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Motivation: How do we calculate time series distributions?

Gregor Neuert, 
Vanderbilt

Brian Munsky, 
Colorado State Univ.

Osmotic stress response of many cells shows distribution P(x;t) which 
changes over time!
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Motivation: SSAs can only sample from a true distribution

How do we get analytical solutions for P(x;t) for this birth decay process?

Plots of 500 SSAs trajectories show the formation of a distribution!

1. SSAs only sample the CME, they do not give its solution
2. SSA’s only give one possibility out of many

3. !
"

converges at rate #
$

(Standard Deviation of Mean = 10%& → 314 𝑦𝑒𝑎𝑟𝑠 assuming 1 second for each SSA) 

4. No analytical solutions through SSA analysis

t = 0.05
t = 0.5
t = 5
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The state space of a set of chemical reactions describes each possible state 
that a chemical system can take on and can be used to model the stochasticity 
of a system

One Unique Species

Increasing X



State Space

Two Unique Species

Increasing X
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The state space of a set of chemical reactions describes each possible state 
that a chemical system can take on and can be used to model the stochasticity 
of a system

Outline
• State Space 
• Markov Models
• Creating the 

Infinitesimal 
Generator

• Properties of the 
Inf. Generator

• Error
• Math Properties 

of the Matrix 
Exponential

• Tips
• Example



Markov Models

The state of the system is defined by its integer population vector

Reactions are transitions from one state to another:

[10, 15]

# species 1, # species 2

[11, 15]

[11, 14] [12, 14]

Each block is a different state.  [10,15] is one state and [11,15] is another 
state that is reached by a single reaction with stoichiometry [1,0]. 
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Markov Models

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

The state of the system is defined by its integer population vector

Reactions are transitions from one state to another:

These reactions are random, and others could have occurred
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Markov Models and Master Equation Models

Frequentist Approach Master Equation Approach

Breakdown a system into all of its possible 
states and describe the flow of probability 

between them

Use many stochastic simulations and count 
the number of cells in each state

Frequentist approach requires a large amount of SSA data
Reaction propensity tells us about how SSA’s transition from one state to the next 
Reaction propensity tells us about the rate that probability moves to other states
Reaction stoichiometry tells us how states connect
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Creating the Master Equation

Examine the flow of probability in 
a small area apply to state space

Over large time steps:
Probability flows from any state to any other state
Over dt time steps:
Probability only flows to nearby states using one chemical rxn

Flow out Flow in

Flow out Flow in
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: A linear ordinary differential equation



Stoichiometry

Creating the Master Equation

Stoichiometry defines how the FSP is connected

𝑠! = 1, 0 "

𝑠# = −1,0 "

𝑠$ = 0, 1 "

𝑠% = 0,−1 "

Stoichiometry

𝑠! = 1, 0 "

𝑠# = −1,0 "

𝑠$ = −2, 1 "

𝑠% = 0,−1 "
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Stoichiometry

Creating the Master Equation

Stoichiometry defines how the FSP is connected

𝑠! = 1, 0 "

𝑠# = −1,0 "

𝑠$ = 0, 1 "

𝑠% = 0,−1 "

Write the stoichiometry vector for the reaction below.

Stoichiometry

𝑠! = 1, 0 "

𝑠# = −1,0 "

𝑠$ = −2, 1 "

𝑠% = 0,−1 "
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Stoichiometry

Creating the Master Equation

Stoichiometry defines how the FSP is connected

𝑠! = 1, 0 "

𝑠# = −1,0 "

𝑠$ = 0, 1 "

𝑠% = 0,−1 "

Write the stoichiometry vector for the reaction below.

Stoichiometry

𝑠! = 1, 0 "

𝑠# = −1,0 "

𝑠$ = −2, 1 "

𝑠% = 0,−1 "

-1
+1 𝑠! = [−1,1]
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Creating the Infinitesimal Generator

The rate of probability leaving due to reaction 𝒓𝝁 is equal to 𝒘𝝁 analyzed at that state
The rate of probability gained due to reaction 𝒓𝝁 is equal to 𝒘𝝁 analyzed at nearby connected states

𝒔𝟏 = 1, 0 "

𝒔𝟐 = −1,0 "

𝒔𝟑 = 0, 1 "

𝒔𝟒 = 0,−1 "

𝒘𝟏 = 𝑘&
𝒘𝟐 = 𝑘'𝑥&
𝒘𝟑 = 𝑘(
𝒘𝟒 = 𝑘)𝑥'

Stoichiometry Propensity

Write the ODE that defines the flow of probability at 𝒙 = 𝟓, 𝟏 𝑻. 

𝒅𝑷𝒙
𝒅𝒕

= (−𝒘𝟏 𝒙 − 𝒘𝟐 𝒙 −𝒘𝟑 𝒙 −𝒘𝟒 𝒙 )𝑷𝒙 +𝒘𝟏 𝒙 − 𝒔𝟏 𝑷𝒙&𝒔𝟏 +𝒘𝟐 𝒙 − 𝒔𝟐 𝑷𝒙&𝒔𝟐 +𝒘𝟑 𝒙 − 𝒔𝟑 𝑷𝒙&𝒔𝟑 +𝒘𝟒 𝒙 − 𝒔𝟒 𝑷𝒙&𝒔𝟒

𝒅𝑷𝟓,𝟏
𝒅𝒕

= − 𝒌𝟏 + 𝟓𝒌𝟐 + 𝒌𝟑 + 𝟏𝒌𝟒 𝑷𝟓,𝟏 + 𝒌𝟏𝑷𝟒,𝟏 + 𝟔𝒌𝟐𝑷𝟔,𝟏 + 𝒌𝟑𝑷𝟓,𝟎 + 𝟐𝒌𝟒𝑷𝟓,𝟐

𝑃$

𝑃$%&!

𝑃$%&"

𝑃$%&# 𝑃$%&$
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Creating the Infinitesimal Generator

One State

All States

For X=[0,0]:   
'(%,%
')

= 𝑎*,*,*,*𝑃*,* + …+ 𝑎*,*,,,-𝑃,,- + …

For X=[i,j]:   
'(',(
')

= 𝑎.,/,*,*𝑃*,* + …+ 𝑎.,/,,,-𝑃,,- + …

From the Master Equation:

Each state in state space gets its own linear equation to describe the flow of 
probability to and from that state
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Creating the Infinitesimal Generator

One State

All States

From the Master Equation:

Each state in state space gets its own linear equation to describe the flow of 
probability to and from that state

For X=[0]:   
'(%
')
= 𝑎*,*𝑃* + …+ 𝑎*,0𝑃0 + …

For X=[I]:   
'()
')
= 𝑎1,*𝑃* + …+ 𝑎1,0𝑃0 + …

• The matrix A in the Linear ODE is known as the Infinitesimal Generator.
• This equation is the Chemical Master Equation in matrix form
• Changing Indexes from (𝑖, 𝑗) → (𝐼) is equivalent to vectorising the matrix

𝒅𝑷
𝒅𝒕 = 𝑨𝑷
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Properties of the Infinitesimal generator

𝒅𝑷𝒊
𝒅𝒕

=%
𝒋

𝑨𝒊𝒋𝑷𝒋
4. A is very sparse

2. 𝑨𝒋𝒋 = total rate of probability 𝐟𝐥𝐨𝐰𝐢𝐧𝐠 𝐨𝐮𝐭 𝐨𝐟 𝐬𝐭𝐚𝐭𝐞 𝐣

𝟏. 𝑨𝒊𝒋 = rate of Klow of probability 𝐠𝐚𝐢𝐧𝐞𝐝 𝐛𝐲 𝐬𝐭𝐚𝐭𝐞 𝐢 𝐟𝐫𝐨𝐦 𝐬𝐭𝐚𝐭𝐞 𝐣

𝑑𝑃
𝑑𝑡

= 𝐴𝑃 = 0 𝑣 = 𝑛𝑢𝑙𝑙(𝐴)

The steady state solution is:

3. ∑𝒊.𝒋𝑨𝒊𝒋 = −𝑨𝒋𝒋 and ∑𝒊𝑨𝒊𝒋=0

𝑣78, 𝜆8 = 𝑒𝑖𝑔 𝐴

Eigenvalue properties

P99 =
𝑣

𝑠𝑢𝑚(𝑣)

All eigenvalues of A are zero or have negative real parts (i.e., they are stable)
Least negative 𝑟𝑒𝑎𝑙(𝜆&) determines timescale of the system relaxation to steady state

We know that 0 is an eigenvalue of A.
Its eigenvector is given by v_i0( this is a non-negative vector)
Normalization of the eigenvector gives the stationary distribution

The CME conserves probability and its solution is non-negative

𝑃99 =
𝑣7:
∑𝑣7:
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Approximating the Infinite State Space of the CME

Infinite dimensional Finite dimensional + 
error

Error state(s)

Truncate the infinite system into a finite system + an error state or a finite 
system + reflecting boundary

Error describes the flow leaving the state space due to truncation

Can’t solve (or even write) the infinite dimensional problem.

Finite dimensional +
Reflecting Boundary

Outline
• State Space 
• Markov Models
• Creating the 

Infinitesimal 
Generator

• Properties of the 
Inf. Generator

• Error
• Math Properties 

of the Matrix 
Exponential

• Tips
• Example



The Finite State Projection

Infinite dimensional

Solution: Truncate the infinite system into a finite system + an error state

Error describes the flow leaving the state space due to truncation

Can’t solve (or even write) the infinite dimensional problem.

Finite dimensional + error

Error state(s)

𝑑
𝑑𝑡

𝑷
𝑬 = 𝑨 𝐵

𝑪 𝐷
𝑷
𝑬 = 𝑨 0

𝑪 0
𝑷
𝑬
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Munsky, Brian, and Mustafa Khammash. "The finite state projection 
algorithm for the solution of the chemical master equation." The 
Journal of chemical physics 124.4 (2006): 044104.



Error - State Space

Too Big Too small Just right

Use the magnitude of the error to determine how big your states should be
Goldilocks zone for the size of states balances solving time and error

System solves slowest
Smallest error

System solves quickest
Largest error

System solves modest
Modest error

The amount of flow into the error states determines the magnitude of the errorOutline
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Math Properties – Matrix Exponential 

𝑬𝑿𝑷𝑴 𝑨𝒕 = 𝑰 +
𝑨𝒕
𝟏!
+

𝑨𝒕 𝟐

𝟐!
+

𝑨𝒕 𝟑

𝟑!
+ ⋯

Definition of Matrix Exponential

𝒅𝑷
𝒅𝒕

= 𝑨𝑷 𝑷 𝒙, 𝒕 = 𝑬𝑿𝑷𝑴 𝑨𝒕 𝑷𝟎

System of Equations Solution to System of Equations

𝒆𝒙𝒑 𝒂𝒕 = 𝟏 +
𝒂𝒕
𝟏!
+

𝒂𝒕 𝟐

𝟐!
+

𝒂𝒕 𝟑

𝟑!
+ ⋯

Definition of Exponential

The Matrix Exponential is the matrix analog to the exponential function
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Tips: Creating the Infinitesimal Generator

Group each reaction to make the creation easier

𝑠& = 1, 0 "

𝑠' = −1,0 "

𝑠( = 0, 1 "

𝑠) = 0,−1 "

𝑤& = 𝑘&
𝑤' = 𝑘'𝑥&
𝑤( = 𝑘(
𝑤) = 𝑘)𝑥'

Stoichiometry Propensity

The infinitesimal generator is given by :  𝑨 = 𝑨𝟏 + 𝑨𝟐 + 𝑨𝟑 + 𝑨𝟒
In this example it can be written by :  𝑨 = 𝒌𝟏𝑨′𝟏 + 𝒌𝟐𝑨′𝟐 + 𝒌𝟑𝑨′𝟑 + 𝒌𝟒𝑨′𝟒
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Example 1: Birth Decay Process

𝒘𝟏: 𝒌𝟏
𝒘𝟐: 𝒌𝟐𝒙𝟏

𝒓𝟏: ∅ → 𝒙𝟏
𝒓𝟐: 𝒙𝟏 → ∅

𝒔𝟏: [ 𝟏]
𝒔𝟐: [−𝟏]

𝒘𝟏: 𝒌𝟏
𝒘𝟐: 𝒌𝟐𝒙𝟏

𝑺 = [𝟏, −𝟏] 𝐖(𝐱, 𝐭) = 𝒌𝟏
𝒌𝟐𝒙𝟏

Outline
• State Space 
• Markov Models
• Creating the 

Infinitesimal 
Generator

• Properties of the 
Inf. Generator

• Error
• Math Properties 

of the Matrix 
Exponential

• Tips
• Example



Example 1: Birth Decay Process

𝒓𝟏 : ∅ → 𝒙𝟏
𝒓𝟐 : 𝒙𝟏 → ∅

𝒔𝟏 : [ 𝟏]
𝒔𝟐 : [−𝟏]

𝒘𝟏 : 𝒌𝟏
𝒘𝟐 : 𝒌𝟐𝒙𝟏

𝑺 = [𝟏, −𝟏] 𝐖(𝐱, 𝐭) = 𝒌𝟏
𝒌𝟐𝒙𝟏

(optional) Break down the system into birth only, and decay only to make the 
creating of the A matrix easier
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Write the Infinitesimal Generator for the Birth Only system above

Example 1: Birth Decay Process

𝒓𝟏 : ∅ → 𝒙𝟏
𝒓𝟐 : 𝒙𝟏 → ∅

𝒔𝟏 : [ 𝟏]
𝒔𝟐 : [−𝟏]

𝒘𝟏 : 𝒌𝟏
𝒘𝟐 : 𝒌𝟐𝒙𝟏

𝑺 = [𝟏, −𝟏] 𝐖(𝐱, 𝐭) = 𝒌𝟏
𝒌𝟐𝒙𝟏

Birth Only

𝒓𝟏: ∅ → 𝒙𝟏
𝒔𝟏: [𝟏]
𝒘𝟏: 𝒌𝟏
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Write the Infinitesimal Generator for the Birth Only system above

Example 1: Birth Decay Process

𝒓𝟏 : ∅ → 𝒙𝟏
𝒓𝟐 : 𝒙𝟏 → ∅

𝒔𝟏 : [ 𝟏]
𝒔𝟐 : [−𝟏]

𝒘𝟏 : 𝒌𝟏
𝒘𝟐 : 𝒌𝟐𝒙𝟏

𝑺 = [𝟏, −𝟏] 𝐖(𝐱, 𝐭) = 𝒌𝟏
𝒌𝟐𝒙𝟏

Birth Only

𝐴<
𝐸<

=

−𝑘< 0 0 0 0 0
𝑘< −𝑘< 0 0 0 0
0 𝑘< −𝑘< 0 0 0
0 0 𝑘< −𝑘< 0 0
0 0 0 𝑘< −𝑘< 0
0 0 0 0 𝑘< 0

𝒓𝟏: ∅ → 𝒙𝟏
𝒔𝟏: [𝟏]
𝒘𝟏: 𝒌𝟏
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Write the Infinitesimal Generator for the Decay Only system above

Example 1: Birth Decay Process

𝒓𝟏 : ∅ → 𝒙𝟏
𝒓𝟐 : 𝒙𝟏 → ∅

𝒔𝟏 : [ 𝟏]
𝒔𝟐 : [−𝟏]

𝒘𝟏 : 𝒌𝟏
𝒘𝟐 : 𝒌𝟐𝒙𝟏

𝑺 = [𝟏, −𝟏] 𝐖(𝐱, 𝐭) = 𝒌𝟏
𝒌𝟐𝒙𝟏

Decay Only

𝒓𝟐: 𝒙𝟏 → ∅
𝒔𝟐: [−𝟏]
𝒘𝟐: 𝒌𝟐𝒙𝟏
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Write the Infinitesimal Generator for the Decay Only system above

Example 1: Birth Decay Process

𝒓𝟏 : ∅ → 𝒙𝟏
𝒓𝟐 : 𝒙𝟏 → ∅

𝒔𝟏 : [ 𝟏]
𝒔𝟐 : [−𝟏]

𝒘𝟏 : 𝒌𝟏
𝒘𝟐 : 𝒌𝟐𝒙𝟏

𝑺 = [𝟏, −𝟏] 𝐖(𝐱, 𝐭) = 𝒌𝟏
𝒌𝟐𝒙𝟏

𝐴<
𝐸<

=

0 𝑘= 1 0 0 0 0
0 −𝑘= 1 𝑘= 2 0 0 0
0 0 −𝑘= 2 𝑘= 3 0 0
0 0 0 −𝑘= 3 𝑘= 4 0
0 0 0 0 −𝑘= 4 0
0 0 0 0 0 0

Decay Only

𝒓𝟐: 𝒙𝟏 → ∅
𝒔𝟐: [−𝟏]
𝒘𝟐: 𝒌𝟐𝒙𝟏

Outline
• State Space 
• Markov Models
• Creating the 

Infinitesimal 
Generator

• Properties of the 
Inf. Generator

• Error
• Math Properties 

of the Matrix 
Exponential

• Tips
• Example



Write the Infinitesimal Generator for the Birth and Decay Only system above

Example 1: Birth Decay Process

𝒓𝟏 : ∅ → 𝒙𝟏
𝒓𝟐 : 𝒙𝟏 → ∅

𝒔𝟏 : [ 𝟏]
𝒔𝟐 : [−𝟏]

𝒘𝟏 : 𝒌𝟏
𝒘𝟐 : 𝒌𝟐𝒙𝟏

𝑺 = [𝟏, −𝟏] 𝐖(𝐱, 𝐭) = 𝒌𝟏
𝒌𝟐𝒙𝟏

Birth and Decay

𝑨 = 𝑨𝟏 + 𝑨𝟐

𝐴
𝐸 =

−𝑘! 𝑘# 1 0 0 0 0
𝑘! −𝑘# 1 − 𝑘! 𝑘# 2 0 0 0
0 𝑘! −𝑘# 2 − 𝑘! 𝑘# 3 0 0
0 0 𝑘! −𝑘# 3 − 𝑘! 𝑘# 4 0
0 0 0 𝑘! −𝑘# 4 − 𝑘! 0
0 0 0 0 𝑘! 0
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Write the Reflecting Boundary Condition for the Birth and Decay Only system above

Example 1: Birth Decay Process

𝒓𝟏 : ∅ → 𝒙𝟏
𝒓𝟐 : 𝒙𝟏 → ∅

𝒔𝟏 : [ 𝟏]
𝒔𝟐 : [−𝟏]

𝒘𝟏 : 𝒌𝟏
𝒘𝟐 : 𝒌𝟐𝒙𝟏

𝑺 = [𝟏, −𝟏] 𝐖(𝐱, 𝐭) = 𝒌𝟏
𝒌𝟐𝒙𝟏

Birth and Decay

𝐴
0 =

−𝑘! 𝑘# 1 0 0 0 0
𝑘! −𝑘# 1 − 𝑘! 𝑘# 2 0 0 0
0 𝑘! −𝑘# 2 − 𝑘! 𝑘# 3 0 0
0 0 𝑘! −𝑘# 3 − 𝑘! 𝑘# 4 0
0 0 0 𝑘! −𝑘# 4 − 𝑘! + 𝑘! 0
0 0 0 0 0 0
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