
Secreted INF^β Coordinates Antiviral Response

Maciej Czerkies¹, Zbigniew Korwek¹, Wiktor Prus¹, Marek Kochańczyk¹, Joanna Jaruszewicz-Błońska¹, <u>Karolina Tudelska¹</u>, Sławomir Błoński¹, Marek Kimmel^{2,3}, Allan R. Brasier⁴, and Tomasz Lipniacki¹.

Short Abstract — Virus-infected or poly(I:C)-stimulated cells secrete IFN β , which coordinates population antiviral responses. By combining experiments and our mathematical model of the NF- κ B–IRF3–STAT1/2 signalling network, we show that IFN β priming increases apoptosis in MEFs responding to poly(I:C) by initiating activation of STAT1/2, which in turn induces expression of antiviral components, RIG-I, PKR and OAS1A.

I. BACKGROUND

PROGRAMMED cell death, or apoptosis, is a key cellular mechanism protecting against the spread of viral infection. Virus-infected cells can activate transcription factors NF- κ B and IRF3, both of which are required for the production of IFN β . A cell receiving secreted IFN β responds by activation of transcription factor STAT1/2 and consequent upregulation of its antiviral components. Among them are RIG-I, cytosolic receptor for viral dsRNA, PKR, inhibitor of translation, and OAS1A, functioning in mRNA degradation. Using experiments and our stochastic model of the NF- κ B-IRF3–STAT1/2 signalling network (Fig. 1), we elucidate how IFN β coordinates population antiviral responses to poly(I:C), an analog of viral dsRNA.

Fig. 1. Simplified diagram of the mathematical model of the NF-κB–IRF3–STAT1/2 signalling network.

II. RESULTS

Priming MEF cells with IFNβ on its own does not activate NF- κ B or IRF3 and does not cause apoptosis (Fig. 2). Stimulation of these cells with poly(I:C) transiently activates NF- κ B and/or IRF3 and causes apoptosis in approximately 25% of the population.

IFN β priming followed by stimulation with poly(I:C)

¹Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Warsaw, Poland. E-mail (TL): <u>tlippia@ippt.pan.pl</u>

increases the fraction of cells that activate both NF- κ B and IRF3, prolongs this activity, and increases the fraction of apoptotic cells over three-fold, compared to stimulation with poly(I:C) alone (Fig. 2).

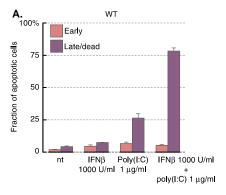


Fig. 2. Effect of INF β priming on responses to poly(I:C) in WT MEFs.

In addition, IFN β priming in MEF *Stat1*^{-/-} cells has no effect on the activation of NF- κ B and/or IRF3 in response to poly(I:C), and no effect on the fraction of apoptotic cells, compared to stimulation with poly(I:C) alone [1]. Activation of NF- κ B and/or IRF3 in response to poly(I:C) alone occurs in fraction of MEF *Stat1*^{-/-} cells smaller than in WT MEFs [1].

III. CONCLUSION

IFNβ priming sensitises naïve cells to poly(I:C) through expression of STAT1/2-dependent genes, such as RIG-I, PKR and OAS1A. When subsequently activated by poly(I:C), their protein products override the negative feedbacks on NF- κ B and initiate a positive feedforward to IRF3 (Fig. 1). As a result of prolonged activity of NF- κ B and IRF3, more cells commit to apoptosis, thus limiting infection spread.

REFERENCES

 Czerkies M, et al. (2018) Cell fate in antiviral response arises in the crosstalk of IRF, NF-κB and JAK/STAT pathways, Nat Commun. 9, 493.

Acknowledgements: This work was funded by the National Science Centre (Poland) grants 2011/03/B/NZ2/00281 and 2014/14/M/NZ6/00537.

²Departments of Statistics and Bioengineering, and Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA. E-mail: <u>kimmel@rice.edu</u>

³Systems Engineering Group, Silesian University of Technology, Gliwice 44-100, Poland.

⁴Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555-1060, USA.