Stochastic Chemical Kinetics

Formulation of Stochastic Chemical Kinetics

Gillespie, Physical A, 1992

Reaction volume $=\Omega$

Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region $d \Omega$ is given by $\frac{d \Omega}{\Omega}$.
(Thermal Equilibrium) The molecules move due to the thermal energy. The reaction volume is at a constant temperature T. The velocity of a molecule is determined according to a Boltzman distribution:

$$
f_{v_{x}}(v)=f_{v_{y}}(v)=f_{v_{z}}(v)=\sqrt{\frac{m}{2 \pi k_{B} T}} e^{-\frac{m}{2 k_{B} T} v^{2}}
$$

Probability of Collision: Two Specific Molecules

Given:

- Two spheres A and B with velocities v_{A} and v_{B}, and radii r_{A} and r_{B}.
- The probability that the center of either sphere lies in a volume $d \Omega$ is given by $\frac{d \Omega}{\Omega}$.

What is the probability that A and B will collide in the time $[t, t+d t]$?

In the time $[t, t+d t]$ molecule A sweeps a volume of $d \Omega=\pi r_{B}^{2}\left\|v_{B A}\right\| d t$

Collision takes place if any part of A lies in the region $d \Omega$.

Equivalently ...

$$
r_{A}+r_{B}
$$

During $[t, t+d t]$ a molecule with radius $r_{A}+r_{B}$ sweeps a volume of $d \Omega^{\prime}=\pi\left(r_{A}+r_{B}\right)^{2}\left\|v_{B A}\right\| d t$

Collision takes place if the center of A lies in the region $d \Omega^{\prime}$.

The probability of A and B colliding during $[t, t+d t]$ is

$$
\frac{1}{\Omega} \pi\left(r_{A}+r_{B}\right)^{2}\left\|v_{B A}\right\| d t
$$

Note:

- The probability of A and B colliding was computed for a given a relative velocity of $v_{B A}$ (conditional probability)
- The relative velocity is a random variable, and we must average over all velocities.

If we denote by $f_{B A}(\cdot)$ the probability density of the random variable $V_{B A}$ we have

Collision Probability in [$\mathrm{t}, \mathrm{t}+\mathrm{dt}$]

$$
\begin{aligned}
& =\quad \int_{\mathbb{R}^{3}} P\left(\text { collision in }[t, t+d t] \mid V_{B A}=v\right) f_{B A}(v) d v \\
& =\quad \int_{\mathbb{R}^{3}} \frac{1}{\Omega} \pi\left(r_{A}+r_{B}\right)^{2}\|v\| d t f_{B A}(v) d v \\
& =\frac{1}{\Omega} \pi\left(r_{A}+r_{B}\right)^{2} d t \int_{\mathbb{R}^{3}}\|v\| f_{B A}(v) d v \\
& \text { mean relative speed }
\end{aligned}
$$

The probability density function of $f_{B A}(\cdot)$ can be easily computed from the Boltzman distribution of the velocity and the independence of V_{x}, V_{y}, and V_{z}.

$$
f_{B A}(v)=\left(\frac{\hat{m}}{2 \pi k_{B} T}\right)^{3 / 2} e^{-\frac{\hat{m}}{2 k_{B} T}\|v\|^{2}}, \quad \text { where } \hat{m}=\frac{m_{A}+m_{B}}{2}
$$

Hence

$$
\begin{aligned}
\text { Mean relative speed } & =\int_{\mathbb{R}^{3}}\|v\| f_{B A}(v) d v \\
& =\int_{\mathbb{R}^{3}}\|v\|\left(\frac{\hat{m}}{2 \pi k_{B} T}\right)^{3 / 2} e^{-\frac{\hat{m}}{2 k_{B}{ }^{T}}\|v\|^{2}} d v \\
& =\sqrt{\frac{8 k_{B} T}{\pi \widehat{m}}}
\end{aligned}
$$

Probability of $A-B$ collision within $[t, t+d t]$:

$$
\frac{1}{\Omega} \pi\left(r_{A}+r_{B}\right)^{2} d t \sqrt{\frac{8 k_{B} T}{\pi \hat{m}}}
$$

Not all collisions lead to reactions. One can factor in the "reaction energy".

Assumption: An $A-B$ collision leads to a reaction only if the kinetic energy associated with the component of the velocity along the line of contact is greater than a critical energy ϵ.

It can be shown that:

$$
\text { Probability (A-B reaction } \mid \mathrm{A}-\mathrm{B} \text { collision) }=e^{-\frac{\epsilon}{k_{B} T}}
$$

Probability of $A-B$ reaction within $[t, t+d t]$:

$$
\frac{1}{\Omega} \pi\left(r_{A}+r_{B}\right)^{2} \sqrt{\frac{8 k_{B} T}{\pi \widehat{m}}} e^{-\frac{\epsilon}{k_{B} T}} d t
$$

Given N species: $\mathcal{S}_{1}, \ldots, \mathcal{S}_{N}$ with populations x_{1}, \ldots, x_{N} at time t.
Consider the bimolecular reaction channel (with distinct species):

$$
R: \mathcal{S}_{i}+\mathcal{S}_{j} \rightarrow \text { products }
$$

The number of distinct $\mathcal{S}_{i}-\mathcal{S}_{j}$ pairs that can react is: $x_{i} \cdot x_{j}$. Therefore,

Probability of an R reaction within [$\mathrm{t}, \mathrm{t}+\mathrm{d} \mathrm{t}]$:

$$
x_{i} x_{j} \frac{1}{\Omega} \pi\left(r_{i}+r_{j}\right)^{2} \sqrt{\frac{8 k_{B} T}{\pi \widehat{m}}} e^{-\frac{\epsilon}{k_{B} T}} d t=w(x)
$$

$w(\cdot)$ is called the propensity function.

Consider the bimolecular reaction channel (with same species):

$$
R^{\prime}: \mathcal{S}_{i}+\mathcal{S}_{i} \rightarrow \text { products }
$$

The number of distinct $\mathcal{S}_{i}-\mathcal{S}_{i}$ pairs that can react is: $\frac{x_{i}\left(x_{i}-1\right)}{2}$. Therefore,

Probability of an R^{\prime} reaction within $[\mathrm{t}, \mathrm{t}+\mathrm{dt}$]:

$$
\frac{x_{i}\left(x_{i}-1\right)}{2} \frac{1}{\Omega} \pi r_{i}^{2} \sqrt{\frac{8 k_{B} T}{\pi \widehat{m}}} e^{-\frac{\epsilon}{k_{B} T}} d t=w(x) d t
$$

Reactions and Propensity Functions

Reaction	Propensity $w(x)$	Rate c
$\phi \xrightarrow{c}$ Products	c	$k \Omega$
$\mathcal{S}_{i} \xrightarrow{c}$ Products	$c \cdot x_{i}$	k
$\mathcal{S}_{i}+\mathcal{S}_{j} \xrightarrow{c}$ Products	$c \cdot x_{i} x_{j}$	$\frac{1}{\Omega} \pi\left(r_{i}+r_{j}\right)^{2} \sqrt{\frac{8 k_{B} T}{\tilde{m}} e^{-}} e^{\frac{\epsilon}{k_{B} T}}$
$\mathcal{S}_{i}+\mathcal{S}_{i} \xrightarrow{c}$ Products	$c \cdot \frac{x_{i}\left(x_{i}-1\right)}{2}$	$\frac{4}{\Omega} \pi r_{i}^{2} \sqrt{\frac{8 k_{B} T}{\pi \tilde{m}}} e^{-\frac{\epsilon}{k_{B} T}}$

For a monomolecular reaction: c is numerically equal to the reaction rate constant k of conventional deterministic chemical kinetics

For a bimolecular reaction: c is numerically equal to k / Ω, where k is the reaction rate constant of conventional deterministic chemical kinetics

The Markov Description of Biochemical Processes

A Jump-Markov description of

 chemical kinetics- At any time, the state of the system is defined by its integer population vector: $\mathrm{x} \in \mathbb{Z}^{N}$
- Reactions are transitions from one state to another:

A Jump-Markov description of chemical kinetics

- At any time, the state of the system is defined by its integer population vector: $\mathrm{x} \in \mathbb{Z}^{N}$
- Reactions are transitions from one state to another:
- These reactions are random, others could have occurred:

A Jump-Markov description of chemical kinetics

A Jump-Markov description of

 chemical kinetics

A Jump-Markov description of chemical kinetics

A Jump-Markov description of chemical kinetics

Reaction Stoichiometry

- The Stoichiometric vector, \mathbf{s}, refers to the relative change in the population vector after a reaction.
- There may be many different reactions for a given stoichiometry.

$$
\begin{array}{r|r|r|r}
\mathbf{s}_{1}=[1,0]^{T} & \mathbf{s}_{2}=[-1,0]^{T} & \mathbf{s}_{3}=[0,1]^{T} & \mathbf{s}_{4}=[1,-1]^{T} \\
\mathcal{S}_{1} \rightarrow \mathcal{S}_{1}+\mathcal{S}_{1} & \mathcal{S}_{1}+\mathcal{S}_{1} \rightarrow \mathcal{S}_{1} & \mathcal{S}_{2} \rightarrow \mathcal{S}_{2}+\mathcal{S}_{2} & \mathcal{S}_{2} \rightarrow \mathcal{S}_{1} \\
\mathcal{S}_{2} \rightarrow \mathcal{S}_{2}+\mathcal{S}_{1} & \mathcal{S}_{1}+\mathcal{S}_{2} \rightarrow \mathcal{S}_{2} & \mathcal{S}_{1} \rightarrow \mathcal{S}_{1}+\mathcal{S}_{2} & \mathcal{S}_{1}+\mathcal{S}_{2} \rightarrow \mathcal{S}_{1}+\mathcal{S}_{1} \\
\emptyset \rightarrow \mathcal{S}_{1} & \mathcal{S}_{1} \rightarrow \emptyset & \emptyset \rightarrow \mathcal{S}_{2} & \mathcal{S}_{2}+\mathcal{S}_{2} \rightarrow \mathcal{S}_{1}+\mathcal{S}_{2}
\end{array}
$$

Reaction Propensities

- The propensity, \mathbf{w}, of a reaction is its rate.
- $\mathbf{w}_{\mu} d t$ is the probability that the $\mu^{t h}$ reaction will occur in a time step of length $d t$.
- Typically, propensities depend only upon reactant populations.

$\mathrm{S}_{2}=[-1,0]^{T}$	$w_{2}\left(x_{1}, x_{2}\right)$
$\mathcal{S}_{1}+\mathcal{S}_{1} \rightarrow \mathcal{S}_{1}$	$k_{1} x_{2}\left(x_{1}-1\right) / 2$
$\mathcal{S}_{1}+\mathcal{S}_{2} \rightarrow \mathcal{S}_{2}$	$k_{2} x_{1} x_{2}$
$\mathcal{S}_{1} \rightarrow \emptyset$	$k_{3} x_{1}$

Markov is a forgetful process

Markov Reaction Times

Probability reaction will occur in $[t, t+\Delta t)$:

$$
w \Delta t+\mathcal{O}(\Delta t)^{2}
$$ Probability reaction will not occur in $[t, t+\Delta t) \quad 1$

Probability a reaction will not occur in two such time intervals $[t, t+2 \Delta t):\left(1-w \Delta t+\mathcal{O}(\Delta t)^{2}\right)^{2}=1-2 w \Delta t+\mathcal{O}(\Delta t)^{2}$ Suppose that $\tau=K \Delta t$, then the probability that no reaction will occur in the interval $[t, t+\tau)$ is

$$
\left(1-w \frac{\tau}{K}+\mathcal{O}\left(K^{-2}\right)\right)^{K}
$$

Taking the limit as K goes to infinity yields that the probability that no reaction will occur in the interval $\left[t, t_{K}+\tau\right)$ is

$$
\lim _{k \rightarrow \infty}\left(1-w \frac{\tau}{K}+\mathcal{O}\left(K^{-2}\right)\right)^{K}=\exp (-w \tau)
$$

Markov Reaction Times

The probability that a reaction will occur in the interval $[t, t+\tau)$ is $F_{T}(\tau)=1-\exp (-w \tau)$. This is a cumulative distribution.

The density (derivative) of the random number, T, is:

$$
f_{T}(\tau)=\frac{1}{w} \exp (-w \tau)
$$

Such a random number is known as an exponentially distributed random number.

Notation: $\quad T \in \operatorname{EXP}(\lambda) \rightarrow \quad T$ is an exponentially distributed r.v. with
parameter: λ.

Markov Reaction Times

- We have assumed that the system is fully described by the population vectors.
- If no reaction occurs, then nothing will have changed.
- Waiting times must be memoryless random variables.

- No matter where we cut and scale the distribution, it must always looks the same.

The exponential is the only continuous r.v. with this property.

Generating Reaction Times

- To generate an exponentially distributed random number, all we need is a uniform random number generator.
- Find the cumulative distribution,

$$
F(t)=1-\exp (-\lambda t)
$$

- Generate uniform random number,

$$
r \in \mathrm{U}[0,1]
$$

- Find intersection where $F(t)=r$:

$$
\tau=\frac{1}{\lambda} \log \frac{1}{1-r}
$$

- This is the time of the next reaction.

The (Chemical) Master Equation (Forward Kolmorogrov Equation)

The Chemical Master Equation

Prob. that no reactions fire in $[t, t+d t]=1-\sum_{k} w_{k}(x) d t+\mathcal{O}\left(d t^{2}\right)$
Prob. that reaction R_{k} fires once in $[t, t+d t]=w_{k}(x) d t+\mathcal{O}\left(d t^{2}\right)$
Prob. that more than one reaction fires in $[t, t+d t]=\mathcal{O}\left(d t^{2}\right)$

$$
\begin{aligned}
& p(x, t+d t) \text { at } x \\
& p(x, t) \text { No reaction fires } \\
&\left.+1-\sum_{k} w_{k}(x) d t+\mathcal{O}\left(d t^{2}\right)\right) \\
&+ \sum_{k} \begin{array}{c}
p\left(x-s_{k}, t\right) \\
R_{k} \text { reaction } \\
\text { away from } x
\end{array}\left(\sum_{k} w_{k}(x) d t+\mathcal{O}\left(d t^{2}\right)\right)+\begin{array}{l}
\mathcal{O}\left(d t^{2}\right) \\
\text { more than one }
\end{array} \\
& R_{k} \text { fires once }
\end{aligned} \begin{aligned}
& \text { reaction in } d t
\end{aligned}
$$

$$
p(x, t+d t)-p(x, t)=-p(x, t) \sum_{k} w_{k}(x) d t+\sum_{k} p\left(x-s_{k}, t\right) w_{k}(x) d t+\mathcal{O}\left(d t^{2}\right)
$$

The Chemical Master Equation

$$
\frac{d p(x, t)}{d t}=-p(x, t) \sum_{k} w_{k}(x)+\sum_{k} p\left(x-s_{k}, t\right) w_{k}\left(x-s_{k}\right)
$$

Example: Transcription and degradation of mRNA (as a birth-death process)

RNA Copy Number as a Random Variable

mRNA copy number $N(t)$ is a random variable
Transcription: Probability a single mRNA is transcribed in time $d t$ is $k d t$

Degradation: Probability a single mRNA is degraded in time $d t$ is $n \gamma d t$

Slide Contributed by Mustafa Khammash

Key Question:

Find $p(n, t)$, the probability that $N(t)=n$.

$$
\begin{aligned}
P(n, t+d t)=P(n-1, t) \cdot k d t \quad & \text { Prob. }\{N(t)=n-1 \text { and mRNA created in }[\mathrm{t}, \mathrm{t}+\mathrm{dt})\} \\
& +P(n+1, t) \cdot(n+1) \gamma d t \quad \text { Prob. }\{N(t)=n+1 \text { and mRNA degraded in }[\mathrm{t}, \mathrm{t}+\mathrm{dt})\} \\
& +P(n, t) \cdot(1-k d t)(1-n \gamma d t)
\end{aligned} \begin{array}{ll}
& \text { Prob. }\{N(t)=n \text { and } \\
& \text { mRNA not created nor degraded in }[\mathrm{t}, \mathrm{t}+\mathrm{dt})\}
\end{array}
$$

$$
\begin{aligned}
P(n, t+d t)-P(n, t) & =P(n-1, t) k d t+P(n+1, t)(n+1) \gamma d t-P(n, t)(k+n \gamma) d t \\
& +O\left(d t^{2}\right)
\end{aligned}
$$

Dividing by $d t$ and taking the limit as $d t \rightarrow 0$

The Chemical Master Equation

$$
\frac{d}{d t} P(n, t)=k P(n-1, t)+(n+1) \gamma P(n+1, t)-(k+n \gamma) P(n, t)
$$

mRNA Stationary Distribution

We look for the stationary distribution $P(n, t)=p(n) \forall t$
The stationary solution satisfies: $\frac{d}{d t} P(n, t)=0$
From the Master Equation ...

$$
(k+n \gamma) p(n)=k p(n-1)+(n+1) \gamma p(n+1)
$$

$n=0 \quad k p(0)=\gamma p(1)$
$n=1 \quad k p(1)=2 \gamma p(2)$
$n=2 \quad k p(2)=3 \gamma p(3)$

$$
k p(n-1)=n \gamma p(n)
$$

$k p(n-1)=n \gamma p(n) \quad$ We can express $p(n)$ as a function of $p(0)$:

$$
\begin{aligned}
p(n) & =\frac{k}{\gamma} \frac{1}{n} p(n-1) \\
& =\left(\frac{k}{\gamma}\right)^{2} \frac{1}{n} \frac{1}{n-1} p(n-2) \\
& \vdots \\
& =\left(\frac{k}{\gamma}\right)^{n} \frac{1}{n!} p(0)
\end{aligned}
$$

We can solve for $p(0)$ using the fact $\sum_{n=0}^{\infty} p(n)=1$

$$
\begin{aligned}
1 & =\sum_{n=0}^{\infty}\left(\frac{k}{\gamma}\right)^{n} \frac{1}{n!} p(0) \\
& =e^{k / \gamma} p(0) \quad \Rightarrow \quad p(0)=e^{-k / \gamma} \\
p(n) & =e^{-a} \frac{a^{n}}{n!} \quad a=\frac{k}{\gamma} \quad \quad \text { Poisson Distribution }
\end{aligned}
$$

We can compute the mean and variance of the Poisson RV \bar{N} with density $p(n)=e^{-a \frac{a^{n}}{n!}}$:

$$
\mu=E[\bar{N}]=\sum_{n=0}^{\infty} n p(n)=e^{-a} \sum_{n=0}^{\infty} n \frac{a^{n}}{n!}=a
$$

The second moment

$$
E\left[\bar{N}^{2}\right]=\sum_{n=0}^{\infty} n^{2} p(n)=a^{2}+a
$$

Therefore,

$$
\begin{gathered}
\sigma^{2}=E\left[\bar{N}^{2}\right]-E[\bar{N}]^{2}=a \\
\text { mean }=\text { variance }=a
\end{gathered}
$$

The coefficient of variation $C_{v}=\sigma / \mu$ is

$$
C_{v}=\frac{1}{\sqrt{a}}=\frac{1}{\sqrt{\mu}}
$$

The Relationship of Deterministic to Stochastic Biochemical Processes.

Relationship of Stochastic (X) and Deterministic (Φ) Descriptions

Given N species X_{1}, \ldots, X_{N} and M elementary reactions. Let $\Phi_{i}:=\left[X_{i}\right]$.
A deterministic description can be obtained from mass-action kinetics:

$$
\frac{d \Phi}{d t}=S f(\Phi)
$$

where $f(\cdot)$ is at most a second order monomial. It depends on the type of reactions and their rates.

Example:

$$
\begin{array}{r}
A+B \xrightarrow{k_{1}} C \\
A \xrightarrow{k_{2}} B
\end{array}
$$

$$
\frac{d \Phi_{A}}{d t}=-k_{1} \Phi_{A} \Phi_{B}-k_{2} \Phi_{A}
$$

$$
\frac{d \Phi}{d t} \mathrm{~B}=-k_{1} \Phi_{A} \Phi_{B}+k_{2} \Phi_{A}
$$

$$
\frac{d \Phi}{d t} \mathrm{C}=k_{1} \Phi_{A} \Phi_{B}
$$

$$
\begin{gathered}
\frac{d \Phi}{d t}=S f(\Phi) \text { where } \\
S=\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1 \\
1 & 0
\end{array}\right], f(\Phi)=\left[\begin{array}{c}
k_{1} \Phi_{A} \Phi_{B} \\
k_{2} \Phi_{A}
\end{array}\right]
\end{gathered}
$$

Relationship of Stochastic (X) and Deterministic (Φ) Descriptions

Define $X^{\Omega}(t)=\frac{X(t)}{\Omega}$.
Question: How does $X^{\Omega}(t)$ relate to $\Phi(t)$?

Fact: Let $\Phi(t)$ be the deterministic solution to the reaction rate equations

$$
\frac{d \Phi}{d t}=S f(\Phi), \Phi(0)=\Phi_{0}
$$

Let $X^{\Omega}(t)$ be the stochastic representation of the same chemical systems with $X^{\Omega}(0)=\Phi_{0}$. Then for every $t \geq 0$:

$$
\lim _{\Omega \rightarrow \infty} \sup _{s \leq t}\left|X^{\Omega}(s)-\Phi(s)\right|=0 \text { a.s. }
$$

x produced with rate $k(x)$ and degraded with rate $\gamma_{0} x$.

$$
w_{1}(\phi)=\gamma \phi
$$

$$
w_{2}(\phi)=\left(20+40 \frac{\phi^{10}}{40^{10}+\phi^{10}}\right)
$$

Deterministic

$$
w_{1}(X)=\Omega \gamma_{0} X / \Omega=\gamma_{0} X
$$

$$
w_{2}(X)=\Omega\left(20+40 \frac{(X / \Omega)^{10}}{40^{10}+(X / \Omega)^{10}}\right)
$$

Stochastic

Moment Computations

- Affine Propensity
- Moment Closures

Moment Computations

For the first moment $E\left[X_{i}\right]$, multiply the CME by x_{i} and sum over all $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{N}^{N}$

For the second moment $E\left[X_{i} X_{j}\right]$, multiply the CME by $x_{i} x_{j}$ and sum over all $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{N}^{N}$

$$
\begin{aligned}
& \frac{d E\left[X_{i}\right]}{d t}=\sum_{k=1}^{M} s_{i k} E\left[w_{k}(X)\right] \\
& \frac{d E\left[X_{i} X_{j}\right]}{d t}=\sum_{k=1}^{M}\left(s_{i k} E\left[X_{j} w_{k}(X)\right]+E\left[X_{i} w_{k}(X)\right] s_{j k}+s_{i k} s_{j k} E\left[w_{k}(X)\right]\right) \\
& \text { Let } w(x)=\left[w_{1}(x), \ldots, w_{M}(x)\right]^{T}
\end{aligned}
$$

In matrix notation:

$$
\begin{aligned}
\frac{d E[X]}{d t} & =S E[w(X)] \\
\frac{d E\left[X X^{T}\right]}{d t} & =S E\left[w(X) X^{T}\right]+E\left[w(X) X^{T}\right]^{T} S^{T}+S\{\operatorname{diag} E[w(X)]\} S^{T}
\end{aligned}
$$

Affine Propensity

Suppose the propensity function is affine:

$$
w(x)=W x+w_{0}, \quad\left(W \text { is } N \times N, w_{0} \text { is } N \times 1\right)
$$

Then $E[w(X)]=W E[X]+w_{0}$, and $E\left[w(X) X^{T}\right]=W E\left[X X^{T}\right]+w_{0} E\left[X^{T}\right]$.

This gives us the moment equations:

$$
\begin{array}{rlr}
\frac{d}{d t} E[X] & =S W E[X]+S w_{0} & \text { First Moment } \\
\frac{d}{d t} E\left[X X^{T}\right] & =S W E\left[X X^{T}\right]+E\left[X X^{T}\right] W^{T} S^{T}+S & \operatorname{diag}\left(W E[X]+w_{0}\right) S^{T} \\
& +S w_{0} E\left[X^{T}\right]+E[X] w_{0}^{T} S^{T} & \text { Second Moment }
\end{array}
$$

These are linear ordinary differential equations and can be easily solved!

Affine Propensity (cont.)

Define the covariance matrix $\Sigma=E\left[(X-E[X])(X-E(X)]^{T}\right]$. We can also compute covariance equations:

$$
\frac{d}{d t} \Sigma=S W \Sigma+\Sigma W^{T} S^{T}+S \operatorname{diag}\left(W E[X]+w_{0}\right) S^{T}
$$

Steady-state Case

The steady-state moments and covariances can be obtained by solving linear algebraic equations:

Let $\bar{X}=\lim _{t \rightarrow \infty} E[X(t)]$ and $\Sigma=\lim _{t \rightarrow \infty} \Sigma(t)$.
Then

$$
\begin{gathered}
S W \bar{X}=-S w_{0} \\
S W \bar{\Sigma}+\bar{\Sigma} W^{T} S^{T}+S \operatorname{diag}\left(W \bar{X}+w_{0}\right) S^{T}=0
\end{gathered}
$$

Fluctuations Arise from Noise Driven Dynamics

Define $A=S W$, and $B=S \sqrt{\operatorname{diag}\left(W \bar{X}+w_{0}\right)}$.
The steady-state covariances equation

$$
S W \bar{\Sigma}+\bar{\Sigma} W^{T} S^{T}+S \operatorname{diag}\left(W \bar{X}+w_{0}\right) S^{T}=0
$$

becomes

$$
A \bar{\Sigma}+\bar{\Sigma} A^{T}+B B^{T}=0 \quad \text { Lyapunov Equation }
$$

Example: Gene Expression

Application to Gene Expression

Reactants

$X_{1}(t)$ is \# of mRNA; $X_{2}(t)$ is \# of protein

Reactions

$R_{1}: \phi \xrightarrow{k_{r}} m R N A$
$R_{2}: m R N A \xrightarrow{\gamma_{r}} \phi$
$R_{3}: m R N A \xrightarrow{k_{p}}$ protein $+m R N A$
$R_{4}:$ protein $\xrightarrow{\gamma_{p}} \phi$
Stoichiometry and Propensity

$$
S=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

$$
w(X)=\left[\begin{array}{c}
k_{r} \\
\gamma_{r} X_{1} \\
k_{p} X_{1} \\
\gamma_{p} X_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
\gamma_{r} & 0 \\
k_{p} & 0 \\
0 & \gamma_{p}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]+\left[\begin{array}{c}
k_{r} \\
0 \\
0 \\
0
\end{array}\right]
$$

Steady-State Moments

$$
\begin{aligned}
& A=S W=\left[\begin{array}{cc}
-\gamma_{r} & 0 \\
k_{p} & -\gamma_{p}
\end{array}\right], \quad S w_{0}=\left[\begin{array}{c}
k_{r} \\
0
\end{array}\right] \\
& \bar{X}=-A^{-1} S w_{0}=\left[\begin{array}{c}
\frac{k_{r}}{\gamma_{r}} \\
{\left[\frac{k_{p} k_{r}}{\gamma_{p} \gamma_{r}}\right.}
\end{array}\right]
\end{aligned}
$$

Steady-State Covariance

$$
B B^{T}=S \operatorname{diag}\left(W \bar{X}+w_{0}\right) S^{T}=\left[\begin{array}{cc}
2 k_{r} & 0 \\
0 & \frac{2 k_{p} k_{r}}{\gamma_{r}}
\end{array}\right]
$$

The steady-state covariances equation

$$
A \bar{\Sigma}+\bar{\Sigma} A^{T}+B B^{T}=0 \quad \text { Lyapunov Equation }
$$

can be solved algebraically for $\bar{\Sigma}$.

$$
\bar{\Sigma}=\left[\begin{array}{cc}
\frac{k_{r}}{\gamma_{r}} & \frac{k_{p} k_{r}}{\gamma_{r}\left(\gamma_{r}+\gamma_{p}\right)} \\
\frac{k_{p} k_{r}}{\gamma_{r}\left(\gamma_{r}+\gamma_{p}\right)} & \frac{k_{p} k_{r}}{\gamma_{p} \gamma_{r}}\left(1+\frac{k_{p}}{\gamma_{r}+\gamma_{p}}\right)
\end{array}\right]
$$

Coefficients of Variation

$$
\begin{aligned}
& C_{v r}^{2}=\frac{1}{\frac{k_{r}}{\gamma_{r}}}=\frac{1}{\bar{X}_{1}} \\
& C_{v p}^{2}=\frac{1}{\frac{k_{r} k_{p}}{\gamma_{r} \gamma_{p}}}\left(1+\frac{k_{p}}{\gamma_{r}+\gamma_{p}}\right)=\frac{1}{\bar{X}_{2}}\left(1+\frac{k_{p}}{\gamma_{r}+\gamma_{p}}\right)
\end{aligned}
$$

Question: Does a large \bar{X}_{2} imply a small $C_{v p}$?

$$
\begin{aligned}
C_{v p}^{2} & =\frac{1}{\frac{k_{r} k_{p}}{\gamma_{\gamma} \gamma_{p}}}\left(1+\frac{k_{p}}{\gamma_{r}+\gamma_{p}}\right) \\
& \geq \frac{1}{\frac{1}{k_{r} k_{p}}}\left(\frac{k_{p}}{\gamma_{r} \gamma_{p}}\right)=\frac{\gamma_{r} \gamma_{p}}{k_{r}} \cdot \frac{1}{\gamma_{r}+\gamma_{p}}
\end{aligned}
$$

$\bar{X}_{2}=\frac{k_{r} k_{p}}{\gamma_{r} \gamma_{p}}$, which can be chosen independently from $C_{v p}$.
Large mean does not imply small fluctuations!
$\mathbb{E}\{P\}=100, \quad \gamma_{r}=\gamma_{p}=1$

$k_{r}=1 \quad k_{p}=100$
$C_{v p}^{2}=0.51$

$$
k_{r}=100 \quad k_{p}=1
$$

$$
\begin{gathered}
k_{r}=0.1 \quad k_{p}=1000 \\
C_{v p}^{2}=5.01
\end{gathered}
$$

Moment Computations

- Affine Propensity
- Moment Closures

Moment Closures.

From before, the mean level changes as:
$\frac{d E[X]}{d t}=S E[w(X)]$

- When Second and Higher order terms exist in the propensity functions, each moment depends upon higher moments.
- For example, if $w(X)=\mathbf{u} X^{T} X \mathbf{v}$, then

$$
\frac{d E[X]}{d t}=S \mathbf{u} E\left[X^{T} X\right] \mathbf{v}
$$

- The first moment depends upon the second; the second upon the third; and so on.
- Moment closures are approximations that attempt to remove this dependence.

Moment Closures.

$$
\begin{aligned}
& \frac{d E\left[X_{i}\right]}{d t}=\sum_{k=1}^{M} s_{i k} E\left[w_{k}(X)\right] \\
& \frac{d E\left[X_{i} X_{j}\right]}{d t}=\sum_{k=1}^{M}\left(s_{i k} E\left[X_{j} w_{k}(X)\right]+E\left[X_{i} w_{k}(X) s_{j_{j k}}+s_{i k} s_{j k} E\left[w_{k}(X)\right]\right)\right. \\
& \frac{d}{d t}\left[\begin{array}{c}
\left\{\mu_{i}\right\} \\
\left\{\sigma_{i j}\right\}
\end{array}\right]=\left[\begin{array}{l}
f_{1}\left(\left\{\mu_{i}\right\},\left\{\sigma_{i j}\right\}\right)+u_{1}\left(\left\{\mu_{i}\right\},\left\{\sigma_{i j}\right\},\left\{\sigma_{i j k}\right\}, \ldots\right) \\
f_{2}\left(\left\{\mu_{i}\right\},\left\{\sigma_{i j}\right\}\right)+u_{2}\left(\left\{\mu_{i}\right\},\left\{\sigma_{i j}\right\},\left\{\sigma_{i j k}\right\}, \ldots\right)
\end{array}\right] \\
& \frac{d}{d t}\left[\begin{array}{c}
\left\{\mu_{i}\right\} \\
\left\{\sigma_{i j}\right\}
\end{array}\right]=\left[\begin{array}{l}
f_{1}\left(\left\{\mu_{i}\right\},\left\{\sigma_{i j}\right\}\right)+\widehat{u}_{1}\left(\left\{\mu_{i}\right\},\left\{\sigma_{i j}\right\}\right) \\
f_{2}\left(\left\{\mu_{i}\right\},\left\{\sigma_{i j}\right\}\right)+\widehat{u}_{2}\left(\left\{\mu_{i}\right\},\left\{\sigma_{i j}\right\}\right)
\end{array}\right]
\end{aligned}
$$

where the choice of \widehat{u}_{1} and \widehat{u}_{2} depends upon the chosen moment closure.

Gaussian Moment Closure

- If one assumes that the distributions are Gaussian, then the closure is simple:

$$
\sigma_{i j k}=\mathbb{E}\left\{\left(X_{i}-\mathbb{E}\left\{X_{i}\right\}\right)\left(X_{j}-\mathbb{E}\left\{X_{j}\right\}\right)\left(X_{k}-\mathbb{E}\left\{X_{k}\right\}\right)\right\}=0
$$

- which yields:

$$
\begin{array}{r}
\mathbb{E}\left\{\left(X_{i} X_{j} X_{k}\right\}=-\mathbb{E}\left\{X_{i} X_{j}\right\} \mathbb{E}\left\{X_{k}\right\}-\mathbb{E}\left\{X_{j} X_{k}\right\} \mathbb{E}\left\{X_{i}\right\}\right. \\
-\mathbb{E}\left\{X_{k} X_{i}\right\} \mathbb{E}\left\{X_{j}\right\}+2 \mathbb{E}\left\{X_{i}\right\} \mathbb{E}\left\{X_{j}\right\} \mathbb{E}\left\{X_{k}\right\}
\end{array}
$$

- Higher moments are easy to derive with a moment generating function:

$$
\begin{gathered}
M_{\mathbf{x}}(\mathbf{t})=\exp \left(\mu^{T} \mathbf{t}+1 / 2 \mathbf{t}^{T} \boldsymbol{\Sigma} \mathbf{t}\right), \\
\mathbb{E}\left\{x_{1}^{n_{1}} \ldots x_{4}^{n_{4}}\right\}=\left.\frac{d^{n_{1}+\ldots+n_{4}}}{d x_{1}^{n_{1}} \ldots d x_{4}^{n_{4}}} M_{x}(\mathbf{t})\right|_{\mathbf{t}=\mathbf{0}} .
\end{gathered}
$$

Many other closures are possible:

- If one assumes that the distributions are Log-Normal, a different closure is used:

$$
\mathbb{E}\left[X_{i} X_{j} X_{k}\right]=\frac{\mathbb{E}\left[X_{i} X_{j}\right] \mathbb{E}\left[X_{j} X_{k}\right] \mathbb{E}\left[X_{i} X_{k}\right]}{\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right] \mathbb{E}\left[X_{k}\right]}
$$

- One of the most common closures is the Linear Noise Approximation.
- In this, all moments are written in terms of themselves and lower moments:
- the mean is set equal to the deterministic process.
- the second moments are assumed to be gaussian, and depend upon the mean and itself.

$$
\frac{d}{d t}\left[\begin{array}{c}
\left\{\mu_{i}\right\} \\
\left\{\sigma_{i j}\right\}
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(\left\{\mu_{i}\right\}\right) \\
f_{2}\left(\left\{\mu_{i},\left\{\sigma_{i j}\right\}\right)\right.
\end{array}\right]
$$

Noise Suppression and Exploitation (Examples)

- Feedback for Noise Suppression
- Stochastic Focussing
- Stochastic Switches

Noise Attenuation through Negative Feedback

Reactants

$X_{1}(t)$ is \# of mRNA; $X_{2}(t)$ is \# of protein

Reactions

$R_{1}: \phi \xrightarrow{k_{r}} m R N A \quad k_{r}=k_{0}-k_{1} \cdot(\#$ protein $)$
$R_{2}: m R N A \xrightarrow{\gamma_{r}} \phi$
$R_{3}: m R N A \xrightarrow{k_{p}}$ protein $+m R N A$
$R_{4}:$ protein $\xrightarrow{\gamma_{p}} \phi$
Stoichiometry and Propensity

$$
\begin{aligned}
& S=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right] \\
& w(X)=\left[\begin{array}{c}
k_{0}-k_{1} X_{2} \\
\gamma_{r} X_{1} \\
k_{p} X_{1} \\
\gamma_{p} X_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & -k_{1} \\
\gamma_{r} & 0 \\
k_{p} & 0 \\
0 & \gamma_{p}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]+\left[\begin{array}{c}
k_{0} \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Steady-State Moments

$$
\begin{gathered}
A=S W=\left[\begin{array}{cc}
-\gamma_{r} & -k_{1} \\
k_{p} & -\gamma_{p}
\end{array}\right], \quad S w_{0}=\left[\begin{array}{c}
k_{0} \\
0
\end{array}\right] \\
\bar{X}=-A^{-1} S w_{0}=\left[\begin{array}{c}
\frac{\frac{k_{0}}{\gamma_{r}}}{1+\frac{k_{1} k_{p}}{\gamma_{p} \gamma_{r}}} \\
\frac{\frac{k_{0} k_{p}}{\gamma_{r} \gamma_{p}}}{1+\frac{k_{1} k_{p}}{\gamma_{p} \gamma_{r}}}
\end{array}\right]=:\left[\begin{array}{c}
\mu_{r} \\
\mu_{p}
\end{array}\right]
\end{gathered}
$$

Steady-State Covariance
$B B^{T}=S \operatorname{diag}\left(W \bar{X}+w_{0}\right) S^{T}=\left[\begin{array}{cc}k_{0}+\gamma_{r} \mu_{r}-k_{1} \mu_{p} & 0 \\ 0 & k_{p} \mu_{r}+\gamma_{p} \mu_{p}\end{array}\right]$
The steady-state covariances equation

$$
A \bar{\Sigma}+\bar{\Sigma} A^{T}+B B^{T}=0 \quad \text { Lyapunov Equation }
$$

can be solved algebraically for $\bar{\Sigma}$.

$$
\bar{\Sigma}_{22}=\sigma_{p}^{2}=\left[\frac{1-\phi}{1+b \phi} \cdot \frac{b}{1+\eta}+1\right] \mu_{p} \quad \text { where } \phi=\frac{k_{1}}{\gamma_{p}}, b=\frac{k_{p}}{\gamma_{r}}, \eta=\frac{\gamma_{p}}{\gamma_{r}}
$$

Feedback vs. No Feedback

In order to compare the noise in the two cases, we must ensure that both configuations have the same mean!

Impose the constraint: $\mu_{p}^{F B}=\mu_{p}^{N F B}=: \mu_{p}^{*}$
This may be achieved by choosing $k_{0}=k_{r}+k_{1} \mu_{p}^{N F B}$.

Mean
Variance $\quad\left[\frac{b}{1+\eta}+1\right] \mu_{p}^{*}$

μ_{p}^{*}

$$
\left[\frac{1-\phi}{1+b \phi} \cdot \frac{b}{1+\eta}+1\right] \mu_{p}^{*} \quad \text { where } \phi=\frac{k_{1}}{\gamma_{p}}
$$

Protein variance is always smaller with negative feedback!

Example

Note that these distributions are NOT Gaussian.

Exploiting the Noise:

Failure of the linear noise approximation

$$
\begin{aligned}
& \phi \underset{k_{a} S}{\stackrel{k}{\rightleftharpoons}} I \xrightarrow{k_{p}} P \xrightarrow{1} \phi \\
& \phi \underset{\underset{k_{d}}{k_{s}}}{\stackrel{\rightharpoonup}{\rightleftharpoons}} S
\end{aligned}
$$

may be approximated by

$$
\begin{array}{ll}
\phi \xrightarrow{k q} P \xrightarrow{1} \phi & \\
q=\frac{1}{1+\frac{n}{\Omega K}} \quad \begin{array}{l}
K=k_{p} / k_{a} \\
\mathrm{n} \text { is \#S }
\end{array}
\end{array}
$$

convex

From Jensen's Inequality:

$$
E[q]=E\left[\frac{1}{1+\frac{n}{\Omega K}}\right] \geq \frac{1}{1+\frac{E[n]}{\Omega K}}
$$

- Noise enhances signal!

Johan Paulsson, Otto G. Berg, and Måns Ehrenberg, PNAS 2000

