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Short Abstract — Genetically encoded voltage indicators 

(GEVIs) are protein sensors that transform cell membrane 
voltage signals into fluorescence changes. They are promising 
tools for simultaneously recording from large populations of 
neurons with cell type specificity. However, currently- available 
GEVIs have insufficient brightness, photostability,   response 
amplitude and kinetics. To overcome these limitations, we used 
structural approaches to identify the important residues for 
voltages sensing, mutated these positions, and screened for 
variants with improved properties. We also used these screening 
results in a machine learning approach to refine our strategy for 
further improvements. 
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I. BACKGROUND 
ONITORING neuronal collaborations in circuits in vivo is 
a central goal in neuroscience but remains challenging.  

A critical technology gap is the lack of tools that can 
quantitatively monitor neuronal electrical (voltage) dynamics 
with single-cell or even subcellular resolution from a large and 
genetically-defined populations of neurons. Genetically 
encoded voltage indicators (GEVIs) are a promising solution 
to achieving this goal, yet current versions exhibit insufficient 
in kinetics, response amplitude, brightness and photostability 
for detecting fast voltage transients in vivo [1].  

Accelerated Sensor of Action Potentials 1 (ASAP1) [2] is a 
GFP-based GEVIs with a circularly permuted GFP (cpGFP) 
inserted in the voltage sensitive domain. ASAP1 is a suitable 
starting templates for further GEVI improvements because 
they have fast (millisecond-timescale) kinetics and 
compatibility with two photon imaging methods (ASAP2s) [3]. 
However, its sensitivity (response amplitude) to voltage 
transients remains small, motivating further optimization. 
 Since it is impossible to screen the entire sequence space, 
we turned to semi-rational screening methods, supported by 
the accumulation of sequence and structural data, and 
improvements in machine learning algorithms. For example, 
3D structural prediction using Rosetta [4] and existing 
physical model on voltage-sensing domain (VSD) movements 
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during membrane depolarization [5] suggest promising 
mutation sites. By targeting specific residues, we can focus our 
screening efforts on smaller and more productive screening 
libraries. Performing machine learning on screening results 
will reveal the relative importance of each position in ASAP 
and guided the rational design of new variants [6]. 

II. RESULTS 

A. Structure-guided GEVI screening at single positions 
    We used 3D structure alignment to locate amino acids 
predicted to be important in physical models of orthologous 
voltage-sensing domain. Mutating these residues in voltage 
indicator ASAP1 led to mutants with larger sensitivity.   

B. Structure -guided optimization of interacting residues 
Using data from single-position screening, we figured out 

the positive and negative mutations at each important site. We 
did multi-position screening to combine the most promising 
variants and determined whether mutations produced additive, 
subtractive, or synergistic effects on indicator performance. 
We applied machine learning algorithms to quantify the 
relative importance of each variant on individual performance 
metrics: kinetics, response amplitude, and brightness.  

 

III. CONCLUSION 
Using semi-rational protein engineering and 

high-throughput screening pipeline, we developed genetically 
encoded voltage indicators with improved properties, which 
better meet the need for large-population voltage dynamics 
quantification in neuroscience. 
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