06/02/2022 – uqBio summer school

Scalable, high-speed imaging of molecular biology in action

Douglas Shepherd

Center for Biological Physics Department of Physics

Arizona State University

06/02/2022 – uqBio summer school

Scalable, high-speed imaging of molecular biology in action

Franky Djutanta - ASU Peter Brown - ASU Douglas Shepherd

Rizal Hiriadi - ASU

Center for Biological Physics Department of Physics

Arizona State University

Almost 200 years ago

THE

PHILOSOPHICAL MAGAZINE

AND

ANNALS OF PHILOSOPHY.

-

[NEW SERIES.]

SEPTEMBER 1828.

XXVII. A brief Account of Microscopical Observations made in the Months of June, July, and August, 1827, on the Particles contained in the Pollen of Plants; and on the general Existence of active Molecules in Organic and Inorganic Bodies. By ROBERT BROWN, F.R.S., Hon. M.R.S.E. & R.I. Acad., V.P.L.S., Corresponding Member of the Royal Institutes of France and of the Netherlands, &c. &c.

[We have been favoured by the Author with permission to insert the following paper, which has just been printed for private distribution.—ED.]

THE observations, of which it is my object to give a summary in the following pages, have all been made with a simple microscope, and indeed with one and the same lens, the focal length of which is about $\frac{1}{5a}$ nd of an inch^{*}.

The examination of the unimpregnated vegetable Ovulum, an account of which was published early in 1826[†], led me to attend more minutely than I had before done to the structure of the Pollen, and to inquire into its mode of action on the Pistillum in Phænogamous plants.

Brownian motion was first evidence that atoms existed

Hydrodynamic signature written in Brownian motion

Hydrodynamic signature written in Brownian motion

Diffusion coefficients indicate the degree of fluctuation

diffusing spheres along 3D axes

$$\langle |\mathbf{r}(t+\Delta t) - \mathbf{r}(t)|^2 \rangle = 6 D_o \Delta t$$

MSD Einstein, 1905 & 1907 diffusion interval coefficient time

arbitrarily-shaped objects along 1D axis

$$\langle |\xi(t+\Delta t) - \xi(t)|^2 \rangle = 2 D_{\xi}$$

MSD / MSAD

diffusion interval coefficient time

 Δt

 $\xi = r_{n_1}, r_{n_2}, r_{n_3}$ $\xi = \psi, \phi, \beta$

Given everything we have talked about, how long would it take a particle to randomly explore a cell?

time for protein diffusion across cell

time scale (τ) to traverse distance (R) given diffusion coefficient (D)

Physical Biology of the Cell, 2nd edition

The slope of MSD indicate the diffusion coefficients

Given everything we have talked about, how long would it take a particle to randomly explore a cell?

time for protein diffusion across cell

Physical Biology of the Cell, 2nd edition

Number of distinct sites visited by unbiased random walks

Shizuo Kakutani: "A drunk man will find his way home, but a drunk bird may get lost forever."

Number of distinct visited	1D	$N_{\rm vis} \approx \sqrt{8N/\pi}$
sites after <i>N</i> steps	2D	$N_{\rm vis} \approx \pi N / \ln(8N)$

3D

 $N_{\rm vis} \approx 0.66N$

A. Kosmrlj, Princeton University

What about in a crowded environment?

Physical Biology of the Cell, 2nd edition

Physical Biology of the Cell, 2nd edition

Single particle tracking of fluid flows

Vol. 37, No. 1

Transactions, American Geophysical Union

February 1956

The Rate of Dissipation of Energy and the Energy Spectrum in a Low-Speed Turbulent Jet

WAN-CHENG CHIU AND LOUIS N. RIB

FIG. 2 – The x - z plane at y = 18 cm showing the analyzed field of mean motion; the solid lines are the \overline{z} component, cm/sec

Microscopes have evolved, all based on the same underlying physics

<u>10.1119/1.10903</u> <u>10.7554/eLife.57681</u> BIONICS and qi2lab - unpublished

Contrast mechanism is just as critical

Contrast mechanism is just as critical

Reto Fiolka

Arizona State University

<u>10.7554/eLife.57681</u> 10.1101/2022.05.19.492671

Advancements in molecular labeling and optical microscopy enable quantitative tracking

Dynamic instability of microtubule growth

Tim Mitchison & Marc Kirschner

Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA

We report here that microtubules in vitro coexist in growing and shrinking populations which interconvert rather infrequently. This dynamic instability is a general property of microtubules and may be fundamental in explaining cellular microtubule organization.

^{10.1016/}j.cell.2018.09.057

Wave nature of light

Interference

Wave nature of light

Interference

Wave nature of light

Propagation of waves through optical system

Propagation of waves through optical system

Propagation of waves through optical system

Optical microscope as a measurement tool

 $dsin(\alpha_n) = n\lambda$

Optical microscope as a measurement tool

Optical microscope as a measurement tool

Optical microscopes are band limited

The *transfer function* offers a holistic quantification of optical microscope performance

The *transfer function* offers a holistic quantification of optical microscope performance

CC BY-SA 4.0 – Tom Vettenburg

Overall transfer function depends on all components

Overall transfer function depends on all components

<0.5 e- read-noise

Overall transfer function depends on all Poisson photon noise components No noise

>1 e- read-noise

Fluorescence microscopy has a fundamental tradeoff between contrast, resolution, and speed

10.1016/j.ceb.2020.04.008

Fluorescence has a limited photon budget

<u>10.7554/eLife.57681</u> 10.1016/j.ceb.2020.04.008

Moving from observation to quantification

Quantifying single particle trajectories: symmetric single particles

Quantifying single particle trajectories: large objects

Quantifying single particle trajectories: large objects

B&W masks
 Label images
 Thresholded images

MorphoLibJ morphological segmentation

classification project

StarDist built-in nuclei model and custom models

Cellpose built-in models and custom models

trackpy 0.5.0 Tutorial Site - Page -

track v7 mate v7

New TrackMate API: Interoperate with external segmentation components. Store, create and analyze object contours.

- Tracking cells
 Lineage tracing
- Changes in 2D shape over time
- Changes in intensity over time
- 2D to 3D segmentation

Trackpy: Fast, Flexible Particle-Tracking Toolkit

Quantifying single particle trajectories: large objects

Quantifying single particle trajectories: asymmetric single particles

<u>10.7554/eLife.57681</u> BIONICS and gi2lab - unpublished

Helix particles have multiple diffusion coefficients

$$(\mathbf{R})^{0} \xrightarrow{0}_{\mathbf{H}} \xrightarrow{0}_{\mathbf{H}}^{0} + (\mathbf{P})^{\mathbf{H}_{2}} \xrightarrow{\mathbf{P} \mathbf{H}^{2} \mathbf{H}} (\mathbf{R})^{\mathbf{H}_{2}} \xrightarrow{\mathbf{P} \mathbf{H}^{2} \mathbf{H}} (\mathbf{R})^{\mathbf{H}_{2}} \xrightarrow{\mathbf{P} \mathbf{H}^{2} \mathbf{H}} (\mathbf{R})^{\mathbf{H}_{2}} \xrightarrow{\mathbf{P} \mathbf{H}^{2} \mathbf{H}^{2} \mathbf{H}} (\mathbf{R})^{\mathbf{H}_{2}} \xrightarrow{\mathbf{P} \mathbf{H}^{2} \mathbf{H}^{2}$$

Thermo Fisher

<u>10.7554/eLife.57681</u> and gi2lab - unpublished

Need to track flagellum in 3D over time

Need to track flagellum in 3D over time without changing inertia of fluid

<u>10.7554/eLife.57681</u> BIONICS and qi2lab - unpublished

3D + time tracking

Segmentation of complex 3D shapes

Full 3D plus time tracking of complex single particles

tracking

segmentation

raw image

10.7554/eLife.57681 BIONICS and qi2lab - unpublished

Extracting diffusion coefficients from flagellum tracks

<u>10.7554/eLife.57681</u> BIONICS and qi2lab - unpublished

Extracting diffusion coefficients from flagellum tracks

Summary

Acknowledgements

Alexis Coullomb

Franky Djutanta

Peter Brown

Andrew York Calico

Alfred Millett-

Sikking

Calico

Bin Yang CZ Biohub

UTSW **Oblique plane microscopy**

Lei Zhou

Jessica Ullom

Steve Presse

Laëtitia Merle

CU Anschutz

Jessi Vleck

Diego Restrepo CU Anschutz

Purushothama Rao Tata Yoshihiko Kobayashi Duke University **Duke University**

National Heart, Lung, and Blood Institute NIH

BRAIN

Center for Biological Physics Arizona State University

University of Colorado Anschutz Medical Campus

UTSouthwestern Medical Center.

Duke University School of Medicine

Calico

Chan Zuckerberg Initiative %.

Iterative FISH

Jeffrey Moffit BCH & HMS

Brianna Watson BCH & HMS

