Inter-head tension of cytoplasmic dynein regulates the coordination between two heads

Q. Wang1, M.R. Diehl2, B. Jana3, M.S. Cheung4, J.N. Onuchic5, and A.B. Kolomeisky6

\textit{Short Abstract} — Studying the coordination between two heads of a motor protein is crucial to understand the walking mechanism of the motor protein on cytoskeletal tracks. Previous experiments found that inter-head tension of a cytoplasmic dynein was able to regulate the coordination between its two heads. However, the molecular origin is largely unknown. Here we utilized a structure-based coarse-grained model to investigate the conformational changes of a cytoplasmic dynein monomer responding to opposite forces. Our simulation successfully explained the experimental observations and thus provide a molecular basis to understand the walking pattern of cytoplasmic dynein.

Acknowledgements: This work was funded by National Science Foundation Grant PHY-1427654.

1Center for Theoretical Biological Physics, Rice University, Houston, TX 77005. E-mail: gw9@rice.edu

2Department of Chemistry, Rice University, Houston, TX 77030. E-mail: diehl@rice.edu

3Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India, E-mail: bimanjana@gmail.com

4Department of Physics, University of Houston, Houston, TX 77204. E-mail: mcheung@central.uh.edu

5Center for Theoretical Biological Physics, Rice University, Houston, TX 77005. E-mail: jonuchic@rice.edu

6Center for Theoretical Biological Physics, Rice University, Houston, TX 77005. E-mail: tolya@rice.edu