Stochastic modelling in viral and immunological systems

Mario Castro

School of Engineering, Comillas Pontifical University marioc@comillas.edu

Albuquerque, 16th of July 2015

Outline

General ideas and methods

- Why stochastic?
- When stochastic?
- Tools (review)
 - Gillespie
 - Chemical Master Equation
 - Van Kampen's approximation
- Case studies
 - Virology: to extinct or not to extinct
 - Immunology: how to count molecular events
- Hands-on lab session:
 - Tinker Cell (14:15-16:00 Computer Lab 8 Student Union Building, Room 3018)

General ideas and methods

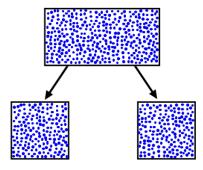
	Continuum	Single molecules
Well mixed	ODEs	Stochastic methods
	(rate equations)	(Gillespie, VanKampen)
Spatial gradients	Reaction diffusion	Random walks

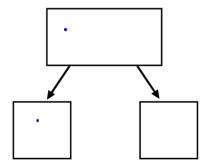
• ODEs are great when we can define a density:

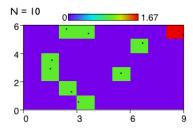
$$density = \frac{Indistinguishable \ particles}{Volume}$$

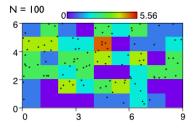
But, what if half the volume does not contain half the particles?

Why: low populations







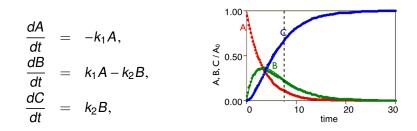


Castro (Comillas Pontifical University) Stochastic modelling in viral and immunological

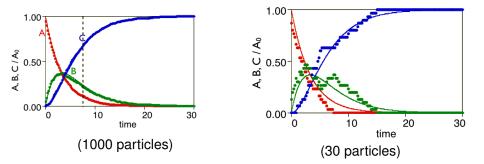
Why: low populations⇒large fluctuations

• Example:

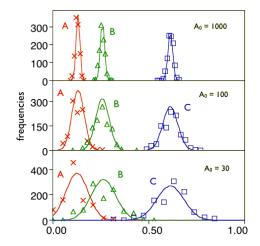
$$A \rightarrow B \rightarrow C$$



Why: low populations⇒large fluctuations

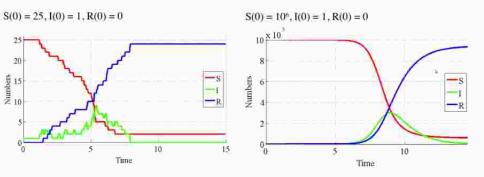


Why: low populations⇒large fluctuations

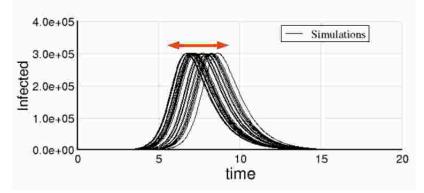


Keep this figure in mind: Almost a gaussian with $\sigma \sim N^{-1/2}$.

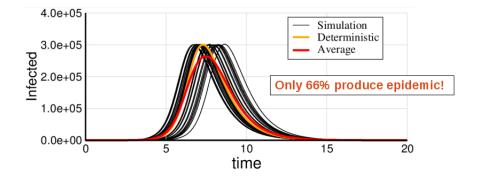
More examples: Deterministic or stochastic?



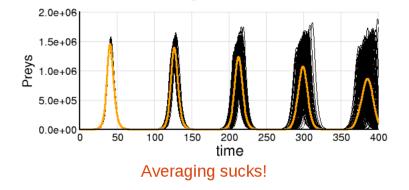
More examples: Deterministic or stochastic?



One infected in a population if a million susceptibles



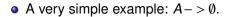
Beware simple averaging...

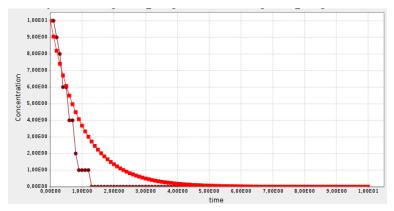


- When can we **safely** use ODEs?
 - If (population) numbers are large
 - Far from extinction
 - Far from a bifurcation

- When **MUST** we use stochastic methods
 - Close to extinction or bifurcation points
 - If we are interested on individuals
 - Multiple stationary states

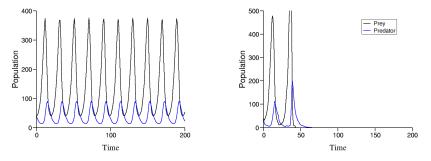
Life close to extinction





• Conclusion: different times to extinction and randomly distributed. **SO WHAT!!!**

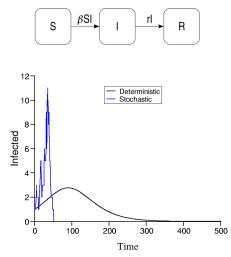
• A more interesting example: Predator-prey dynamics (Lotka-Volterra)



Stochastic life sucks (for these guys)!!!

Life close to a bifurcation point

The classical SIR model (Susceptible-Infected-Recovered)



$R_0 = 1.2$ (for instance, seasonal influenza)

- The classical SIR model: some conclusions
 - Stochasticity changes our notion of R₀
 - The intensity of the epidemic depends strongly on fluctuations
 - Sometimes there is not epidemic even with $R_0 > 1!!!$

 The classical SIR model: the interest on these problems is relatively new (see this <u>link</u>)

Mathematical Biosciences 163 (2000) 1-33

Mathematical Biosciences

www.elsevier.com/locate/mbs

Comparison of deterministic and stochastic SIS and SIR models in discrete time

Linda J.S. Allen *,1, Amy M. Burgin

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, USA Received 2 June 1998; received in revised form 16 August 1999; accepted 25 August 1999

Life close to a bifurcation point

 The classical SIR model: the interest on these problems is relatively new (or this other link)

Available online at www.sciencedirect.com

Mathematical Biosciences 208 (2007) 76-97

Mathematical Biosciences

www.elsevier.com/locate/mbs

Some properties of a simple stochastic epidemic model of SIR type

Henry C. Tuckwell a,*, Ruth J. Williams b

^a Max Planck Institute for Mathematics in the Sciences Inselstr. 22, Leipzig D-04103, Germany ^b Department of Mathematics, University of California San Diego, La Jolla, CA 92093, USA

Received 27 May 2005; received in revised form 1 May 2006; accepted 20 September 2006 Available online 11 October 2006

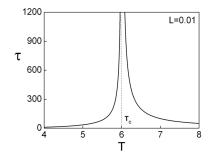
Life close to a bifurcation point

 The classical SIR model: the interest on these problems is relatively new (or even this thesis)

THE STOCHASTIC DYNAMICS OF EPIDEMIC MODELS

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences

• An analogy (I couldn't resist!!!)



That could be the susceptibility (magnetic field fluctuations), specific heat (energy fluctuations), ...

- Close to extinction or bifurcations
- When interested on <u>individuals</u>
- Multiple stationary states

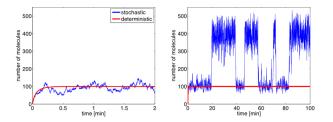
- Information on individuals matter. For instance
 - First passage times (see next slide)
 - Average time in a given state (link with molecular information)
 - Distribution of a given metric (observable)

Multiple stationary states

$$2A \stackrel{k_1}{\underset{k_2}{\leftrightarrow}} 3A, \quad \emptyset \stackrel{k_3}{\underset{k_4}{\leftrightarrow}} A$$

the deterministic equation is simply

$$\frac{dA}{dt} = k_1 A^2 - k_2 A^3 + k_3 - k_4 A$$



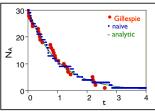
• Numerics:

- Naive integration
- Gillespie (classical)
- Tau-leap
- More sophisticated tools (Munksy)
- Analytical:
 - Exact results: branching processes
 - Exact results: (chemical) master equation
 - Approximations: Van Kampen
 - The most general reference to learn about this method is Van Kampen's book

Our old friend: $A \rightarrow \emptyset$

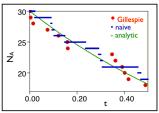
NAIVE (or *t*-leap)

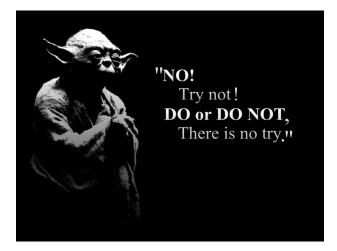
- Probability of occurring in the interval Δt (or τ)
- Fixed timesteps
- Ist order approximation
- Trial and error



GILLESPIE

- How long will it take the next event?
- Variable time steps
- Exact!





Let's go back to the simplest reaction: $A \xrightarrow{k} \emptyset$

- Deterministic approach: $A(t) = A_0 e^{-kt}$
- Stochastic:
 - Discrete number of molecules A: NA
 - Probability that we loose 1 molecule in interval Δt : $N_A(t)k\Delta t$.
 - Compute the probability of having n molecules: p_n(t).
 - Two possibilities for having $N_A(t + \Delta t) = n$:
 - $N_A(t) = n$ (no reaction during interval Δt .
 - Having $N_A(t) = n + 1$ and loosing one.
 - Doing the math

$$p_n(t + \Delta t) = \underbrace{p_n(t)(1 - nk\Delta t)}_{\text{nothing happened}} + \underbrace{p_{n+1}(t)(n+1)k\Delta t}_{\text{decay}}$$

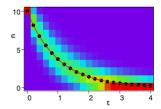
Chemical Master equation

- The master equation is the limit when $\Delta t \rightarrow 0$.
- In our simple case (initially we have *n*₀ particles):

$$\frac{dp_n}{dt} = k(n+1)p_{n+1}(t) - knp_n(t).$$

Solution:

$$p_n(t) = e^{-nkt} \begin{pmatrix} n_0 \\ n \end{pmatrix} (1 - e^{-kt})^{(n_0 - n)}$$

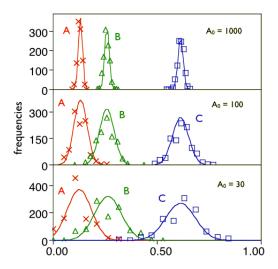


CAVEAT: In this case the stochastic and deterministic provide the same average but remember ...

- Deterministic: First average then integrate
- Stochastic: First integrate then average

Van Kampen's approximation

Do you remember that figure?



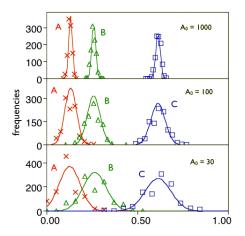
• The idea behind Van Kampen's approximation is to **transform** the master equation into a Langevin equation:

Langevin = Deterministic system + Gaussian fluctuations (noise)

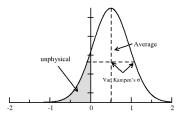
- Also known as Ω-expansion, linear noise or gaussian closure (even has a wikipedia entry).
- In general:
 - The good: It enriches traditional ODE approximation with noise.
 - The bad: Valid far from bifurcation points or extinction values
- Then why is it useful?

Van Kampen's approximation

Then why is it useful?



 It provides a criterion to determine when pure stochastic methods (in practice, Gillespie) are MANDATORY



Sketch of the method:

• Write *n* as the sum of a deterministic and a random variables:

$$n = \Omega x + \sqrt{\Omega} \xi$$

- Rewrite the probabilities: $p_n(t) = p_{\Omega x + \sqrt{\Omega} \xi} \equiv \Pi(\xi, t)$
- Expand every function of $x + \Omega^{-1/2} \xi$ in power series of $\Omega^{-1/2}$
- Use shift operators: $\mathcal{E}f(n) = f(n+1) \Rightarrow \mathcal{E}f(\xi) = f(\xi + \Omega^{-1/2})$
- Arrive at a Fokker-Plank equation of the form, to order $O(\Omega^{-1/2})$:

$$\frac{\partial \Pi}{\partial t} = \sum_{ik} A_{ik} \frac{\partial (\xi_i \Pi)}{\partial \xi_k} + \frac{1}{2} \sum_{ik} [BB^T]_{ik} \frac{\partial^2 \Pi}{\partial \xi_i \partial \xi_k}$$

where *A* and *B* are matrices depending on the specific system. The eigenvalues of *B* give us information about the *variance* of the fluctuations.

- Transcription and translation: Paulsson, Nature (2004)
- Enzyme kinetics: Grima, BMC Sys Biol (2009)
- Enzyme kinetics: Grima, the misterious case of the previously unsolved Michaelis-Menten stochastic dynamics (Phys. Rev. Lett.)
- Autocatalytic reactions: Dauxois et al, Phys. Rev. E (2009)
- General kinetic of reactions: Ben Avraham, 1987

Gooood news: Someone did the work for us

OPEN a ACCESS Freely available online

Intrinsic Noise Analyzer: A Software Package for the Exploration of Stochastic Biochemical Kinetics Using the System Size Expansion

Philipp Thomas^{1,2,3}⁹, Hannes Matuschek⁴⁹, Ramon Grima^{1,2}*

Summary of part one

When stochastic

- Close to extinction or bifurcations (case study 1)
- When VK criterion suggests it
- Multiple stationary states
- Interested on individuals (case study 2)

Tools

- Gillespie (or tau-leap)
- Van Kampen's approximation
- Branching processes (in next life)
- Averaging after integrating (and no the other way around)

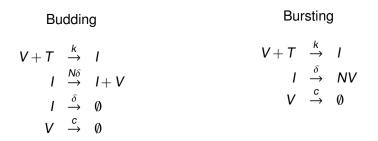
Case studies

- An example from virology: comparison of strategies
- An example from immunology: time needed to activate a T-cell

Case study I: Virology

When a cell is infected by a virus, there are two ways in which the virus can use the cell machinery to reproduce

- Bursting (explosive release): The cell dies and K virions are released
- Budding (continuous release): The cell lives infected and serves as a virion provider



Pearson, Krapivsky and Perelson, PLoS Comp. Biol. 7(2), e1001058 (2011).

Why stochastic matters? Two answers:

- Same deterministic model but very different dynamics
- In early infections the population of virus is small (remember: small ⇒ large fluctuations)

Some tips and tricks:

- From A and B means
 - Both A and B lose
 - At a rate proportional to A × B ("and" means "product")
- From either A or B means
 - Both A and B lose
 - In different reactions at rates proportional to either A or B
- Write down stochiometric matrix

Budding: Deterministic equations

Budding

$$V \stackrel{kT}{\rightarrow} I (R_1)$$
$$I \stackrel{N\delta}{\rightarrow} I + V (R_2)$$
$$I \stackrel{\delta}{\rightarrow} \emptyset (R_3)$$
$$V \stackrel{c}{\rightarrow} \emptyset (R_4)$$

Stochiometric matrix

	R_1	R ₂	R ₃	R_4
V	-1	1	0	-1
Ι	+1	0	-1	0

$$\frac{dV}{dt} = -R_1 + R_2 + 0R_3 - R_4 = N\delta I - (kT + c)V$$
$$\frac{dI}{dt} = R_1 + 0R_2 - R_3 + 0R_4 = kTV - \delta I$$

Bursting: Deterministic equations

$$\frac{dV}{dt} = -R_1 + NR_2 - R_3 = N\delta I - (kT + c)V$$
$$\frac{dI}{dt} = R_1 - R_2 + 0R_3 = kTV - \delta I$$

- Same deterministic equations \Rightarrow same $R_0 \equiv \frac{NkT}{kT+c}$
- However, different stochastic probabilities of extinction

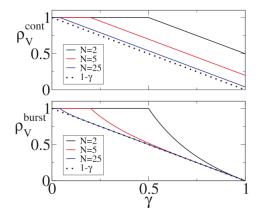
$$\rho_V^{burst} = min(\rho^*, 1)$$

 $\rho_V^{bud} = min(1 - (R_0 - 1)/N, 1)$

where ρ^* is a positive root of

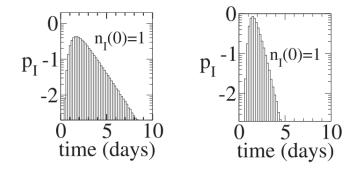
$$\frac{1-\rho_V}{1-(\rho_V)^N} = \frac{R_0}{N} \equiv \gamma$$

(1)



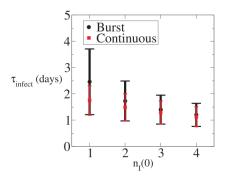
Additional benefits of stochastic dynamics

- Frequency distributions
- First passage times



Additional benefits of stochastic dynamics

- Frequency distributions
- First passage times



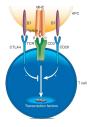
Case study II: Immunology

What is the average time needed to activate a T-cell?

• Here is the reference

A stochastic T cell response criterion

The biological system



- An APC (antigen presenting cell) presents pieces of antigen to a T-cell
- The T-cell has receptors (TCR) able to recognize specific antigens
- The *matching* between the ligand and the receptor elicits a response (T-cell activation)

Experimental evidence

- A few agonist pMHC ligands can suffice to trigger T cell responses
- Sufficiently long TCRpMHC engagements are required to initiate the signalling cascade, resulting in productive signal transduction
- T-cells can integrate signals; that is, counting devices are at work in T cells to allow signal accumulation, decoding and translation into biological responses

HYPOTHESIS: T cell responses take place once a given number of TCRs (and not necessarily in a simultaneous way), N, have been engaged with ligand for at least a dwell time, τ , each

http://rsif.royalsocietypublishing.org/content/early/2012/06/27/rsif.2012.0205.full

Remember: Time needed to have *N* ligand-receptor engagements a time τ .

The simplest model

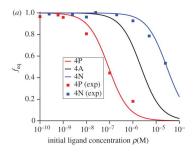
 Deterministically, we find (eliminating the concentration of free ligands and empty receptors)

 \bullet + $\left| \frac{k_{+}}{k} \right| \bullet$

$$\frac{dz}{dt} = -k_{\rm off} + k_{\rm on}(N_{\rm R} - z) \left(\rho - \frac{N_{\rm c} z}{V N_{\rm A}}\right)$$

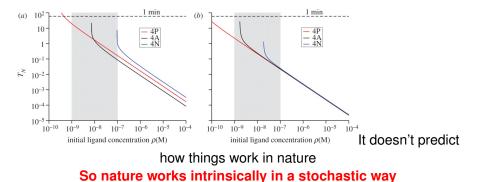
Remember: Time needed to have *N* ligand-receptor engagements a time τ .

First: test the model



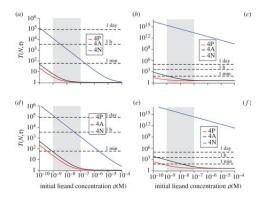
First attempt: deterministic criterion

 Second: the best we can do is wait until we have N engaged and then wait for another τ seconds

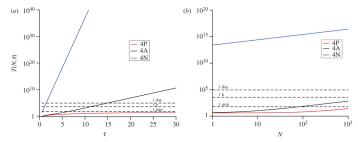


Second attempt: stochastic criterion

- Stochastic dynamics allows us to count engaged receptors individually
- Whenever a receptor is engaged for a time longer than τ , count +1.
- Wait until *N* have been engaged at least *τ*.
- Experimental data suggests that $\tau \in [1, 10]$ and $N \in [10, 100]$



This model provides invaluable testable predictions



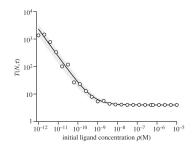
Second attempt: stochastic criterion

- This simple model is amenable to analytical calculations
 - Mean First Passage Time:

$$T(N,\tau) = \tau + \frac{N e^{k_{\rm off}\tau}}{k_{\rm on} N_{\rm R}\rho}$$

Variance

$$Var(T) = rac{Ne^{k_{
m off}\tau}}{(k_{
m on}N_R
ho)^2}$$



We ALWAYS need stochastic methods if we are concerned with *labeled* individuals

Some computational tools

- Bionetgen (Gillespie, ODE). Simple to codify
- Intrinsic Noise Analyzer (Van Kampen vs Gillespie)
- Mathematica: analytical (e.g., Van Kampen)
- General tools:
 - Matlab
 - Python
 - C++
 - R
 - ...

Thanks for your attention