𝟏 → ∅

𝒅𝒙
𝒅𝒕 = 𝒌𝟏- 𝒌𝟐𝒙𝟏

𝒙𝟏: 𝑷𝒓𝒐𝒕𝒆𝒊𝒏



Example 2:  Bursting Gene Expression

𝑟.: 𝑥. → 𝑥2
𝑟2: 𝑥2 → 𝑥.

𝑟I: 𝑥2 → 𝑥2 + 𝑥I
𝑟J: 𝑥I → ∅
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𝒙𝟏: 𝑮𝒆𝒏𝒆 𝑶𝑭𝑭
𝒙𝟐: 𝑮𝒆𝒏𝒆 𝑶𝑵
𝒙𝟑: 𝑷𝒓𝒐𝒕𝒆𝒊𝒏



Example 2:  Bursting Gene Expression

𝑠+: −1, 1,0
𝑠,: 1, −1, 0
𝑠-: [ 0, 0 , 1]
𝑠/: [ 0, 0, −1]

𝑤+: 𝑘+𝑥+ = 𝑘+(1 − 𝑥,)
𝑤,: 𝑘,𝑥,
𝑤-: 𝑘-𝑥,
𝑤/: 𝑘/𝑥-

𝑺 =
−𝟏 𝟏 𝟎 𝟎
𝟏 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 −𝟏

𝐖(𝐱, 𝐭) =

𝑘+𝑥+
𝑘,𝑥,
𝑘-𝑥,
𝑘/𝑥-
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𝒅𝒙
𝒅𝒕 =

−𝑘+𝑥+ + 𝑘,𝑥,
𝑘+𝑥+ − 𝑘,𝑥,
𝑘-𝑥, − 𝑘/𝑥-

𝑟.: 𝑥. → 𝑥2
𝑟2: 𝑥2 → 𝑥.

𝑟I: 𝑥2 → 𝑥2 + 𝑥I
𝑟J: 𝑥I → ∅

𝒙𝟏: 𝑮𝒆𝒏𝒆 𝑶𝑭𝑭
𝒙𝟐: 𝑮𝒆𝒏𝒆 𝑶𝑵
𝒙𝟑: 𝑷𝒓𝒐𝒕𝒆𝒊𝒏



Example 4:  Stochastic Oscillator
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𝒓𝟏: 𝒙𝟏 → 𝒙𝟐
𝒓𝟐: 𝒙𝟐 → 𝒙𝟏

𝒓𝟑: 𝒙𝟐 → 𝒙𝟐 + 𝒙𝟑
𝒓𝟒: 𝒙𝟑 → ∅

𝑤+: 𝑥+𝑥-
2!/(𝑘,

2!+𝑥-
2!)

𝑤,: 𝑘,𝑥,/(1 + 𝑥-
2!)
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−1
1
0
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−1
0

0
0
1
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2!/(𝑘,
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2!)
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𝑤+: 𝑘+ + 𝑘,/(1 + 𝑘-𝑥,
2")
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𝒅𝒙
𝒅𝒕 =

𝑘+ +
𝑘,

1 + 𝑘-𝑥,
2"
− 𝑘0𝑥+

𝑘3 +
𝑘4

1 + 𝑘5𝑥+
2#
− 𝑘+6𝑥,


