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A B S T R A C T   

Even genetically identical cells have heterogeneous properties because of stochasticity in gene or protein 
expression. Single cell techniques that assay heterogeneous properties would be valuable for basic science and 
diseases like cancer, where accurate estimates of tumor properties is critical for accurate diagnosis and grading. 
Cell morphology is an emergent outcome of many cellular processes, potentially carrying information about cell 
properties at the single cell level. Here we study whether morphological parameters are sufficient for classifi
cation of single cells, using a set of 15 cell lines, representing three processes: (i) the transformation of normal 
cells using specific genetic mutations; (ii) metastasis in breast cancer and (iii) metastasis in osteosarcomas. 
Cellular morphology is defined as quantitative measures of the shape of the cell and the structure of the actin. We 
use a toolbox that calculates quantitative morphological parameters of cell images and apply it to hundreds of 
images of cells belonging to different cell lines. Using a combination of dimensional reduction and machine 
learning, we test whether these different processes have specific morphological signatures and whether single 
cells can be classified based on morphology alone. Using morphological parameters we could accurately classify 
cells as belonging to the correct class with high accuracy. Morphological signatures could distinguish between 
cells that were different only because of a different mutation on a parental line. Furthermore, both oncogenesis 
and metastasis appear to be characterized by stereotypical morphology changes. Thus, cellular morphology is a 
signature of cell phenotype, or state, at the single cell level.   

1. Introduction 

Although methods of cancer diagnostics and treatment have 
improved over the past few decades, it is the second leading cause of 
death globally [1,2]. Around 90% of the deaths from cancer are due to 
metastasis [3], and the 5-year cancer survival rate is higher for patients 
who have been diagnosed in early stages of their cancer disease [4], but 
early diagnosis is also required to be accurate, otherwise it can increase 
patient morbidity [5]. Overdiagnosis is one of the pitfalls of early 
detection, and has been estimated to range between 10% and 22% in 
three follow-up studies of randomized controlled trials [6]. There is a 
great need therefore for accurate prediction of the properties of the 
tumor, which can help optimize therapy. The morphology of cells from 
samples extracted via fine-needle biopsy is already examined by expe
rienced cytologists for tumor grading, but tumor grading is character
ized by low reproducibility and low accuracy [7–10]. Other assays such 

as gene expression-based methods have had limited success, mostly for 
breast cancers [11]. One major reason for the lack of methods to predict 
metastasis is the heterogeneity of the tumor, which may be composed of 
cells that may differ drastically in their properties, without displaying 
major mutational differences. These include cancer cells that have ac
quired varying degrees of stemness, including cancer stem cells (CSCs) 
as well as well-differentiated cells that still resemble the tissue of origin 
(12). An important example is the Epithelial-to-Mesenchymal Transition 
(EMT), believed to underlie cancer metastasis in many cancers, which 
can be induced in cells without new gene mutations [13]. Drug-resistant 
cancer cells have also been shown to be a stochastically generated 
sub-population that have transitioned to a drug-resistant state [14]. 
Thus, high-throughput methods that could classify single cells according 
to their state or phenotype would be a significant advance in our ability 
to predict tumor metastasis, and possibly other signatures of disease. 

This paper is based on the hypothesis, recently reviewed in Ref. [15, 
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16], that quantitative measures of cell shape and actin organization 
(which we call cell morphometrics) can distinguish between cells in 
different states, and may be capable of recognizing cancer cells that have 
acquired metastatic characteristics, de-differentiated into CSCs and 
other subpopulations in a tumor. Cell morphometrics as defined here 
include the shape of the cell and nucleus, and the structure and orga
nization of the actin cytoskeleton. The hypothesis above is based on a 
body of previous work, beginning from early experimental studies that 
observed phenotypic changes in cells, such as differentiation along a 
particular lineage, arising from imposed shape alterations [17–22]. 
Studies in Drosophila [23] and mammalian cells [4,24,25] have 
confirmed that cell shape can provide state information, and may be 
sensitive to perturbations of specific proteins [24,26–28]. Shape char
acteristics of breast cancer cell lines have been linked with NFkB 
signaling [27], changes in the YAP/TAZ nuclear to cytoplasmic ratio 
(24) and even chemoresistance in colon cancer [29,30]. In pancreatic 
cancer a significant reduction in shape heterogeneity was observed to be 
a marker for metastasis [31]. In previous work we have shown that some 
measures of two-dimensional spread cell outline, as well its represen
tation using Zernike moments, can be used to distinguish between os
teosarcoma cell lines with differing metastatic potential [32,33]. We 
also found that shape changes between less and more metastatic oste
osarcoma cell lines fell into two broad groups, Type 1 and Type 2. Type 1 
shape changes appear to be similar to stereotypical Epithelial to 
Mesenchymal Transition (EMT) shape changes, where the cells become 
more elongated and spindly, while Type 2 changes made cells larger, 
more rounded and more amoeboid, resembling some invasive mela
noma [34] and breast cancer cells (i.e. BT549) [35]. However, shape 
parameters were overlapping and the ability to classify single cells based 
on shape alone was poor. In order to improve shape classification at the 
single cell level, we developed a number of new shape parameters 
including an efficient Fourier series representation of shape and a 
number of quantities that measure various aspects of the texture of the 
actin cytoskeleton, incorporated in the TISMorph toolbox [36]. 

In this paper we apply the shape parameters in this toolbox to 15 cell 
lines, organized in 3 sets, to address a number of questions pertaining to 
morphological changes in cancer and metastasis. The three sets of cell 
lines represent metastatic transformation in human and murine osteo
sarcoma, in human breast cancer and the oncogenesis process driven by 
mutations in major human oncogenes respectively. With the help of 
statistical analysis and machine learning applied to the quantitative 
morphological parameters of these cells, we ask whether (i) shape 
changes in highly metastatic breast cancer as compared with less met
astatic cancer are similar to shape changes seen in invasive osteosar
comas; (ii) cells undergoing oncogenic transformation can be 
distinguished from the parental line, and from each other, through 
morphology alone; (iii) shape changes between “normal” cells and 
cancer cells are similar across cancer types, and (iv) can the specially 
crafted shape parameters that we developed contribute to improved 
classification at the single cell level for distinguishing between all of 
these classes of cell types. 

We find that crafted morphology metrics appear to be a sensitive 
readout of cell state, even at the single cell level, and cell types can be 
distinguished at the single cell level with high accuracy. This is even true 
when a parental cell line is transformed by specific oncogenes; the 
morphological metrics can still distinguish the transformed cells from 
each other. Furthermore, there seem to be many similar changes in 
morphology that accompany the process of oncogenic transformation, 
with the breast cancer cells studied also displaying type 1 morphology 
changes. 

The three sets of cell lines are as follows. One set of eight are oste
osarcomas, composed of 4 subsets of paired lines, two murine and two 
human, each with a low metastatic parental line and a derived high 
metastatic daughter line [32,33]. Three of the 7 remaining cell lines are 
MCF10A, MCF7 and MDA-MB-231, which constitute a very common 
studied set for breast cancer. MCF10A is a non-tumorigenic human 

mammary gland epithelial cell line, which has been widely used as a 
model for normal breast cells [37]. MCF7 is the most widely studied 
breast cancer line, which has been shown to have relatively low meta
static potential [38]. MDA-MB-231 is a triple negative breast cancer cell 
line which is derived from a metastatic site and is highly invasive and is 
used as a model for metastasis [39, 40]. The final four cell lines are the 
Retinal pigment epithelium cells, ARPE-19, and three derived lines, in 
which the parental cell line is engineered into three cancer cell lines by a 
stepwise process culminating in transfection with either Rasv12 or 
AKTmyr, or MekDD oncogenes. Representative images of the osteosar
coma cell lines can be found in Ref. [33], and the others are shown in Fig 
A.1 and Fig A.2. 

2. Methods 

2.1. Cell lines and culture 

The 15 cell lines used in this study are listed in Table 1. MCF10A, a 
human normal breast epithelial cell line, was obtained from the Amer
ican Type Culture Collection (ATCC, Manassas, VA). MCF7 and MDA- 
MB-231 cells were gifts from Dr. Brian McNaughton at Colorado State 
University (CSU). The osteosarcoma lines, DUNN, DLM8, K12, and 
K7M2 cell lines were gifts from Dr. D. Thamm (CSU). MG63 and MG63.2 
cell lines were gifted from Dr. D. Duval (CSU). SAOS2 and SAOS-LM7 
cell lines were donated from Dr. E. S. Kleinerman (MD Anderson Can
cer Center). The Retinal Pigment Epithelium (ARPE) laboratory- 
transformed cell lines were developed in Jennifer DeLuca’s laboratory 
at CSU and were gifted to our lab along with the normal APRE19 cell 
line. 

Retinal cell lines were cultured in Dulbecco’s Modified Eagle Me
dium/Nutrient Mixture F-12 (DMEM/F12) (Hyclone) supplemented 
with 10% EquaFETAL Fetal Bovine Serum (Atlas Biologicals) and 1% 
antibiotics (Hyclone). As recommended by ATCC, MCF10A breast can
cer cells were cultured in MEGM kit (Lonza/Clonetics Corporation) 
without the GA-1000 (gentamycin-amphotericin B mix) component and 
with 100 ng/ml cholera toxin. All other cell lines were cultured in 
Dulbecco’s Modified Eagle Medium (DMEM) (Sigma) supplemented 
with 10% EquaFETAL Fetal Bovine Serum (Atlas Biologicals), 100 Units/ 
ml penicillin and 100 μg/ml streptomycin (Fisher Scientific-Hyclone). 
MCF7 and MDA_MB_231 cells were supplemented with 20 mM Hepes 
(Sigma). 

All cell lines were maintained under standard culture conditions at 
37 ◦C and 5% carbon dioxide concentration. They were seeded either on 
glass detergent washed and air dried (GDA) substrate using the protocol 
described previously [33] or on GDA substrates coated with Fibronectin 
(FN) with density of 2 μg/cm2. Breast cells were seeded on FN substrate 
(they did not attach to GDA substrate) in duplicates. Retinal cells were 
seeded on GDA substrates, in triplicates, and FN substrates, in dupli
cates. Osteosarcoma cell lines were cultured on GDA substrates. All cells 
were seeded with 7.5 E4 cells/ml density in 6 well plates on substrate of 
choice. Retinal and breast cells were fixed after 22 h and Osteosarcoma 
cells were fixed after 48 h. After fixing, cells were fluorescently labelled 
with DAPI (Bio legend) for nuclei and with Acti-stain 488 phalloidin 
(Cytoskeleton, Inc.) for actin, and then imaged using fluorescent mi
croscope. (Fig. 1A–C). 

2.2. Image processing 

Images are processed using the steps demonstrated in Fig. 1D–E. The 
segmentation of actin and nuclei is done in CellProfiler software [41] 
(Fig. 1D). Then using script developed in house using Matlab and 
ImageJ, cells are visually inspected and corrected as follows. When two 
cells are identified as one object by CellProfiler, a line separating these 
two cells are drawn manually and one identified object is split into two 
separate objects. In addition when one cell is identified as two objects by 
the CellProfiler software these two objects are merged manually by 
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clicking on them and using merge option. These steps are explained in 
detail in our previous publication [36], and the morphology is quanti
fied as briefly described below. Codes are available online (details in 
Ref. [36]). 

2.3. Morphology quantification 

We collected between 100 and 300 individual cell images, per cell 
line, which were used to calculate the cellular morphometrics. These 
morphological quantifiers can be classified into three broad categories, 
spreading, waviness and textural measures. Each of these categories are 
features that are extracted from different representation of cell (Fig. 1F). 
Spreading measures are those calculated from a two-dimensional binary 
representation (Fig. 1F-Spreading) of the spread cell and include geo
metric characteristics of the cell and the nucleus, such as area, aspect 
ratio, solidity and circularity. They also include a two-dimensional 
representation using Zernike moments, which are an expansion in Zer
nike polynomials. Waviness measures are calculated from the 

coordinates of the cell boundary (Fig. 1F-Irregularity) and include a 
Fourier series expansion of the coordinates as well as measures of 
roughness of the boundary. Textural measures use the gray scale image 
of labelled actin (Fig. 1F-Texture), and they measure various charac
teristics of actin structure of the cell, such as its extent of linear or cir
cular organization, its planar fractal dimension etc. A list of all the 
measures (over 256 in total), with formulae and descriptions, can be 
found in Ref. [36]. These 256 shape parameters can be classified into 9 
shape categories: (i) Cell geometric (ii) Nuclei geometric (iii) Hull geo
metric (iv) Grayscale texture (v) Band based (vi) Gray scale fractal 
dimension (FD) (vii) Zernike Moments (viii) Waviness (Fourier) pa
rameters and (ix) Roughness. Details of these shape measures can be 
found in Refs. [36]. In this paper we club together categories (i), (ii) and 
(iii) as “Geometric” measures, and (i)-(vi) and (ix) as “crafted” measures, 
since they are not complete mathematical descriptions of morphology 
but have been human-crafted to measure some aspect of it. Zernike and 
Fourier descriptors are also described as basis function-based measures. 

Table 1 
Names of the cell lines and their acronyms used in the text.  

Cell Types Species Cell lines Acronyms Substrates (Replicates) Substrates (Replicates) 

Breast Cells Human MCF10A BC_Na FNb (2)  
Human MCF7 BC_LMc FN (2)  
Human MDA-MB-231 BC_HMd FN (2)  

Osteosarcoma Cancer cellls Ds Mouse DUNN OS_DL GDAe(3)  
DLM8 OS_DH GDA (3)  

Ks Mouse K12 OS_KL GDA (3)  
K7M2 OS_KH GDA (3)  

Ms Human MG63 OS_ML GDA (3)  
MG63.2 OS_MH GDA (3)  

Ss Human SAOS2 OS_SL GDA (3)  
SAOS-LM7 OS_SH GDA (3)  

Retina Cells  APRE19 RC_N FN (2) GDA(3)  
AKTmyr RC_AKT FN (2) GDA (3)  
MEKDD RC_MEK FN (2) GDA (2)  
Rasv12 RC_RAS FN (2) GDA (3)  

a N: Normal cells. 
b FN: Fibronectin coated glass. 
c LM: Low Metastatic line. 
d HM: High Metastatic line. 
e GDA: Glass Detergent washed Air dried. 

Fig. 1. Data collection procedure. A) Cells are cultured on glass substrate with and without fibronectin coating. B) Cells are stained for actin and nuclei. C) Then 
they are imaged using fluorescent microscopy. D) Cells are segmented using CellProfiler software (scale bar 100 μm). E) An operator visually inspects the seg
mentation and wrong segmentations are corrected. E) Cells are isolated and morphological features are extracted from three different representations of texture, 
spreading and irregularity. 
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2.4. PCA analysis 

Since we deal with high dimensional data due to large number of 
parameters used to quantify cell shape, Principal Component Analysis 
(PCA) was used to reduce the dimension and have better visualization of 
shape of different cell lines/types. In our data sets the first 4 principal 
components captured 99% of the total variation in the data, hence we 
restricted ourselves to the first 4 principal components for each shape 
category. Since each shape category captures information about a 
different aspect of cell shape and structure, we performed PCA on each 
of the 9 shape categories separately. In order to visualize if different cell 
classes cluster separately we picked the principal component (among the 
first 4) which leads to better separation for all of the classes under 
comparison, i.e. the PC whose worst case (based on the p-value of a t- 
test) was better than that of any other PC, so that it was the best single 
measure for distinguishing between all the comparisons for that shape 
category. We call this PC the “Primary Principal Component” or PPC. For 
visualization purposes we plotted the data shown in the figures as a 
scatter plot where each point in every class is an average of 10 random 
samples from that class in principal component space. 

2.5. Machine learning methods for classification 

In order to distinguish between cell classes, we used two commonly 
employed machine learning methods, Artificial Neural Networks (ANN) 
and Support Vector Machines (SVM). Machine learning analysis was 
carried out using the Neural Network Toolbox and the Statistics and 
Machine Learning Toolbox of the software suite, Matlab®. The ANNs 
used were a standard two-layer feedforward neural network with one 
hidden layer, usually consisting of 20 nodes, and two output nodes for 
binary classification. The network used a sigmoid transfer function in 
the hidden layer, and a softmax transfer function in the output layer. The 
training method used was the scaled conjugate gradient method with 
default parameters (minimum performance gradient 1 × 10− 6; weight 
for second derivative approximation 5 × 10− 5; lambda = 5 × 10− 7), and 
the performance was assessed by using cross-entropy. Cross-entropy for 
a given target value, t, is defined as -tLn(p) where p is the output of the 
corresponding output neuron. Training continues till the mean cross- 
entropy is minimized. We employed 10-fold cross validation for the 
neural network analysis presented here. Basically, data was divided into 
a test set (10%) and a training set (80%) and a validation set (10%). 
Model fitting and optimization was performed on the training and 
validation sets, while the test set was used for pure prediction. The 
process was repeated 10-times. The results reported are averages of the 
results for the pure prediction on the test set. 

Linear SVMs work by finding the best hyperplane that separates the 
datapoints of the two classes. We did not need to use non-linear SVMs 
since the performance of the linear models was quite good. However, the 
best linear models were found by optimizing the hyper-parameters of 
the model to minimize misclassification on the test set using 5-fold cross- 
validation, using an inbuilt Matlab procedure (in the function fitcsvm). In 
order to prevent “bleed-through” of the data from the test set into the 
training set, we carried out a hierarchical or nested cross-validation 
procedure in the following way. We divided the entire data set into 
four blocks. We removed each block by turns, and used the remaining 
75% of the data for training and optimization of hyperparameters to 
minimize misclassification, using 5-fold cross-validation. The final 
optimal model was then used for a pure prediction on the 25% of the 
data that was heldout, and the classification accuracy calculated. The 
procedure was repeated for each of the 4 holdout blocks of the data, and 
the results reported are averages over the 4 blocks. For both ANNs and 
SVMs classification accuracy reported here is the percentage of true 
predictions out of the total test set. Confusion matrices are reported in 
the Supplementary information. 

It should be noted that most of the results presented here are based 
on the set of features described as “crafted features” above, which 

comprise a vector of 96 numbers, that are not all independent. Our 
smallest dataset is the osteosarcoma dataset where we only collected 
100 cell images per cell line. However even for these comparisons, 
despite the number of features, our algorithms performed well without 
any modification or optimization. We think that this is because 
morphological metrics for less and more metastatic osteosarcomas are 
generally well separated even in linear PCA analysis (except for DUNN 
and DLM8 cell lines, where the accuracy is correspondingly low). The 
more difficult comparisons reported here are between sets of at least 300 
cells per class, where the ‘curse of dimensionality’ would be less 
operative. 

In earlier publications [32,33] predictive accuracy was calculated 
based on the performance of the algorithm on predicting the class of a 
small sample of 10 cells from each class, using a simple majority rule, i.e. 
if six or more of the cells were predicted to be class 1, the whole sample 
was assigned to be from class 1. Otherwise it is assigned to be class 2. 
This is similar to the cumulative probability that the number of successes 
(i.e. cells of the right class) in 10 Bernoulli trials is greater than 5 when 
sampling from a population with a given proportion, r, of cells of the 
right class, and can be calculated in Matlab as 1-binocdf (5, 10, r). This is 
the value reported as “sample accuracy” in the tables and is an estimate 
of the classification accuracy on a small sample of cells such as that 
would be obtained by a biopsy. In other words, if we had taken a sample 
of 10 cells from the metastatic class, and the accuracy of the ANN/SVM 
to distinguish that class from the less metastatic class is r, the “sample 
accuracy” number calculates the probability (as a percentage) that more 
than 5 cells in that sample are classified as metastatic. 

Data and sample codes are available in the Supporting Information of 
this paper. 

3. Results 

3.1. Most shape measures are useful parameters for classifying cell lines 

We first asked whether shape measures were good measures for 
distinguishing between different cell lines globally. We used a relatively 
broad criterion here for a good measure, i.e. a good shape feature is the 
one which p-value between technical replicates of the same cell line is 
not significant at the 5% level, but the p-value of the comparisons be
tween different cell lines is, for at least some cell lines. Fig. 2 shows all 
the comparisons that we carried out to identify good shape parameters, 
organized by cell lines, and classes of shape parameters. It shows that 
some shape measures from each category are good in all the compari
sons, though the specific number is cell-line and comparison specific. 
Since there is no way of specifying beforehand which shape categories 
will prove to be most useful for a cell type, this result underscores the 
importance of using a large number of shape categories in the analysis. 

We found that human-crafted morphological parameters mostly met 
our criteria for good shape parameters. Cell, nuclei, and convex hull 
geometric parameters pass both similarity and dissimilarity tests. These 
include measures connected with spread size, elongation and irregu
larity of the boundary of a cell. Gray scale measures are the best pa
rameters which meet both similarity and dissimilarity criteria for almost 
all the cases. Roughness measures are good only for specific cell lines. In 
particular, breast tissue cells (normal or cancerous) cannot be easily 
distinguished by these measures, while osteosarcoma cells appear to be 
more easily distinguishable. 

Fig. 2 also shows that basis function methods, i.e. Fourier and Zer
nike expansions, do not perform as well as the constructed features of 
the other parameters. However, both types of expansions pass the sim
ilarity test quite well for retina cell lines, and display differences in quite 
a few coefficients for the dissimilarity test for retina and osteosarcoma 
cells. Overall, the Fourier parameters do not meet the criteria for good 
measures in breast cell lines since p-values within replicates are in the 
same range as p-values between different cell lines. However, Zernike 
moments perform better for both similarity and dissimilarity test for 
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breast cells. 

3.2. Low metastatic and high metastatic breast cancer cell morphologies 
partially overlap with normal breast epithelium cells but have 
distinguishing features 

In order to understand the major changes in morphological param
eters, we classified our shape parameters into 9 subcategories, reduced 
the dimensionality of the morphospace by calculating the principal 
components of each of the 9 categories separately, and then picked one 
principal component (the Primary Principal Component or PPC) from 
each that was best for classification (see Methods). This method projects 
down the high-dimensional morpho-space into a 9-dimensional space, 
where each axis represents a shape category. Though still high dimen
sional, this method allows us to gain some insight into morphological 
differences, as can be seen from two-dimensional projections of the data 

in Fig. 3. This figure shows that shape changes between normal tissue, 
low metastatic cancer and high metastatic cancer is not a linear pro
gression from normal to extreme, but in fact normal cells show signifi
cant overlap with both the types of cancer cells. Interestingly, in their 
geometric characteristics normal cells lie somewhere in between the two 
classes of cancer cells. However, the actin cytoskeleton does display 
progressive changes in structure, from normal to high metastatic, as 
suggested by the Grayscale and Band based measures (2nd panel). 

If cell morphologies overlap significantly, how useful are morpho
logical metrics for distinguishing between single cells? One test for 
determining whether cell morphologies are different at the single cell 
level is the accuracy of classification using standard classifiers such as 
ANNs or SVMs. In accordance with standard practice, these classifiers 
are trained on a subset of the data, and their performance assessed by a 
pure prediction on the remaining data. This process is then repeated on 
different divisions of the data. A high accuracy in the pure prediction 

Fig. 2. T-tests results to find “good” parameters. Heat map plot of p-values for similarly tests, when replicates of the same cell line are compared, and dissimilarity 
tests, when replicates of cell lines are combined and compared against other lines. Each column in this plot represent one shape measure and each shape category is 
plotted separately. The lighter the color is the more similar the samples are for that shape measure. A good measure, as defined here, is mostly dark green in 
dissimilarity and white in similarity tests. 
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thus implies that the trained model is not just a good fit but it has pre
dictive accuracy. In line with results from other cell lines, discussed 
below, we found that the crafted measures, were significantly more 
information-rich than the basis function-based quantities (see Methods 
for definitions of both). Thus, crafted measures could correctly identify 
88% of a dataset consisting of both low metastatic and high metastatic 
breast cancer cells (Table 2, Table A1), while Zernike moments and 
Waviness measures could correctly identify 74% and 65.5% respec
tively. An accuracy of 88% at the single cell level translates to 100% 
accuracy in distinguishing small samples of cells from different classes 
from each other. In the remainder of the paper we have used these 
crafted measures for classifying cells using ANNs or SVMs, unless 
otherwise stated. 

3.3. Transformation of normal retina cells to cancerous lines lead to 
characteristic shape changes 

Stepwise cellular transformation into cancerous cells is a model 
system to study oncogenesis, and can help in leading to an under
standing of key pathways that are perturbed in cancer. Using the 
transformed ARPE cells based on mutations of the Akt, Mek and Ras 
pathways allows us to ask whether oncogenic transformation leads to 
unambiguous shape changes, and whether there are specific morpho
logical signatures of the genetic mutations in each case. We find that in 
PPC space we can distinguish between normal cells and transformed 
cells quite easily by eye (Fig. 4). However, the morphometrics of the 
transformed cells are highly overlapping, possibly because Ras and Mek 
are both part of the Ras-Erk MAPK pathway, which has strong crosstalk 
with the Akt-PI3K pathway. Significantly, the ANN and the SVM analysis 
shows that normal cells can be distinguished from transformed cells at 
the single cell level with an accuracy of between 90% and 94% for ANNs 
and similar numbers for SVMs on GDA substrate (Table 2, Table A1). 

Fig. 4 also shows that in some projections the morphometrics of the 
three transformed lines are only partially overlapping, leading to the 
expectation that they are actually more separable in high-dimensional 
morphometric space. Both the ANNs and the SVMs bear this out. 
Using ANNs, Aktmyr and MekDD cells can be correctly classified at the 
single cell level with an accuracy of 87.5%, Aktmyr and Rasv12 with an 

accuracy of 85% and Rasv12 and MekDD with an accuracy of 81% (the 
corresponding SVM figures are 84.8%, 85.83% and 81.4%). This 
strongly suggests that cell morphology is a highly sensitive readout of 
cell state, and mutations that are quite close to each other and have 

Fig. 3. Scatter plot using the PPC for all the breast cell lines. BC_HM (high metastatic): MDA-MB-231; BC_LM (low metastatic): MCF7; BC_N (normal): MCF10A. 
Depending on the shape category normal cells sometimes overlap with low metastatic cells and sometimes with high metastatic cells. The high and low metastatic cell 
lines overlap significantly less with each other. The purple ellipse is drawn by hand to enclose normal cells to guide the eye. 

Table 2 
Classification accuracy (in percentages) using SVMs or ANNs. The Best 
Sample Accuracy is a rounded-off estimate of the probability that a sample of 10 
cells from either of the two categories would have more than 5 cells correctly 
classified as belonging to that category. The categories are explained in the 
Methods section.  

Classification Experiment SVM 
Accuracy 

Neural Network 
Accuracy 

Best Sample 
Accuracy 

Breast Cancer: Low metastatic 
vs high metastatic 

88.25 88.25 100 

Breast Cancer: Normal vs Low 
Metastatic 

90.5 93.25 100 

Breast Cancer: Normal vs High 
Metastatic 

88.0 88.75 100 

RPE: Control versus AKTmyr 90.33 92.83 100 
RPE: Control versus MEKDD 91.75 90.4 100 
RPE: Control versus RASv12 93.83 94.83 100 
RPE: Control versus AKTmyr 

on FN substrate 
84 86.75 99 

RPE: Control versus MEKDD on 
FN substrate 

85.5 86.5 100 

RPE: Control versus RASv12 on 
FN substrate 

91.5 88.25 100 

Osteosarcoma: MG63 vs 
MG63.2 

89.0 92.46 100 

Osteosarcoma: DUNN vs 
DLM8 

77.5 80.0 97 

Osteosarcoma: K12 vs K7M2 97.5 98.0 100 
Osteosarcoma: SAOS2 vs 

SAOS-LM7 
93.5 93.0 100 

All low metastatic vs High 
Metastatic 

69.5 81.67 97 

All type 1 low vs high 
metastatic 

75.2 79.5 92 

All Normal vs low metastatic 88.67 92.57 100 
All Normal vs type 1 high 

metastatic 
91.4 94.4 100  

E. Alizadeh et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 126 (2020) 104044

7

overlapping downstream consequences may nevertheless be distin
guishable on the basis of morphology features alone. 

3.4. Cells are accurately distinguishable on fibronectin substrates despite 
changes in parameters 

Cell morphology is sensitive to the properties of the substrate that 
they are cultured on. In practical applications many cancer cells adhere 
poorly to glass, and require substrates coated with fibronectin or other 
such adhesion promoting proteins. We therefore tested whether the 
fibronectin coating changes our conclusions for the ARPE transformed 
cells, discussed above. As shown in Fig. A.3, the qualitative features of 
the shape parameters look similar to those in Fig. 4, i.e. there is visible 
separation between the normal cells and the transformed cells, but the 
transformed cells are in general highly overlapping. Each transformed 
cell line is distinguishable at the single cell level from the controls with 
an accuracy of 86.75%, 86.5% and 88% for Aktmyr, MekDD and Rasv12 

respectively, using ANNs, which is marginally smaller than the same cell 
lines on uncoated glass substrates. Interestingly the morphology of the 
Aktmyr cell line is closer to the other two on fibronectin, since the clas
sification accuracy of ANNs drops to 84.75% and 76.25% when classi
fying sets with Aktmyr and MekDD or Aktmyr and Rasv12 respectively. The 
accuracy of the Rasv12 and MekDD classification only marginally de
creases to 80%. It is interesting to speculate whether signaling through 
fibronectin brings Aktmyr cells closer to the phenotype of the other two 
transformed cell lines. 

3.5. Osteosarcoma cell lines of different metastatic potential are easily 
distinguished by morphology 

We had previously shown [32,33] that paired osteosarcoma cell lines 
were easily distinguishable by morphology, based on a smaller set of 
shape features. We had also found that 3 out of 4 paired cell lines shared 
very similar patterns in their shape changes, but the fourth paired line, 
MG63 and MG63.2, displayed a very different trend. We describe these 
shape changes as Type 1 and Type 2 respectively. The larger set of shape 
features in the toolbox used in this work strengthens these conclusions. 

In Fig. 5, low metastatic cells of the 6 Type 1 cell lines are combined and 
plotted together. It can be seen that though there is some overlap, the 
two classes are separable by eye. It is interesting that in some of the 
projections shown in Fig. 5, the high metastatic cells are more homog
enous than the low metastatic cells. However we did not find a consis
tent decrease in CV of the Geometric features at least between the low 
metastatic and high metastatic line for osteosarcomas, unlike Ref. [31] 
found for pancreatic cancer. For each pair of cell lines, the machine 
learning analysis is quite successful in separating cells based on 
morphological features. The most similar pair is the DUNN and DLM8 
pairs, where cells were correctly classified with about 80% accuracy, 
while it was 98% for the other murine pair, K12 vs K7M2 and around 
93% for both of the human pairs. The classification accuracy using ANNs 
between all high and low metastatic cell lines was only about 81.7%, 
and between all Type 1 high and low metastatic osteosarcomas, it was 
79.5% (but with a 40-node network). 

3.6. Cancer progression is accompanied by similar shape changes for 
cancer types studied 

Next, we asked how similar morphology changes across all cell lines 
were, between normal and transformed cells as well as low metastatic 
and high metastatic cells. For this purpose, we calculated the changes in 
the mean of first principal component for each comparable pair of lines 
comprising of either a low and high metastatic set or a normal and 
transformed set, separately for all 9 shape categories. The list of the 
comparisons are shown pictorially in Fig. 6. This figure is color-coded to 
identify significant changes in PC1 (p-value<0.001 in order to account 
for multiple comparisons), and whether the mean value increases or 
decreases across the comparison. Note that an increase in the principal 
component does not imply an increase in a feature. However, changes in 
PC1 between each pair can be compared with other pairs, i.e. if PC1 
increases for both it implies that their shape changes similarly. If they 
are in opposite direction, it means their shape changes are not similar. 

The most striking feature of Fig. 6 is the comparison of the shape 
changes between the MG63 and MG63.2 lines with all of the others. The 
changes in PC1 for this comparison was not significant for Gray scale, 

Fig. 4. Scatter plot using the PPC for ARPE and transformed cells on glass substrate. GDA: Detergent washed glass. AKT: Aktmyr; MEK: MEKDD, Ras: Rasv12 
cells. Transformed cell lines overlap with each other but cluster separately from normal cells in the first three projections. The purple ellipse is drawn to enclose 
normal cells to guide the eye. 
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band based, and nuclei measures. Of all the 6 remaining shape cate
gories other than Roughness, significant shape changes for all the other 
comparisons were exactly opposite of shape changes seen for M cell line. 
For the Roughness measures, the shape changes between ARPE cell line 
to AKTmyr cancer line was the only comparison which followed similar 
shape changes as the MG63/MG63.2 lines. 

These results suggest that shape changes accompanied with cancer 
progression from normal to transformed, and from low metastatic can
cers to high metastatic cancers in these 15 cell lines follows a similar 
pattern, regardless of type of the measures used to quantify the shape. 
This pattern is very different from that exhibited by the MG63/MG63.2 
cells, which we call Type 2 changes. Note that we have not seen other 
shape changes that appear to resemble Type 2 shape changes, but there 
are reports in the literature that appear to descriptively match the shape 
characteristics observed [34]. 

Finally, we asked whether shape differences between cell lines are 
sufficiently similar for the ANN or SVM classifiers to classify cells 
accurately when the cell lines are combined together in broad classes. In 

Table 2 we combined different classes of cells together, and we find that 
the ANN can classify single cells belonging to all cancers into the low 
metastatic and high metastatic category with an accuracy of 81.67%. 
Here we have assumed that the transformed ARPE cells belong to the 
low metastatic category. Since the morphology differences in these cells 
resemble those that we call Type 1 differences, we clubbed all Type 1 
cells together and found that classification accuracy was lower at about 
79.5%. However, the differences between normal cells and cancer cells 
were much more marked. The ANN could accurately classify cells into 
either the normal and low metastatic class or the normal and high 
metastatic class with an accuracy of 92.57% and 94.4% respectively. For 
these comparisons a linear SVM did not uniformly perform as well as an 
ANN. It should be noted that for small samples of cells, a 75% accuracy 
at the level of a single cell, translates into an accuracy of almost 100% in 
correctly identifying a sample of 30 cells from either of the two 
populations. 

Fig. 5. Scatter plot using the PPC for Type 1 osteosarcoma cells. GDA: Detergent washed glass; OS_HM: High metastatic and OS_LM: Low metastatic osteo
sarcomas. Low metastatic and high metastatic cells cluster separately. In some projections high metastatic morphologies are more homogenous than those of low 
metastatic cell lines. 

Fig. 6. The direction of changes in PC1 with cancer progression for different categories. Only those categories for which changes in PC1 for MG63 vs MG63.2 
cell lines were significant (p-value<0.001) are shown. Yellow boxes imply changes in PC1 were not significant (p-value>0.001) for that comparison. Green boxes 
signify an increase in PC1 and red boxes signify a decrease in PC1. The figure suggests that morphology differences across most comparisons are similar to each other 
and different from the MG63/MG63.2 differences. 
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4. Conclusion 

This work is based on a comparison of morphological parameters of 
15 cell lines with different properties. Together they represent a number 
of major biological transformations. One set of osteosarcoma lines are 
divided into 4 paired sets, consisting of a low metastatic parental line 
and a high metastatic derived line. A second set is a commonly used 
triplet of cell lines used to study breast cancer, and its metastasis. A third 
set of lines represent laboratory guided oncogenic transformations and 
are a model system to study key oncogenes. These cell lines thus affor
ded us an opportunity to ask a number of questions about the relation 
between cell morphology and cell state [15]. 

Cell morphology as defined here included parameters of the two- 
dimensional outline of cells on a surface, as well as the measures of 
actin structure extracted from labelled actin in fixed cells [36]. We use a 
large number of shape parameters, including what we call “crafted 
measures” that are quantitative measures of some qualitative property of 
morphology, as well as more mathematically complete basis function 
expansions. While we can reconstruct the outline of the cell from the 
latter with excellent accuracy, we find that the crafted measures are 
actually more information rich, and are able to correctly identify the 
class membership of most single cells. In particular we find that at the 
single cell level we can classify high metastatic cells of either osteosar
comas or breast cancers from their low metastatic counterparts with 
high accuracy. Moreover, even when clubbed together, these classes are 
sufficiently dissimilar that we can identify them reasonably well. This 
raises the questions of whether there are a limited number of stereo
typical shape changes accompanying metastatic transformation. Our 
previous work [33], as well as the current work, has suggested that 
metastatic transformation may fall into only two classes of morphology 
changes. However, many more cancer cell types need to be studied 
before we can be sure of this. 

Our analysis of oncogenic transformation shows that there are clear 
morphological signatures of cancerous transformation. More excitingly, 
the three oncogenes studied appear to be distinguishable from each 
other by morphology alone. This is somewhat surprising since all three 
oncogenes operate in closely related pathways. In many projections 
from high-dimensional morpho-space the parameters of these cell lines 
were strongly overlapping. Nevertheless, in the higher-dimensional 
morpho-space, SVMs and ANNs could correctly identify most cells by 
morphology alone. These results indicate that major mutational signa
tures of patient cancers may be detectable from advanced versions of 
these methods applied to biopsy images. 

These results also underscore the fact that it is impossible to get the 
full measure of a high dimensional data set by projections down to two 
dimensions and we require an intrinsically high dimension analysis 
method for that. We used machine learning methods that have become 
very standard by now: Linear Support Vector Machines and Artificial 
Neural Nets with one hidden layer. This is well behind the current state 
of the art in machine learning. However, our intent was not to optimize 
machine learning classification methods, but to gain insight with limited 
data. That is the main reason for our choice of methods. There is sig
nificant scope for more advanced methods along with much larger 
datasets, especially for applications in diagnostics. However, we will not 
be able to fully interpret and make use of the machine learning analysis 
without an advance in mechanistic insight. While there have been 
important breakthroughs in cancer diagnostics using conventional 
methods such as genetic testing (for breast cancer), no single method is 
likely to be a panacea, and the key is going to be integration of multiple 
pieces of information. Optimizing the information that can be extracted 
from already existing methods of diagnosis could therefore be a useful 
tool to improve accuracy in the prediction of the tumor properties. 

5. Discussion 

This work is part of the growing body of literature that utilizes high 

dimensional morphological parameters to make inferences about cell 
state, which has been recently reviewed [15,16]. Early papers showed 
linkages between cell shape and signaling, and identified the role of Rho 
GTPase proteins in cell morphology in Drosophila cell lines [23,25,28]. 
More recently, a few papers have applied morphological analysis to 
classify metastatic cells in specific cancers. Ren et al. [42] used 29 
morphological parameters to classify shape changes in A549 lung 
adenocarcinoma cell lines after stimulation by TGBβ, which promotes 
metastasis transformation through the Epithelial to Mesenchymal 
transformation (EMT) [12]. Laboratory induced EMT is known to induce 
dramatic morphological changes, also studied in transformed MCF10-A 
cells using high content imaging by Leggett et al. [43]. In both cases only 
a very small set of parameters were needed since induced-EMT leads to 
very dramatic morphological changes that are easily distinguishable by 
eye. In contrast we study a larger set of subtler and more complex 
changes, whose morphological signatures are not easily distinguishable 
by eye, using a larger set of parameters. Wu et al. [31] do a large study of 
cancer metastasis of about 39,000 cells coming from 13 patient derived 
tumor samples of pancreatic ductal adenocarcinoma (PDAC). They used 
a low magnification technique and calculated shape descriptors based 
on a description of the boundary coordinates of the cell and nucleus that 
were then projected to PCA space. They did not find a specific 
morphological signature of metastatic cells but found that they dis
played greater heterogeneity. They did not study textural parameters 
that we did in this study. A very recent study by the same group studied a 
large number of MDA-MB-231 breast cancer cells [44], using a different 
but more comprehensive set of morphological parameters of the cell and 
nucleus boundary, as well as parameters related to nucleus-cell posi
tioning. They showed that even a population of cells coming from one 
cell line showed significant heterogeneity, and, in agreement with our 
results, single cell morphology could be used to identify metastasis. 
While many of the parameters they use overlap with ours in this paper, 
they did not use textural parameters that we found to be very useful in 
characterizing cells and did not study oncogenic transformation, or 
sarcoma cells. They also used only a single cell line. However, their 
results are very significant because they showed that the morphological 
variation within a single cell line may have functional consequences. 

All of these studies reinforce our central message that significantly 
more information could be extracted from cell morphology than is 
currently normal practice. We should point out here similar de
velopments have taken place in other fields of biomedical imaging such 
as radiomic analysis [45] where multi-dimensional morphological 
metrics of MRI or other biomedical images have been successfully used 
along with big data techniques to make predictive models of cancer 
properties and patient outcome [46,47]. Cell morphology reflects cell 
state because of the close link of the cellular cytoskeleton and of cellular 
adhesion with cell physiology. Cell shape is dynamic, but it is a conse
quence of the balance of forces generated by the cytoskeleton, the me
chanical properties of the cell, the properties of the extracellular matrix 
and that of the adhesion molecules. For non-motile cells therefore, it 
reflects a long-lived cytoskeletal state, which in turn reflects an internal 
physiological state. While the mapping between cell state and 
morphology is likely to be many-to-one, our data, and that of others, 
show that there is sufficient granularity in that mapping for that 
knowledge to be extremely useful to us. 

A deeper understanding of cell morphology requires studies, both 
modeling and experiments, that are more mechanistic and that are 
performed at the single cell level, that are well beyond the scope of this 
one. Our results, and those of others, suggest that some aspects of 
morphological heterogeneity within a population of cells reflect 
phenotypic differences in the cells, and that cellular morphology may 
give us unprecedented insight, when fully understood, into cellular 
heterogeneity. Unlike other single cell techniques, this has the virtue of 
being relatively easier (just requiring imaging) and in principle can be 
carried out dynamically. In fact, it is very possible that using only live- 
cell phase contrast imaging, along with cellular morphometrics coupled 
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with data analysis and algorithms, we will be able to obtain a dynamic 
noninvasive real-time window into cell state. 
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