
Sloppiness in Multiparameter Models

Bryan Daniels
July 28, 2008

Jim Sethna – Cornell University



Motivation

› Biological models have lots 
of parameters, and they 
control the output in complex 
ways.

› It's often hard to measure 
these parameters.

› How does this affect model 
predictions?  What 
predictions can we trust? Brown et al., Phys. Biol. 1: 184-195



Cost Landscape

› A set of parameters θ has a cost based on 
how well the model fits measured data.

› We usually use a squared residuals cost.
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Cost Landscape

› Locally around the 
best-fit point we can 
approximate the cost 
as quadratic.

› The matrix of 2nd 
derivatives (Hessian) 
gives us the 
quadratic expansion.

Gutenkunst et al., PLoS Comput Biol 3(10): e189 (2007)



Making Sensible Error Bars
› Most thorough method: 

Bayesian analysis using Monte 
Carlo sampling

1. Sample from all parameter sets 
that fit the data;

2. Find prediction output from 
each; 

3. Calculate mean, standard 
deviation, etc.

› Example: Brown et al., Phys. Biol. 1: 184-195
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Making Sensible Error Bars
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Making Sensible Error Bars
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“Sloppiness”

› Nonlinear 
multiparameter 
models are 
“sloppy”: orders 
of magnitude 
more sensitive to 
changes in certain 
directions in 
parameter space.

Gutenkunst et al., PLoS Comput Biol 3(10): e189



Measuring Sloppiness

› The eigenvalues of the Hessian tell you 
about sensitivity along eigendirections in 
parameter space

› Produces a “sensitivity spectrum”

1) Define cost – usually 
squared residuals

2) Find Hessian            
(2nd derivative matrix 
of cost)



› Hallmarks of 
sloppiness:

1. Large range of 
eigenvalues

2. Eigenvalues 
roughly evenly 
spaced in log 
space

Gutenkunst et al., PLoS Comput Biol 3(10): e189



Implications of Sloppiness

› Large range means cost contour ellipsoids 
are routinely stretched by a factor of 1000 
(the aspect ratio of a human hair).

› Even spacing means there is no well-defined 
cutoff between “important” and 
“unimportant”.



Universality of sloppiness

› Sloppiness has been found in every 
biological system analyzed (17 so far), and 
more:
• Interatomic potentials, particle accelerator 

design, sums of exponentials...

› May be a “universal” feature of nonlinear 
multiparameter fitting problems.



Parameter Uncertainty is Inevitable

› Sloppiness provides an answer for why fits 
can lead to large uncertainties in parameter 
values.  

› Large parameter uncertainty does not imply 
large uncertainty in predictions.



Uncertainties
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Uncertainties
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Uncertainties
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Sloppiness is “Real”

› Is it due to too few data points?
• No; even for data the model can fit perfectly,  

sloppiness persists.

› Is it due to the local approximation?
• No; principal component analysis of Monte 

Carlo ensembles still displays sloppiness.



SloppyCell

› Computing environment for simulating and 
analyzing biochemical networks (or any 
system of ODEs)

› Structure for optimization and efficient 
calculation of ensembles

› Supports Systems Biology Markup 
Language (SBML)

› Implemented in Python



Is robustness a delicate balancing act?

› A subset of the circadian 
rhythm network in 
cyanobacteria

› The phosphorylation 
decay rate is measured to 
be robust to temperature 
change, even when 
individual  
(de)phosphorylation 
rates would double
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Robustness and Evolvability



Robustness and Evolvability

› Robustness: What fraction of a given volume 
in parameter space keeps the output reasonably 
constant?

› Evolvability: With a selection pressure to 
move in a certain direction in residual (output) 
space, how far can I move in that direction by 
varying my parameters by a fixed amount?



Robustness and Evolvability

› Individual evolvability decreases with 
robustness in example biological model



Individual and Population Evolvability

› Sloppiness may increase the variety of 
behaviors available to a population through 
mutation



Future work?

› Use information from multiple 
experiments / multiple systems to create 
ensembles

› Network structure

1. Can we vary uncertain network connections in 
a similar way as parameters?

2. Can we predict which experimental data would 
best constrain the network structure?



Conclusions

› Varying parameters provides important 
information about model uncertainty.

› Sloppiness is a common feature in large 
multiparameter models.

1. Precise measurements of constants are not as 
important; instead optimize experiments to 
provide well-constrained predictions.

2. Sloppiness can have important implications for 
robustness and evolvability.
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Mapping parameters to residuals

Parameter space

Residual (output) space



Universality of Sloppiness
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Making Sensible Error Bars

› Quickest method: Linear covariance analysis

› Two approximations:

1. Quadratic expansion around best-fit

2. Linear response of output to changes in 
parameters



Experimental Optimization

› We can ask what new 
measurement will 
reduce the uncertainty 
of a specific output.

› Example: Adding a 
single measurement of 
a different protein 
concentration.

› Must use linear approx.

Before

After

Fergel Casey et al., IET Sys. Biol. 1 (3), 190 (2007)



Sloppiness

› What does understanding sloppiness buy 
you?  How can you use these ideas?

1.More efficient Monte Carlo sampling of 
parameter space;

2.Hints at the most important reactions in a 
network;

3.An appreciation of the futility of thinking in 
terms of individual parameters;

4.Model simplifications?



More Efficient Sampling

› Using a Metropolis 
Monte Carlo algorithm, 
we can make use of our 
knowledge about the 
local shape of the cost 
function.

› Big steps in sloppy 
directions, small steps 
in stiff directions.
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Stiffest Directions

› The parameters 
with large 
components in the 
stiffest 
eigenvectors are in 
some sense more 
important.
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Current Projects

› SloppyCell

› Origin of sloppiness

› Curved manifolds: connections to GR?

› Model simplification?

› New systems to implement



Where does sloppiness come from?

› Related to the interchangeability of different 
sets of parameters

› Using the wrong parameterization

› Example: fit polynomial function on [0,1]

monomials: sloppy Legendre polynomials: not sloppy



Origin of Sloppiness

› With two idealizations, get “perfect” 
sloppiness:

1. Parameters are exactly interchangable.

2. Parameters are nearly degenerate.
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Curved Manifolds

› Anharmonic effects 
seem to be important.

› To efficiently explore 
parameter space, we 
may need curved 
coordinates.

Sloppy direction
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Curved Manifolds

› Example: sum of exponentials problem



Model Simplification

› Figure: Correlated 
parameter clusters

› When sets of 
parameters have the 
same effect on 
output:

1. We see sloppiness;

2. It suggests we could 
simplify the 
model...
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New Systems to Implement

› To avoid getting too abstract, we are on the 
lookout for real-world problems to 
implement...

1. Climate modeling

2. Economic models

3. Physics models (CMB, accelerator design)

4. Other systems biology problems



Conclusions

› Varying parameters provides important 
information about model uncertainty.

› Sloppiness is a common feature in large 
multiparameter models.

1. Precise measurements of constants are not as 
important; instead optimize experiments to 
provide well-constrained predictions.

2. Simplification schemes may be fruitful.
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