
  
Short Abstract — Bayesian parameter estimation (BPE) is 

popular in systems biology, where often a large number of 
correlated model parameters have to be estimated from limited 
experimental data. Commonly-used Markov chain Monte 
Carlo (MCMC) methods for BPE often suffer from slow 
convergence. Here1 we evaluate the performance of parallel 
tempering (PT), a physics-based MCMC method designed to 
accelerate convergence by swapping between multiple MCMC 
chains run in parallel at different temperatures.  

I. INTRODUCTION 
Computational models are used to describe biological 

systems and make testable predictions2. Parameter 
estimation is the calibration of a model to data by searching 
for parameterizations that minimize the discrepancy between 
the data and model output. MCMC is a Bayesian parameter 
estimation method commonly used in systems biology, but 
standard algorithms such as the Metropolis-Hastings (MH) 
suffer from slow convergence. Parallel tempering (PT) is a 
physics-based method that accelerates sampling of 
probability distributions by swapping between parallel 
MCMC chains run at different temperatures3. While PT has 
been commonly used in molecular dynamics simulations to 
accelerate sampling the conformational space of 
biomolecules3, it has sparsely been used in systems biology2.  

In this work1 we evaluate the performance of PT relative 
to MH on six biological models of increasing complexity. 
We include a comparison with Approximate Bayesian 
Computation – Sequential Monte Carlo (ABC-SMC), 
another common Bayesian parameter estimation method. 

II. METHODS 
We performed all the MCMC fits using pTempEst, our 

MATLAB-based tool for parameter estimation using PT. 
The models were specified in the BioNetGen language 
(BNGL)4, and exported as ODE models in MATLAB’s 
MEX-file format that are called by pTempEst, which 
invokes the CVODE library for efficient integration of high 
dimensional models.  We used the tool ABC-SysBio to 
perform fits using ABC-SMC5. 

In our analyses we fit ODE models to synthetic data 
generated using known parameters. For smaller models (3-6 
parameters), both MH and PT found the global minimum 
and we compared the algorithms using convergence time 
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and sampling efficiency. For more complex models (11-25 
parameters) we did not always obtain parameter sets that fit 
the data. In this case we compared the algorithms using the 
likelihood of the best-fit parameters.  

We compared fits from ABC-SMC and PT by allowing 
each algorithm a specified number of model integrations, 
fixing the total amount of computational resource used. 

III. RESULTS AND FUTURE WORK 
   For simple models with 3-6 parameters (Michaelis-Menten 
model, mRNA self-regulation5, simple negative feedback 
loop), PT accelerated convergence and improved sampling 
over MH. For bigger models with 12-25 parameters (calcium 
signaling, negative feedback oscillator6, growth factor 
signaling7) PT more consistently found the global optimum, 
while MH frequently got trapped in local optima. Finally, we 
found that for a fixed number of integrations, PT 
outperformed ABC-SMC for parameter sampling on a 
relatively simple ODE model of mRNA self-regulation.  
   A current limitation of PT is that it is only moderately 
parallel across a small number of chains and does not fully 
leverage the large number of nodes on typical modern day 
clusters. We are currently investigating ways to increase the 
parallelizability of the algorithm, for example by running 
multiple chains at each temperature level. Another area of 
improvement that we are pursuing is in the proposal 
function, which currently does not leverage known 
parameter correlations to improve sampling efficiency.  We 
will investigate whether previous work in this area8,9 would 
benefit from a parallel tempering approach. 
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