Unveiling Molecular Mechanisms of Kinesin-5

Aram Davtyan1, Qian Wang2, and Anatoly B. Kolomeisky3

\textit{Short Abstract} — Molecular motor protein Kinesin-5 (Eg5) is a member of kinesin superfamily that is critical for bipolar spindle assembly and spindle maintenance during mitosis. As a result it is a promising chemotherapeutic target for cancer treatment. While a number of small-molecule drugs that interact with Eg5 have been identified, little is known about the molecular mechanisms by which they inhibit Eg5 function. Furthermore, multi-motor systems can exhibit qualitatively diverse behavior for different drugs, in some cases showing non-linear dependence of motor velocity on drug concentration. We study molecular mechanisms behind function of individual Eg5 and multi-motor systems involving it using computational modeling techniques. Besides apparent fundamental value this work has direct implications for clinical applications, where in depth understanding of Eg5-drug interaction is important.

\textit{Keywords} — Motor proteins, Kinesin-5, computational modeling.

1Center for Theoretical Biological Physics, Rice University, Houston, TX. E-mail: adavtyan@rice.edu
2Center for Theoretical Biological Physics, Rice University, Houston, TX. E-mail: qw9@rice.edu
3Center for Theoretical Biological Physics, Department of Chemistry, Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX. E-mail: tolya@rice.edu