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Correlation between speed and turning angle
depends on sub-sampling frequency

Abstract Methodology

To simulate persistent random walks (PRWs) using vMF pro-
cess we choose turning angles (given in vector x) and movement
lengths r using probability distributions:

Mechanisms regulating cell movement are not fully understood. One fea-
ture of cell movement that determines how far cells displace from an initial
position is persistence, the ability to perform movements in a direction
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faster (or faster cells turn less). By simulating correlated or persistent
random walks (PRWs) using two different frameworks (one based on von
Mises-Fisher (vMF) distribution and another based on Ornstein-Uhlenbeck 180 180
(OU) process) we show that the negative correlation between speed and 28 a0 s e
turning naturally arises when cell trajectories are sub-sampled, i.e., when TR
the frequency of sampling is lower than the frequency at which cells make

movements. This effect is strongest when the sampling frequency is on

the order of magnitude with the typical cell persistence time and when

cells vary in persistence time. For both vMF- and OU-based simulations rots =30, =100 - rols=30, o
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correlations between speed and turning for two datasets ot T cell movement

, , , , , . , sampled every k™ movements (k is indicated on individual panels). In panels A-B we assume that
in vivo suggesting that such simple correlations are not fully informative speed and concentration parameter x; of the vMFE' distribution are uncorrelated, and in panels C-D,
on the intrinsic link between speed and persistence. Our results thus sug- speed is determined by k; via 7 = In(1 + ;). In panels A and C we assume that every cell have the
gest that Sub—sampling may contribute to <aﬂd perhaps fully GXplaiﬂS> the same persistence defined by x; = 20 and same speed defined by r = 3. In panels B and D we
observed correlation between speed and turning at least for some cell tra-

assume that every cell in the population has a different x; which was drawn from a lognormal
jectory data and emphasize the role of sampling frequency in inference ot distribution with p = 0.2 and ¢ = 0.5). In panel B, every cell has a random speed determined by 7
critical cellular parameters of cell motility such as speed.

in the Pareto distribution (r was drawn from a lognormal distribution with g = 2 and o = 0.2),
and in panel D speeds are directly determined by x; as 7 = In(1 + k). Average speed v and average
turning angle ¢ for all cells are indicated on the panels, and statistical significance of the correlation
between speed and turning angle per cell was determined using Spearman rank test (with the
correlation coefficient p and p-values are shown on individual panels).
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Figure 5. For cleaned data of T cells in zebrafish? we calculated the average turning angle

and speed for every trajectory and plotted binned data. Note that the bin with the largest
average speed had only one trajectory. We also performed simulations using vMF
distribution (eqn. (1)) in which every cell has a defined persistence ability and speed,
sub-sampled the resulting simulation data (every k = 5th step was used). To simplify
calculations we assumed that this sampling frequency is 1min, calculated the average turning
angle and average speed for every trajectory, and then binned these simulation data in the
identical way to that of actual experimental data. Confidence intervals denote 2.5 and 97.5
percentiles of the data. Also note that while experimental data were collected in 2D by
ignoring z-coordinates of the moving cells?, our simulations were done in 3D.

Correlation between speed and turning
easily arises in subsampled trajectories
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® Simulating cell movements with parameters chosen from in
vivo experiments approximately reproduces the correlation
between speed and persistence.
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Figure 4. We simulated movement of cells assuming a correlated random walk characterized by the
concentration parameter x; of the vMF distribution (see eqn. (1)) and an independent distribution
of cell speeds (characterized by the mean 7 of the Pareto distribution, see eqn. (2); panels A&B) or
when there is a direct correlation between k; and cell speed (panels C&D). We sampled the
movement data either every step (k = 1, A&C) or every 10 step (k = 10, B&D). In all
simulations, the parameter k;, which dictates the average turning angle of a cell (i.e., persistence),
is randomly drawn from a log-normal distribution with mean p = 1 and standard deviation o = 2.
The timestep indicates the regular intervals at which we simulated the cell positions, and MSD is
dimensionless. In one set of simulations (A-B), we randomly draw 7 from an independent

Figure 1. We simulated movement of 500 cells using a vMF distribution (eqn. (1)) assuming
i) Brownian walk (k; — 0, A-B), ii) persistence for forward movement being identical for all
cells (k; = 10, C-D), iii) heterogeneity in cells” persistence of movement (x; was sampled from
a lognormal distribution with y = 0.2 and o = 2, E-F), iv) independent heterogeneity in
cells’ persistence and speed movement (k; and 7 were sampled from a lognormal distribution
with u = 0 and o = 2 for k; and with g = 2 and o = 0.2 for 7), v) a direct relationship
between cells’ persistence ability defined by k; and cells’ intrinsic movement speed
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