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Formulation of Stochastic Chemical Kinetics
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Reaction volume=Ω

Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region dΩ is
given by dΩ

Ω .

(Thermal Equilibrium) The molecules move due to the thermal energy.
The reaction volume is at a constant temperature T . The velocity of a
molecule is determined according to a Boltzman distribution:

fvx(v) = fvy(v) = fvz(v) =

�
m

2πkBT
e
− m

2kBT v2
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Probability of Collision: Two Specific Molecules

Given:

• Two spheres A and B with velocities vA and vB, and radii rA and
rB.

• The probability that the center of either sphere lies in a volume dΩ
is given by dΩ

Ω .

What is the probability that A and B will collide in the time [t, t + dt]?



dΩ

rA + rB

Equivalently . . .

�vBA�dt

�vBA�dt

Collision takes place if the center of A

lies in the region dΩ�.

dΩ�

In the time [t, t + dt] molecule A sweeps
a volume of dΩ = πr2B �vBA� dt

Collision takes place if any part of A

lies in the region dΩ.

During [t, t + dt] a molecule with radius rA + rB

sweeps a volume of dΩ� = π(rA + rB)2 �vBA� dt

The probability of A and B colliding during [t, t + dt] is

1

Ω
π(rA + rB)2�vBA� dt



mean relative speed

Note:

• The probability of A and B colliding was computed for a given a
relative velocity of vBA (conditional probability)

• The relative velocity is a random variable, and we must average over
all velocities.

If we denote by fBA(·) the probability density of the random variable
VBA we have

Collision Probability in [t,t+dt]

=
�

R3
P (collision in [t, t + dt] | VBA = v) fBA(v)dv

=
�

R3

1

Ω
π(rA + rB)2�v�dt fBA(v)dv

=
1

Ω
π(rA + rB)2dt

�

R3
�v�fBA(v)dv

If we denote by fBA(·) the probability density of the random variable
VBA we have

Collision Probability in [t,t+dt]

=
�

R3
P (collision in [t, t + dt] | VBA = v) fBA(v)dv

=
�

R3

1

Ω
π(rA + rB)2�v�dt fBA(v)dv

=
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Ω
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�v�fBA(v)dv



The probability density function of fBA(·) can be easily computed from

the Boltzman distribution of the velocity and the independence of Vx,

Vy, and Vz.

fBA(v) =

�
m̂

2πkBT

�
3/2

e
− m̂

2kBT �v�
2

, where m̂ =
mA + mB

2

Hence

Mean relative speed =

�

R3
�v�fBA(v)dv

=

�

R3
�v�

�
m̂

2πkBT

�
3/2

e
− m̂

2kBT �v�
2

dv

=

�
8kBT

πm̂

Probability of A-B collision within [t,t+dt]:

1

Ω
π(rA + rB)2dt

�
8kBT

πm̂



Not all collisions lead to reactions. One can factor in the ”reaction

energy”.

Assumption: An A − B collision leads to a reaction only if the kinetic

energy associated with the component of the velocity along the line of

contact is greater than a critical energy �.

vBA

v̄BA

Reaction if 1
2m̂v̄2

BA > �

It can be shown that:

Probability (A-B reaction | A-B collision) = e
− �

kBT

Probability of A-B reaction within [t,t+dt]:

1

Ω
π(rA + rB)2

�
8kBT

πm̂
e
− �

kBT dt



Given N species: S1, . . . ,SN with populations x1, . . . , xN at time t.

Consider the bimolecular reaction channel (with distinct species):

R : Si + Sj → products

The number of distinct Si−Sj pairs that can react is: xi · xj. Therefore,

Probability of an R reaction within [t,t+dt]:

xixj
1

Ω
π(ri + rj)

2

�
8kBT

πm̂
e
− �

kBT dt = w(x)

w(·) is called the propensity function.

Consider the bimolecular reaction channel (with same species):

R� : Si + Si → products

The number of distinct Si−Si pairs that can react is: xi(xi−1)
2 . Therefore,

Probability of an R� reaction within [t,t+dt]:

xi(xi − 1)

2

1

Ω
πr2i

�
8kBT

πm̂
e
− �

kBT dt = w(x) dt



c
φ→ Products

Si + Sj → Products

Si + Si → Products

Si → Products

1

Ω
π(ri + rj)

2

�
8kBT

πm̂
e
− �

kBT

1

Ω
πr2i

�
8kBT

πm̂
e
− �

kBT

w(x) c

c ·
xi(xi − 1)

2

c · xi

c

c · xixj

Reaction Propensity Rate

c

c

c

For a monomolecular reaction: c is numerically equal to the reaction
rate constant k of conventional deterministic chemical kinetics

For a bimolecular reaction: c is numerically equal to k/Ω, where k is the
reaction rate constant of conventional deterministic chemical kinetics

kΩ

k

Reactions and Propensity Functions
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The Markov Description of Biochemical Processes



• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

A Jump-Markov description of 
chemical kinetics

[10, 15]

# species 1 # species 2

[11, 15]

[11, 14] [12, 14]

x ∈ Z
N

11



• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

• These reactions are random, others could have occurred:

A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

x ∈ Z
N
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A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

Or others...
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A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

[7, 15]

[7, 14]

[7, 16]

[13, 15]

[13, 14]

[13, 16]

[14, 15]

[14, 14]

[14, 16]

[11, 17] [12, 17][10, 17][9, 17][8, 16][7, 17] [13, 17] [14, 17]

[11, 13] [12, 13][10, 13][9, 13][8, 13][7, 13] [13, 13] [14, 13]

Or others...
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A Jump-Markov description of 
chemical kinetics

Or others...
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A Jump-Markov description of 
chemical kinetics

Or others...
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Reaction Stoichiometry

• The Stoichiometric vector, s, refers to the relative change in the 
population vector after a reaction.

• There may be many different reactions for a given stoichiometry.

17

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

S1 → S1 + S1

S2 → S2 + S1

∅ → S1

s1 = [1, 0]T

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

S2 → S2 + S2

S1 → S1 + S2

∅ → S2

s3 = [0, 1]T

S2 → S1

S1 + S2 → S1 + S1

S2 + S2 → S1 + S2

s4 = [1,−1]T



Reaction Propensities

• The propensity,    , of a reaction is its rate.
•          is the probability that the      reaction will occur in a 

time step of length    .
• Typically, propensities depend only upon reactant populations. 

18

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

w

wµdt µ
th

dt

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

k1x2(x1 − 1)/2
k2x1x2

k3x1

w2(x1, x2)



Markov is a forgetful process



Probability reaction will occur in               :

Probability reaction will not occur in               :             

Probability a reaction will not occur in two such time 
intervals                 :

Suppose that,               , then the probability that no reaction will 
occur in the interval              is

Taking the limit as K goes to infinity yields that the probability that            
no reaction will occur in the interval              is

20

[t, t + ∆t) w∆t + O(∆t)2

[t, t + ∆t) 1 − w∆t + O(∆t)2

[t, t + 2∆t)
(

1 − w∆t + O(∆t)2
)2

= 1 − 2w∆t + O(∆t)2

[t, t + τ)
τ = K∆t

(

1 − w
τ

K
+ O(K−2)

)K

[t, t + τ)

lim
k→∞

(

1 − w
τ

K
+ O(K−2)

)K

= exp(−wτ)

Markov Reaction Times



The probability that a reaction will occur in the interval              
is                               .   This is a cumulative distribution.

The density (derivative) of the random number,    , is:

Such a random number is known as an exponentially distributed 
random number.

Notation:

21

FT (τ) = 1 − exp(−wτ)

is an exponentially 
distributed r.v. with 

parameter:     . 

T ∈ EXP(λ) → T

λ

[t, t + τ)

fT (τ) =
1

w
exp(−wτ)

T

Markov Reaction Times



• We have assumed that the system is fully described by the 
population vectors.

• If no reaction occurs, then nothing will have changed.  

• Waiting times must be memoryless random variables.

• No matter where we cut and scale the distribution, it must 
always looks the same.

22
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The exponential is the only 
continuous r.v. with this property. 

Markov Reaction Times



Generating Reaction Times

• To generate an exponentially distributed random number, all we 
need is a uniform random number generator.

• Find the cumulative distribution,

• Generate uniform random number, 

• Find intersection where              :

• This is the time of the next reaction.

23

time (s)
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n 1 − exp(−λt)

F (t) = 1 − exp(−λt)

F (t) = r

r ∈ U[0, 1]

τ =
1

λ
log

1

1 − r



The (Chemical) Master Equation
(Forward Kolmorogrov Equation)



p(x, t + dt)− p(x, t) = −p(x, t)
�

k

wk (x)dt +
�

k

p(x− sk , t)wk (x)dt +O(dt2)

Rk fires once
Rk reaction
away from x

at x No reaction fires

more than one
reaction in dt

The Chemical Master Equation 

p(x, t + dt) = p(x, t)



1−
�

k

wk(x)dt +O(dt2)





+
�

k

p(x− sk, t)




�

k

wk(x)dt +O(dt2)



 +O(dt2)

Prob. that no reactions fire in [t, t + dt] = 1−
�

k wk(x)dt +O(dt2)
Prob. that reaction Rk fires once in [t, t + dt] = wk(x)dt +O(dt2)
Prob. that more than one reaction fires in [t, t + dt] =O(dt2)

The Chemical Master Equation

dp(x, t)

dt
= −p(x, t)

�

k

wk(x) +
�

k

p(x− sk, t)wk(x)
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Example: Transcription and degradation of mRNA
(as a birth-death process)



γ

k

N

Degradation: Probability a single mRNA
is degraded in time dt is nγdt

RNA Copy Number as a Random Variable

φ

DNA

mRNA
mRNA copy number N(t) is a random variable

Transcription: Probability a single mRNA
is transcribed in time dt is krdt

n− 10 1 2 n n + 1.....

k k k k

(n + 1)γnγγ

.....

k k

(n− 1)γ2γ 3γ

Slide Contributed by Mustafa Khammash
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n− 10 1 2 n n + 1.

k k k k

(n + 1)γnγγ

.

k k

(n− 1)γ2γ 3γ

Find p(n, t), the probability that N(t) = n.

P (n, t + dt) = P (n− 1, t) · kdt

+ P (n + 1, t) · (n + 1)γdt

+ P (n, t) · (1− kdt)(1− nγdt)

Prob.{N(t) = n− 1 and mRNA created in [t,t+dt)}

Prob.{N(t) = n + 1 and mRNA degraded in [t,t+dt)}

Prob.{N(t) = n and
mRNA not created nor degraded in [t,t+dt)}

P (n, t + dt)− P (n, t) = P (n− 1, t)kdt + P (n + 1, t)(n + 1)γdt− P (n, t)(k + nγ)dt

+O(dt
2)

Dividing by dt and taking the limit as dt→ 0

d

dt
P (n, t) = kP (n− 1, t) + (n + 1)γP (n + 1, t)− (k + nγ)P (n, t)

The Chemical Master Equation

Key Question:



Slide Contributed by Mustafa Khammash

We look for the stationary distribution

From the Master Equation ...

n = 0 kp(0) = γp(1)

...

mRNA Stationary Distribution

P (n, t) = p(n) ∀t

(k + nγ)p(n) = kp(n− 1) + (n + 1)γp(n + 1)

The stationary solution satisfies: d
dtP (n, t) = 0

kp(1) = 2γp(2)

n = 2 kp(2) = 3γp(3)

n = 1

kp(n− 1) = nγ p(n)



p(n) =
k

γ

1

n
p(n− 1)

=

�
k

γ

�2 1

n

1

n− 2
p(n− 2)

...

=

�
k

γ

�n 1

n!
p(0)

kp(n− 1) = nγ p(n) We can express p(n) as a function of p(0):

p(n) = e−aan

n!

We can solve for p(0) using the fact
∞�

n=0
p(n) = 1

⇒

Poisson Distribution

1 =
∞�

n=0

�
k

γ

�n 1

n!
p(0)

= ek/γ p(0) p(0) = e−k/γ

a =
k

γ

-1

Slide Contributed by Mustafa Khammash



We can compute the mean and variance of the Poisson RV N̄ with
density p(n) = e−aan

n! :

µ = E[N̄ ] =
∞�

n=0
np(n) = e−a

∞�

n=0
n

an

n!
= a

The second moment

E[N̄2] =
∞�

n=0
n2p(n) = a2 + a

Therefore,

σ2 = E[N̄2]− E[N̄ ]2 = a

mean = variance = a

The coefficient of variation Cv = σ/µ is

Cv =
1
√

a
=

1
√

µ

Slide Contributed by Mustafa Khammash



a=500
a=50
a=5



The Relationship of Deterministic to Stochastic 
Biochemical Processes.



dΦA

dt
= −k1ΦAΦB − k2ΦA

dΦA

dt
= −k1ΦAΦB + k2ΦA

dΦA

dt
= k1ΦAΦB

Example:

k1

k2

or

Φ
Relationship of Stochastic (X) and 
Deterministic (  ) Descriptions

A + B −→ C

A −→ B

dΦ

dt
= Sf(Φ) where

S =




−1 −1
−1 1
1 0



 , f(Φ) =

�
k1ΦAΦB

k2ΦA

�B

C

Given N species S1, . . . ,SN and M elementary reactions. Let Φi := [Si].

A deterministic description can be obtained from mass-action kinetics:

dΦ

dt
= Sf(Φ)

where f(·) is at most a second order monomial. It depends on the type
of reactions and their rates.



Define XΩ
(t) =

X(t)
Ω

.

Question: How does XΩ
(t) relate to Φ(t)?

Fact: Let Φ(t) be the deterministic solution to the reaction rate equa-
tions

dΦ

dt
= Sf(Φ), Φ(0) = Φ0.

Let XΩ(t) be the stochastic representation of the same chemical sys-
tems with XΩ(0) = Φ0. Then for every t ≥ 0:

lim
t→∞

sup
s≤t

���XΩ(s)−Φ(s)
��� = 0 a.s.

Ω

Slide Contributed by Mustafa Khammash

Φ
Relationship of Stochastic (X) and 
Deterministic (  ) Descriptions



φ, or XΩ = X/Ω

k(x)

γ0x

0 20 40 60 80 100
0

20

40

60

80

100

0 10 20 30 40 50
0

50

100
Ω =1

Ω = 10

0 10 20 30 40 50
0

50

100
Ω =3

0 10 20 30 40 50
0

50

100φ
,

or
X

Ω
=

X
/Ω

time(s)

w1(X) = Ωγ0X/Ω = γ0X

w2(X) = Ω
�

20 + 40
(X/Ω)10

4010 + (X/Ω)10

�

Stochastic 

w1(φ) = γ0x

w1(φ) =
�

20 + 40
φ10

4010 + φ10

�

Deterministic 
2



Moment Computations

• Affine Propensity 
• Moment Closures



Moment Computations

For the first moment E[Xi], multiply the CME by xi

and sum over all (x1, . . . , xN) ∈ NN

For the second moment E[XiXj], multiply the CME by xixj

and sum over all (x1, . . . , xN) ∈ NN

Let w(x) = [w1(x), . . . , wM(x)]T

In matrix notation:

dE[X]

dt
= SE[w(X)]

dE[XXT ]

dt
= SE[w(X)XT ] + E[w(X)XT ]TST + S{diagE[w(X)]}ST



These are linear ordinary differential equations and can be easily solved!

Affine Propensity

Suppose the propensity function is affine:

w(x) = Wx + w0, (W is N ×N , w0 is N × 1)

Then E[w(X)] = WE[X]+w0, and E[w(X)XT ] = WE[XXT ]+w0E[XT ].

This gives us the moment equations:

d

dt
E[X] = SWE[X] + Sw0 First Moment

d

dt
E[XXT ] = SWE[XXT ] + E[XXT ]WTST + S diag(WE[X] + w0)S

T

+ Sw0E[XT ] + E[X]wT
0ST Second Moment

Slide Contributed by Mustafa Khammash



Affine Propensity (cont.)

Define the covariance matrix Σ = E[(X − E[X])(X − E(X)]T ].
We can also compute covariance equations:

d

dt
Σ = SWΣ + ΣWTST + S diag(WE[X] + w0)S

T

Steady-state Case
The steady-state moments and covariances can be obtained by solving
linear algebraic equations:

Let X̄ = lim
t→∞

E[X(t)] and Σ̄ = lim
t→∞

Σ(t).

Then

SWX̄ = −Sw0

SW Σ̄ + Σ̄WTST + S diag(WX̄ + w0)S
T = 0

Slide Contributed by Mustafa Khammash



Fluctuations Arise from Noise Driven Dynamics 

Define A = SW , and B = S
�

diag(WX̄ + w0).
The steady-state covariances equation

SW Σ̄ + Σ̄WTST + S diag(WX̄ + w0)S
T = 0

becomes

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

The Lyapunov equation characterizes the steady-state covariance of a
output of the linear dynamical system

ẏ = Ay + Bω

where ω is a unit intensity white Gaussian noise!

More precisely, the solution of the vector SDE:

dy = Ay dt + B dWt

where Wt is Brownian motion. This is also called Ornstein-Uhlenbeck

process. Slide Contributed by Mustafa Khammash



Example: Gene Expression



X1(t) is # of mRNA; X2(t) is # of protein

W w0

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

Application to Gene Expression
Reactants

R1 : φ −→ mRNA

R2 : mRNA −→ φ

R3 : mRNA −→ protein + mRNA

R4 : protein −→ φ

Reactions

S =

�
1 −1 0 0
0 0 1 −1

�

w(X) =





kr

γrX1

kpX1

γpX2




=





0 0
γr 0
kp 0
0 γp





�
X1

X2

�

+





kr

0
0
0





Stoichiometry and Propensity

kr

γr

kp

γp



A = SW =

�
−γr 0
kp −γp

�

, Sw0 =

�
kr

0

�
Steady-State Moments

Steady-State Covariance

X̄ = −A−1Sw0 =





kr
γr

kpkr
γpγr





Σ̄ =





kr
γr

kpkr
γr(γr+γp)

kpkr
γr(γr+γp)

kpkr
γpγr

(1 + kp
γr+γp

)





BBT = S diag(WX̄ + w0)ST =




2kr 0

0 2kpkr
γr





The steady-state covariances equation

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

can be solved algebraically for Σ̄.



Coefficients of Variation

C2
vr =

1
kr
γr

=
1

X̄1

C2
vp =

1
krkp
γrγp

�

1 +
kp

γr + γp

�

=
1

X̄2

�

1 +
kp

γr + γp

�

Large mean does not imply small fluctuations!

Question: Does a large X̄2 imply a small Cvp?

C2
vp =

1
krkp
γrγp

�

1 +
kp

γr + γp

�

≥
1

krkp
γrγp

�
kp

γr + γp

�

=
γrγp

kr
·

1

γr + γp

X̄2 = krkp
γrγp

, which can be chosen independently from Cvp.



Time, s
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C2

vp = 0.51
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kr = 10 kp = 10
C2

vp = 0.06
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Time, s
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1

1.5

C2
vp = 0.015

kr = 100 kp = 1

P

E{P}

Time, s
0 100 200 300 400 500

0.5

1
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C2
vp = 0.0105

kr = 1000 kp = 0.1

E{P} = 100, γr = γp = 1



Moment Computations

• Affine Propensity 
• Moment Closures 



Moment Closures.

• When Second and Higher order terms exist in the propensity functions, 
each moment depends upon higher moments.
‣ For example, if                               , then

• The first moment depends upon the second; the second upon the third; 
and so on.

• Moment closures are approximations that attempt to remove this 
dependence.



d
dt

�
{µi}
{σij}

�

=

�
f1({µi}, {σij}) + u1({µi}, {σij}, {σijk}, . . .)
f2({µi}, {σij}) + u2({µi}, {σij}, {σijk}, . . .)

�

,

d
dt

�
{µi}
{σij}

�

=

�
f1({µi}, {σij}) + û1({µi}, {σij})
f2({µi}, {σij}) + û2({µi}, {σij})

�

,

where the choice of û1 and û2
depends upon the chosen moment closure.

Moment Closures.



Gaussian Moment Closure

• If one assumes that the distributions are Gaussian, then the closure is 
simple: 

• which yields:

• Higher moments are easy to derive with a moment generating function:



Many other closures are possible:

• If one assumes that the distributions are Log-Normal, a different closure 
is used:

• One of the most common closures is the Linear Noise Approximation.

• In this, all moments are written in terms of themselves and lower 
moments:

‣ the mean is set equal to the deterministic process.
‣ the second moments are assumed to be gaussian, and depend upon the mean 

and itself.



Noise Suppression and Exploitation (Examples)

• Feedback for Noise Suppression
• Stochastic Focussing
• Stochastic Switches



X1(t) is # of mRNA; X2(t) is # of protein

W w0

Noise Attenuation through Negative Feedback
Reactants

R2 : mRNA −→ φ

R3 : mRNA −→ protein + mRNA

R4 : protein −→ φ

Reactions

S =

�
1 −1 0 0
0 0 1 −1

�
Stoichiometry and Propensity

kr

γr

kp

γp

k0 − k1 · (# protein)

γp

kp

γr

φ

φ

DNA

mRNA

protein

kr = k0 − k1 · (# protein)

w(X) =





k0 − k1X2

γrX1

kpX1

γpX2




=





0 −k1

γr 0
kp 0
0 γp





�
X1

X2

�

+





k0

0
0
0





R1 : φ −→ mRNA



BBT = S diag(WX̄ + w0)ST =

�
k0 + γrµr − k1µp 0

0 kpµr + γpµp

�

The steady-state covariances equation

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

can be solved algebraically for Σ̄.

Steady-State Moments

Steady-State Covariance

A = SW =

�
−γr −k1

kp −γp

�

, Sw0 =

�
k0

0

�

X̄ = −A−1Sw0 =





k0
γr

1+
k1kp
γpγr

k0kp
γrγp

1+
k1kp
γpγr





=:

�
µr

µp

�

Σ̄22 = σ2
p =

�
1− φ

1 + bφ
·

b

1 + η
+ 1

�

µp where φ =
k1

γp
, b =

kp

γr
, η =

γp

γr



Feedback vs. No Feedback

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

k0 − k1 · (# protein)

γp

kp

γr

φ

φ

DNA

mRNA

protein

Mean

Variance

µ∗
p µ∗

p

�
1− φ

1 + bφ
·

b

1 + η
+ 1

�

µ∗p where φ =
k1

γp

�
b

1 + η
+ 1

�

µ∗
p

Protein variance is always smaller with negative feedback!

< 1

In order to compare the noise in the two cases, we must ensure that
both configuations have the same mean!

Impose the constraint: µFB
p = µNFB

p =: µ∗
p

This may be achieved by choosing k0 = kr + k1µNFB
p .

no feedback feedback



γp = γr = 1 kp = 10;
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Note that these distributions are NOT Gaussian.



Exploiting the Noise: 
Failure of the linear noise approximation

•  Noise enhances signal! 
Johan Paulsson , Otto G. Berg , and Måns Ehrenberg, PNAS 2000

stochastic

deterministic
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kq 1φ −→ P −→ φ

n is #S
K = kp/ka

From Jensen’s Inequality:

E[q] = E

�
1

1 + n
ΩK

�

≥
1

1 + E[n]
ΩK

q =
1

1 + n
ΩK

may be approximated by

convex


