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Outline

General ideas and methods
Why stochastic?
When stochastic?
Tools (review)

Gillespie
Chemical Master Equation
Van Kampen’s approximation

Case studies
Virology: to extinct or not to extinct
Immunology: how to count molecular events

Hands-on lab session:
Tinker Cell (14:15-16:00 Computer Lab 8 Student Union Building,
Room 3018)
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General ideas and methods
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Handling ignorance

Continuum Single molecules
Well mixed ODEs Stochastic methods

(rate equations) (Gillespie, VanKampen)
Spatial gradients Reaction diffusion Random walks
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Why: low populations

ODEs are great when we can define a density:

density =
Indistinguishable particles

Volume

But, what if half the volume does not contain half the particles?
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Why: low populations
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Why: low populations⇒large fluctuations

Example:
A → B → C

dA
dt

= −k1A ,

dB
dt

= k1A −k2B ,

dC
dt

= k2B ,
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Why: low populations⇒large fluctuations

(1000 particles) (30 particles)
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Why: low populations⇒large fluctuations

Keep this figure in mind: Almost a gaussian with σ ∼ N−1/2.
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More examples: Deterministic or stochastic?
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More examples: Deterministic or stochastic?

One infected in a population if a million susceptibles . . .
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Beware simple averaging...
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Beware simple averaging...

Castro (Comillas Pontifical University) Stochastic modelling in viral and immunological systems 2015 13 / 63



When should we think stochastically?

When can we safely use
ODEs?

If (population) numbers are
large
Far from extinction
Far from a bifurcation

When MUST we use stochastic
methods

Close to extinction or
bifurcation points
If we are interested on
individuals
Multiple stationary states
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Life close to extinction

A very simple example: A− > ∅.

Conclusion: different times to extinction and randomly distributed.

SO WHAT!!!
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Life close to extinction

A more interesting example: Predator-prey dynamics (Lotka-Volterra)

Stochastic life sucks (for these guys)!!!
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Life close to a bifurcation point

The classical SIR model (Susceptible-Infected-Recovered)

R0 = 1.2 (for instance, seasonal influenza)
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Life close to a bifurcation point

The classical SIR model: some conclusions

Stochasticity changes our notion of R0
The intensity of the epidemic depends strongly on fluctuations
Sometimes there is not epidemic even with R0 > 1!!!
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Life close to a bifurcation point

The classical SIR model: the interest on these problems is relatively
new (see this link)
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http://www.sciencedirect.com/science/article/pii/S0025556499000474


Life close to a bifurcation point

The classical SIR model: the interest on these problems is relatively
new (or this other link)
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http://www.sciencedirect.com/science/article/pii/S002555640600188X


Life close to a bifurcation point

The classical SIR model: the interest on these problems is relatively
new (or even this thesis)
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https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:99693&datastreamId=FULL-TEXT.PDF


Life close to a bifurcation point

An analogy (I couldn’t resist!!!)

That could be the susceptibility (magnetic field fluctuations), specific heat
(energy fluctuations), . . .
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Let’s recap: when?

Close to extinction or bifurcations

When interested on individuals

Multiple stationary states
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Individuals

Information on individuals matter. For instance
First passage times (see next slide)
Average time in a given state (link with molecular information)
Distribution of a given metric (observable)
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Multiple stationary states

2A
k1


k2

3A , ∅
k3


k4

A

the deterministic equation is simply

dA
dt

= k1A2−k2A3 + k3−k4A
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The toolbox

Numerics:
Naive integration
Gillespie (classical)
Tau-leap
More sophisticated tools (Munksy)

Analytical:
Exact results: branching processes
Exact results: (chemical) master equation
Approximations: Van Kampen

The most general reference to learn about this method is Van Kampen’s
book
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http://www.amazon.com/Stochastic-Processes-Chemistry-North-Holland-Personal/dp/0444529659/ref=sr_1_1?ie=UTF8&qid=1343535011&sr=8-1&keywords=van+kampen+stochastic
http://www.amazon.com/Stochastic-Processes-Chemistry-North-Holland-Personal/dp/0444529659/ref=sr_1_1?ie=UTF8&qid=1343535011&sr=8-1&keywords=van+kampen+stochastic


Naive vs Gillespie integration

Our old friend: A → ∅

NAIVE (or τ-leap)

Probability of occurring in the
interval ∆t (or τ)

Fixed timesteps

1st order approximation

Trial and error

GILLESPIE

How long will it take the next
event?

Variable time steps

Exact!

Yoda’s philosophy
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Chemical Master equation

Let’s go back to the simplest reaction: A
k
→ ∅

Deterministic approach: A(t) = A0e−kt

Stochastic:
Discrete number of molecules A: NA
Probability that we loose 1 molecule in interval ∆t : NA (t)k∆t .
Compute the probability of having n molecules: pn(t).
Two possibilities for having NA (t + ∆t) = n:

NA (t) = n (no reaction during interval ∆t .
Having NA (t) = n + 1 and loosing one.

Doing the math

pn(t + ∆t) = pn(t)(1−nk∆t)︸               ︷︷               ︸
nothing happened

+pn+1(t)(n + 1)k∆t︸                   ︷︷                   ︸
decay

Castro (Comillas Pontifical University) Stochastic modelling in viral and immunological systems 2015 29 / 63



Chemical Master equation

The master equation is the limit when ∆t → 0.

In our simple case (initially we have n0 particles):

dpn

dt
= k(n + 1)pn+1(t)−knpn(t).

Solution:

pn(t) = e−nkt
(

n0

n

)
(1−e−kt )(n0−n)
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Chemical Master equation

CAVEAT: In this case the stochastic and deterministic provide the same
average but remember . . .

Deterministic: First average then integrate

Stochastic: First integrate then average
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Van Kampen’s approximation

Do you remember that figure?
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Van Kampen’s approximation

The idea behind Van Kampen’s approximation is to transform the
master equation into a Langevin equation:

Langevin = Deterministic system + Gaussian fluctuations (noise)

Also known as Ω-expansion, linear noise or gaussian closure (even
has a wikipedia entry).
In general:

The good: It enriches traditional ODE approximation with noise.
The bad: Valid far from bifurcation points or extinction values

Then why is it useful?
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Van Kampen’s approximation

Then why is it useful?

It provides a criterion to
determine when pure stochastic
methods (in practice, Gillespie)
are MANDATORY
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Van Kampen’s approximation

Sketch of the method:

Write n as the sum of a deterministic and a random variables:

n = Ωx +
√

Ωξ

Rewrite the probabilities: pn(t) = pΩx+
√

Ωξ ≡ Π(ξ, t)

Expand every function of x + Ω−1/2ξ in power series of Ω−1/2

Use shift operators: Ef(n) = f(n + 1)⇒Ef(ξ) = f(ξ+ Ω−1/2)

Arrive at a Fokker-Plank equation of the form, to order O(Ω−1/2:
∂Π

∂t
=

∑
ik

Aik
∂(ξiΠ)

∂ξk
+

1
2

∑
ik

[BBT ]ik
∂2Π

∂ξi∂ξk

where A and B are matrices depending on the specific system. The
eigenvalues of B give us information about the variance of the fluctuations.
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Who is using this approach?

Transcription and translation: Paulsson, Nature (2004)

Enzyme kinetics: Grima, BMC Sys Biol (2009)

Enzyme kinetics: Grima, the misterious case of the previously
unsolved Michaelis-Menten stochastic dynamics (Phys. Rev. Lett.)

Autocatalytic reactions: Dauxois et al, Phys. Rev. E (2009)

General kinetic of reactions: Ben Avraham, 1987
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http://www.nature.com/nature/journal/v427/n6973/abs/nature02257.html
http://www.biomedcentral.com/1752-0509/3/101
http://prl.aps.org/abstract/PRL/v102/i21/e218103
http://prl.aps.org/abstract/PRL/v102/i21/e218103
http://pre.aps.org/abstract/PRE/v79/i3/e036112
http://www.springerlink.com/content/p38561161m220252/


Van Kampen’s approximation

Gooood news: Someone did the work for us

Castro (Comillas Pontifical University) Stochastic modelling in viral and immunological systems 2015 37 / 63

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0038518


Summary of part one

When stochastic
Close to extinction or bifurcations (case study 1)
When VK criterion suggests it
Multiple stationary states
Interested on individuals (case study 2)

Tools
Gillespie (or tau-leap)
Van Kampen’s approximation
Branching processes (in next life)
Averaging after integrating (and no the other way around)

Castro (Comillas Pontifical University) Stochastic modelling in viral and immunological systems 2015 38 / 63



Case studies

An example from virology: comparison of strategies

An example from immunology: time needed to activate a T-cell
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Case study I: Virology
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Two viral strategies

When a cell is infected by a virus, there are two ways in which the virus
can use the cell machinery to reproduce

Bursting (explosive release): The cell dies and K virions are released

Budding (continuous release): The cell lives infected and serves as a
virion provider
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Two viral strategies

Budding

V + T
k
→ I

I
Nδ
→ I + V

I
δ
→ ∅

V
c
→ ∅

Bursting

V + T
k
→ I

I
δ
→ NV

V
c
→ ∅

Pearson, Krapivsky and Perelson, PLoS Comp. Biol. 7(2), e1001058 (2011).
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http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1001058


Bursting vs Budding

Why stochastic matters? Two answers:

Same deterministic model but very different dynamics

In early infections the population of virus is small (remember: small⇒
large fluctuations)
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Bursting vs Budding: Deterministic equations

Some tips and tricks:
From A and B means

Both A and B lose
At a rate proportional to A ×B (“and” means “product”)

From either A or B means
Both A and B lose
In different reactions at rates proportional to either A or B

Write down stochiometric matrix
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Budding: Deterministic equations

Budding

V
kT
→ I (R1)

I
Nδ
→ I + V (R2)

I
δ
→ ∅ (R3)

V
c
→ ∅ (R4)

Stochiometric matrix
R1 R2 R3 R4

V -1 1 0 -1
I +1 0 -1 0

dV
dt

= −R1 + R2 + 0R3−R4 = NδI− (kT + c)V

dI
dt

= R1 + 0R2−R3 + 0R4 = kTV −δI
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Bursting: Deterministic equations

Stochiometric matrix
R1 R2 R3

V -1 N -1
I +1 -1 0

Bursting

V + T
k
→ I (R1)

I
δ
→ NV (R2)

V
c
→ ∅ (R3)

dV
dt

= −R1 + NR2−R3 = NδI− (kT + c)V

dI
dt

= R1−R2 + 0R3 = kTV −δI
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Bursting vs Budding: Stochastic dynamics

Same deterministic equations⇒ same R0 ≡
NkT

kT+c

However, different stochastic probabilities of extinction

ρburst
V = min(ρ∗,1)

ρbud
V = min(1− (R0−1)/N,1)

(1)

where ρ∗ is a positive root of

1−ρV

1− (ρV )N
=

R0

N
≡ γ
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Bursting vs Budding: Stochastic dynamics
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Bursting vs Budding: Stochastic dynamics

Additional benefits of stochastic dynamics

Frequency distributions

First passage times
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Bursting vs Budding: Stochastic dynamics

Additional benefits of stochastic dynamics

Frequency distributions

First passage times
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Case study II: Immunology
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A stochastic T cell response criterion

What is the average time needed to activate a T-cell?

Here is the reference
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http://rsif.royalsocietypublishing.org/content/early/2012/06/27/rsif.2012.0205.short


A stochastic T cell response criterion

The biological system

An APC (antigen presenting cell) presents pieces of antigen to a T-cell

The T-cell has receptors (TCR) able to recognize specific antigens

The matching between the ligand and the receptor elicits a response
(T-cell activation)
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A stochastic T cell response criterion

Experimental evidence

A few agonist pMHC ligands can suffice to trigger T cell responses

Sufficiently long TCRpMHC engagements are required to initiate the
signalling cascade, resulting in productive signal transduction

T-cells can integrate signals; that is, counting devices are at work in T
cells to allow signal accumulation, decoding and translation into
biological responses

HYPOTHESIS: T cell responses take place once a given number of TCRs
(and not necessarily in a simultaneous way), N, have been engaged with
ligand for at least a dwell time, τ, each
http://rsif.royalsocietypublishing.org/content/early/2012/06/27/rsif.2012.0205.full
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First attempt: deterministic criterion

Remember: Time needed to have N ligand-receptor engagements a time
τ.

The simplest model

Deterministically, we find (eliminating the concentration of free ligands
and empty receptors)

dz
dt

= −koff+ kon(NR −z)

(
ρ−

Ncz
VNA

)
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First attempt: deterministic criterion

Remember: Time needed to have N ligand-receptor engagements a time
τ.

First: test the model
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First attempt: deterministic criterion

Second: the best we can do is wait until we have N engaged and then
wait for another τ seconds

It doesn’t predict
how things work in nature

So nature works intrinsically in a stochastic way
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Second attempt: stochastic criterion

Stochastic dynamics allows us to count engaged receptors
individually
Whenever a receptor is engaged for a time longer than τ, count + 1.
Wait until N have been engaged at least τ.
Experimental data suggests that τ ∈ [1,10] and N ∈ [10,100]

Castro (Comillas Pontifical University) Stochastic modelling in viral and immunological systems 2015 58 / 63



Second attempt: stochastic criterion

This model provides invaluable testable predictions
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Second attempt: stochastic criterion

This simple model is amenable to analytical calculations
Mean First Passage Time:

T(N, τ) = τ+
Nekoffτ

konNRρ

Variance

Var(T) =
Nekoffτ

(konNRρ)2
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In a nutshell

We ALWAYS need stochastic methods
if we are concerned with labeled individuals
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Final remarks . . .

Some computational tools

Bionetgen (Gillespie, ODE). Simple to codify

Intrinsic Noise Analyzer (Van Kampen vs Gillespie)

Mathematica: analytical (e.g., Van Kampen)
General tools:

Matlab
Python
C++
R
. . .
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Thanks for your attention
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