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Abstract—In flow cytometry, specific biochemical labels
are not always available; they can be costly; and they
can disrupt natural cell behavior. Label-free classification
strategies are needed to correct these issues. Unfortunately,
label-free strategies may be difficult to learn when applied
labels or other modifications in training data inadvertently
modify intrinsic cell properties. We develop a new approach
based upon population statistics and machine learning to
integrate labeled and unlabeled training data and to identify
models for quantitatively accurate label-free classification. We
apply our approach to make label-free measurements of lipid
content in microalgae cells.
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I. INTRODUCTION

FLOW cytometry (FCM) is an essential single-cell
measurement technique that uses biochemical labels

to mark cell features, quantify cell properties, or sort
cell populations. However, use of biochemical labels can
interfere with FCM inferences or disrupt cellular behaviors
[1]. From massive datasets generated by FCM, statistical
information on intrinsic cell populations can be employed
with machine learning (ML) tools to develop label-free
strategies [2]. In this work, we combine ML approaches
with single-cell fluctuation fingerprint analyses [3] and
genetic algorithm-based feature selection to find optimized
label-free classification for lipid accumulation in algal cells.

II. RESULTS

We monitored Picochlorum microalgae for 16 days fol-
lowing nitrogen starvation, and we created two identical
population samples at each of 13 timepoints. We stained
one set of samples with boron-dipyrromethene (BODIPY)
and left the other unstained. Using an ACCURITM flow
cytometer, we measured 3000 cells for each sample at each
timepoint, and we recorded 12 features per cell, including
the 488nm excited 530/30nm fluorescence channel corre-
sponding to the BODIPY dye. We then sought to predict
the BODIPY signal intensities using the other measured
features (e.g., autofluorescence and side scatter at other
fluorescence wavelengths). Preliminary regression analysis
suggests a strong classification for the training data (Fig.
1a), but this regression model fails to correctly estimate
lipid content in the absence of labels, i.e., in testing phase
(Fig. 1b). We quantify the accuracy of predictions for un-
labeled cells using the Kolmogorov-Smirnov (KS) distance
between measured and predicted lipid distributions.
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Fig. 1. Label-free classification for single-cell populations. Measured
(red) and predicted (blue) distributions of cell lipid content in arbitrary
units of concentration (AUC). (a) Labeled testing data and (b) unlabeled
testing data using linear regression. (c) Unlabeled validation data using the
genetic algorithm for feature set reduction. (d) Unlabeled validation data
using quadratic features and the genetic algorithm. Kolmogorov-Smirnov
distance between distributions is shown for each case.

Next, we use a genetic algorithm and an iterative train-
ing/testing strategy to identify a reduced feature set that
minimizes the KS distance to enhance label-free classifi-
cation. Expansion of the single-cell feature sets to include
quadratic feature combinations followed by reduction with
the genetic algorithm results in substantially improved
label-free predictions for the lipid content (Fig. 1c). We
verify that our new model could be used for label-free
estimation of single-cell lipid content.

III. CONCLUSIONS

We apply mathematical models, machine learning and
genetic algorithms to circumvent the need for biochemical
labels. Because such labels can be expensive or disruptive
to natural cell behavior, the use of computational models
to replace chemical biomarkers can open new avenues for
single-cell research. The key to our approach is to iterate
between labeled and unlabeled data and to carefully remove
unnecessary or misleading features. In future work, we will
use these classification strategies to sort single cells into
different subpopulations without the disruptions associated
with biochemical markers.
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