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We present an efficient method to calculate probabilities of large deviations from the typical behavior(rare
events) in reaction-diffusion systems. This method is based on a semiclassical treatment of an underlying
“quantum” Hamiltonian, encoding the system’s evolution. To this end, we formulate the corresponding canoni-
cal dynamical system and investigate its phase portrait. This method is presented for a number of pedagogical
examples.
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I. INTRODUCTION

Reaction-diffusion models have a vast area of applications
[1,2] from the kinetics of chemical reactions[3], biological
populations[4–6] and epidemics[7,8] to the dynamics of
financial markets[9] and ecology[10]. The models describe
the dynamics of a number of particles whose reactions are
specified by a certain set of rules. The rules have a probabi-
listic nature and are most conveniently formulated on a lat-
tice in ad-dimensional space. We shall restrict our attention
to a wide subclass of such models, where the particles ex-
ecute random walks(diffuse) on the lattice, while the reac-
tions between them are purely local(on-site). Once the lat-
tice, the reaction rules, and the initial conditions are
specified, one is interested to find statistical characteristics of
the system’s subsequent evolution. This goal may be accom-
plished with various degrees of detailing and accuracy.

The most detailed information is contained in the prob-
ability distribution functions(PDF) of every possible micro-
scopic state of the system. The PDF is a solution of an ex-
ponentially large system of Master equations, which specify
the probabilities of transition between every two microscopic
states of the system. The analytical solution of the Master
equations is usually unrealistic and the information contained
within them is excessive. Therefore, various approximation
schemes are in order. The simplest one is the mean-field
approximation, where a closed set of equations for average
quantities(e.g., concentrations) is obtained by an approxi-
mate decoupling of higher moments. The mean-field theory
describes a typical evolution of the system, if the fluctuations
are weak in some way. The probability of small deviations
from the mean-field predictions may be found with the help
of the Fokker-Planck(FP) equation. It substitutes the discrete
Master equation by a continuum(biased) diffusion equation
in the space of concentrations. Analysis of the FP equation is
usually complicated[1,2], moreover the approximation is re-
liable for small deviations only and fails to provide the prob-
ability of large deviations from the typical evolution.

Much attention was attracted recently to reaction-
diffusion systems that are in a close proximity to dynamic
phase transitions[11–13] (for recent reviews see, e.g., Refs.
[14,15]). By fine-tuning one of the parameters, some systems
may be brought to a point of quantitative change of their
behavior(e.g., stable finite concentration versus extinction).
In a vicinity of the transition, neither mean field nor FP can

accurately predict the long-time scaling of the system’s char-
acteristics, such as particle concentration. The field-
theoretical renormalization group(RG) methods were devel-
oped, and successfully applied, to a number of examples
[16–19]. In particular, the directed percolation universality
class was identified and studied as the most robust universal-
ity class for the dynamic phase transitions[14,20–22].

In the present work, we address a somewhat different set
of questions. We consider a generic reaction-diffusion system
that either does not exhibit, or is far enough from, the phase
transition. A typical evolution scenario, and the probability
of small deviations, are well described by the mean-field
theory and the FP equation. We shall look, however, for the
probability of large deviations from typical behavior. A
“large” deviation may be loosely characterized as being of
the same order as(or larger than) the typical value(as op-
posed to the “small” one, which is of the order of the square
root of the typical value). Since the occurrence of such large
deviations has a very small probability, they may be dubbed
“rare events.” Despite being rare, these “rare events” may be
of great interest, especially if they have extreme conse-
quences. Some examples are as follows: the proliferation of a
virus after immunization(causing the death of a patient),
large fluctuations in the number of neutrons in a nuclear
reactor(causing explosion), etc. Clearly, in these and many
other examples, one is interested to know rather precisely
how improbable improbable events are.

Rare events in stochastic reaction-diffusion models, with
thermal fluctuations described by white noise, were studied
by many authors. For a review, see, e.g.,[23]. For recent
works, see[24,25]. It is assumed in this approach that the
dynamics of the system is governed by the Langevin equa-
tion. In general, reaction-diffusion problems cannot be de-
scribed by Langevin dynamics with a white additive noise.
Usually, the noise happens to be colored(i.e., correlated with
a reaction coordinate) and is not necessarily real[26]. The
presence of the absorbing states does not allow the treatment
of reaction-diffusion systems as Gaussian noise models.
There exists no conventional Fokker-Planck equation in this
case, and hence the calculus of the rare events is different.
The escape rate from the metastable state to the absorbing
state cannot be established following the well-developed
Kramers theory[23].

Here we develop a rigorous, simple, and efficient method
to calculate the rare event statistics in reaction-diffusion sys-
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tems. To this end, we develop a Hamiltonian formulation of
reaction-diffusion dynamics. Although the system is speci-
fied by a set of rules, rather than a Hamiltonian, one may
nevertheless show that there is a certain canonical Hamil-
tonian associated with the system’s dynamics. More pre-
cisely, the Master equation may be reformulated as a “quan-
tum” (many-body) Schrödinger equation with some
“quantum” Hamiltonian. This observation is not new and is
sometimes referred to as Doi’s operator technique[27,28]. In
fact, its “quantum” version is the basis for the field-
theoretical RG treatment of the dynamical phase transitions
[16–19]. Here we notice that theclassical (or rather semi-
classical) dynamics of the very same Hamiltonian carries a
lot of useful information about reaction-diffusion systems. In
particular, it provides all the information about the rare event
statistics. To extract this information, it is convenient to for-
mulate the underlying Hamiltonian in classical terms(as a
function of momenta and coordinates), rather than creation
and annihilation operators, as is customary in the “quantum”
approach[27–29].

A particularly convenient tool to visualize the system’s
dynamics is a phase portrait of the corresponding Hamil-
tonian. It consists of lines(or surfaces) of constant “energy”
(the integral of motion naturally existing in a Hamiltonian
system) in the space of canonical momenta and coordinates.
The mean-field(typical) evolution corresponds to a particu-
lar manifold of zero energy, given by the fixed value of the
canonical momenta,p=1. Rare events may be specified by
certain initial and finite conditions in the phase space of the
dynamical system, which, in general, donot belong to the
mean-field manifold. The probability of the rare event is pro-
portional to exph−Sj, where S is the classical action on a
unique trajectory, satisfying the specified boundary condi-
tions. The problem is therefore reduced to finding an evolu-
tion of the classical dynamical system, whose quantized
Hamiltonian encodes the Master equation. This task is sub-
stantially simpler than solving the full “quantum” Master
equation. In fact, even the probability of small deviations is
much more efficiently calculated in our semiclassical method
than via solution of the FP equation(though the latter is also
applicable). For large deviations, however, the FP approach
leads to inaccurate results, while the semiclassical method
provides a simple and accurate prescription. A similar strat-
egy was recently applied for the calculation of the full cur-
rent statistics of mesoscopic conductors[30–32].

In this paper, we develop the semiclassical method using a
number of reaction-diffusion models as examples. We tried
to keep the presentation self-contained and pedagogical. In
Sec. II, we start from the model of binary annihilation in zero
dimensions. In Sec. III, we complicate the model by includ-
ing branching and discuss the extinction probability of a sys-
tem having a stable population in the mean-field approxima-
tion. Section IV is devoted to the extension of the formalism
to a d-dimensional space. As an example, we find an extinc-
tion probability of a finite cluster. In Sec. V, a population
dynamics model with three reaction channels—reproduction,
death, and emigration—is considered in ad-dimensional
space. The model possesses a long-lasting metastable state
with a fixed population that eventually escapes into the state
of unlimited population growth. We show how the semiclas-

sical method may be used to calculate the lifetime of such a
metastable state. Finally, some conclusions and open prob-
lems are discussed in Sec. VI.

II. BINARY ANNIHILATION

The simplest reaction, which we use to introduce nota-
tions and set the stage for further discussions, is the binary
annihilation process. It describes a chemical reaction, where
two identical particles form an inert aggregate with the prob-
ability l. This aggregate is not involved in further reactions:

A+A→
l

x. We start from the zero-dimensional version of the
model, where every particle may react with every other. Such
a reaction is fully described by the following Master equa-
tion:

d

dt
Pnstd =

l

2
fsn + 2dsn + 1dPn+2std − nsn − 1dPnstdg, s1d

wherePnstd is the probability to findn particles at timet. The
Master equation is to be supplemented with an initial distri-
bution, e.g.,Pns0d=e−n0n0

n/n! for the Poisson distribution
with the mean valuen0, or Pns0d=dn,n0

for the fixed initial
particle number. Let us now define thegenerating functionas

Gsp,td ; o
n=0

`

pnPnstd. s2d

Knowing the generating function, one may find a probability
of having (integer) n particles at time t as Pnstd
=] p

nGsp,tdup=0/n!. If n@1, it is more convenient to use an
alternative representation,

Pnstd =
1

2pi
R dp

p
Gsp,tdp−n, s3d

where integration is performed over a closed contour on the
complexp plane, encirclingp=0 and going through the re-
gion of analyticity ofGsp,td.

The point p=1 plays a special role in this formulation.
First of all, the conservation of probability demands the fun-
damental normalization condition,

Gs1,td ; 1. s4d

Secondly, the moments of the PDF,Pnstd, may be expressed
through derivatives of the generating function atp=1, e.g.,
knstdl;o

n
nPnstd=]pGsp,tdup=1.

In terms of the generating function, the Master equation
(1) may beidentically rewritten as

]G

]t
= −

l

2
sp2 − 1d

]2G

]p2 . s5d

This equation is to be solved with some initial condition,
e.g., Gsp,0d=exphn0sp−1dj for the Poisson initial distribu-
tion or Gsp,0d=pn0 for a rigidly fixed initial particle number.
The solution should satisfy the normalization condition, Eq.
(4), at any time. In addition, all physically acceptable solu-
tions must have allp derivatives atp=0 non-negative.
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One may consider Eq.(5) as the “Schrödinger” equation,

]

]t
G = − ĤG, s6d

where the “quantum” Hamiltonian operator,Ĥ, in the p̂
(“momentum”) representation is

Ĥsp̂,q̂d =
l

2
sp̂2 − 1dq̂2. s7d

Here we have introduced the “coordinate” operatorq̂ as

q̂ ; −
]

]p
, fp̂,q̂g = 1. s8d

The “Hamiltonian,” Eq.(7), is normally ordered and not Her-
mitian. However, the last fact does not present any signifi-
cant difficulties.

If the “quantum” fluctuations are weak(which in the
present case is true as long asknstdl@1), one may employ
the WKB approximation to solve the “Schrödinger”-Master
equation. Using ansatzGsp,td=exph−Ssp,tdj and expanding
Ssp,td to the leading order in 1/l, one obtains the classical
Hamilton-Jacobi equation,

]S

]t
= HSp,

]S

]p
D =

l

2
sp2 − 1dS ]S

]p
D2

. s9d

Instead of directly solving the Hamilton-Jacobi equation, we
will develop the Hamilton approach, which is much more
convenient for finite-dimensional applications.

To this end, we employ the Feynman path-integral repre-
sentation, which may be derived, introducing the resolution
of unity at each infinitesimal time step and employing the
normal ordering. As a result, one finds for the generating
function

Gsp,td lim
M→`

E p
k=0

M
dpkdqk

2p
e−Sfpk,qkg, s10d

where the discrete representation for the actionSfpk,qkg is
given by

S= o
k=1

M

fpksqk − qk−1d + Hspk,qk−1ddtg

+ p0q0 − pqM − n0sp0 − 1d s11d

anddt= t / sM +1d. The last term in this expression is specific
to Poisson’s initial conditions. If the initial number of par-
ticles is fixed to ben0, and thereforeGsp,0d=pn0, then the
last term is changed ton0 ln p0. The same path integral may
be derived, of course, using Doi’s operator algebra and co-
herent states. We summarize this derivation in Appendix A.
The convergency of the path integral may be achieved by a
proper rotation in the complexpk andqk planes.

In what follows, we are interested in the semiclassical
treatment of this path integral. Varying the action with re-
spect topk andqk for k=0,1, . . . ,M, one obtains the classical
equations of motion(in continuous notations),

q̇ = −
]H

]p
= − lpq2, s12ad

ṗ =
]H

]q
= lsp2 − 1dq s12bd

and the boundary conditions:

qs0d = n0, s13ad

pstd = p, s13bd

wherep and t are the arguments of the generating function
Gsp,td. Notice that, while the coordinate is fixed at an initial
time (past), momentum is imposed at a finite time(future).
These equations admit the integral of motion, which we call

“energy”: Ė=0, where

E ; H„pstd,qstd… =
l

2
fp2std − 1gq2std. s14d

As a result, the actionon a classical trajectorymay be writ-
ten as(in continuous notations)

Sfp,qg = Et −E
0

t

qṗdt − n0fps0d − 1g. s15d

To find the low moments, one needs to knowGsp,td in
the immediate vicinity ofp=1. In this case, the Hamilton
equations(12) with boundary conditions(13) may be solved
with the mean-fieldansatz,

p̄std ; 1, s16ad

dq̄

dt
= − U ]H

]p
U

p=1
= − lq̄2. s16bd

The last equation constitutes the mean-field approximation
for the reaction coordinate,q̄; n̄<knl. The classical action,
Eq. (15), is obviously nullified by the mean-field solution:
Sfp̄,q̄g=0. This enforces the normalization, Eq.(4) (it is
straightforward to show that the fluctuation determinant
around the mean-field trajectory is unity). In fact, any legiti-
mate Hamiltonian must satisfy the conditionHs1,qd=0 to
insure normalization. As a result, the mean-field solution,p

=1, is bound to have zero energy,Ē;0.
However, the assumption thatp=1 is not always a legiti-

mate one. The probability of any event other than the mean-
field prediction is automatically described bypstd=p differ-
ent from unity. Rare events definitely belong to this category.
For such cases, the mean-field ansatz, Eq.(16), is not appli-
cable and one must go back to the full dynamical system,
Eqs.(12) (provided the semiclassical approximation is justi-
fied). For example, let us imagine doing the contour integral,
Eq. (3), by the stationary point method. Approximating,
Gsp,td=exph−Ssp,tdj, with the classical action,S, one finds
the saddle-point condition,n=−p]S/]p=pstdqstd, since on
the classical trajectory]S/]p=−qstd. Therefore, if one is in-
terested inn, which is different from the mean-field predic-
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tion q̄std, one must considerpstd=p to be different from
unity.

In the case of the binary annihilation, the mean-field pre-
diction is a solution of the equation]tq̄=−q̄2, henceq̄std
; n̄std=n0/ s1+n0ltd<sltd−1 for 1, sltd−1!n0. We are
looking for a probability to findnÞ n̄std=sltd−1 particles at
time t@ sln0d−1. The phase portrait of the dynamical system,
Eqs. (12), is plotted in Fig. 1. Dynamical trajectories for a
given energy,E, are given byq=Î2El−1/ sp2−1d. Since
qs0d=n0@1, one findsps0d=1+2E/ sln0

2d<1. Substituting
this trajectory into Eq.(12b), and integrating it between
ps0d<1 and pstd=p, one findsE=−arccos2 p/ s2lt2d. The
corresponding classical action, Eq.(15), is given by

Ssp,td =
1

2
n̄stdarccos2p. s17d

This action solves the Hamilton-Jacobi equation(9) and is
nullified at the mean-field trajectory,p=1. As a result, the
generating function is given byGsp,td<exph−Ssp,tdj with
the classical action, Eq.(17).

We are now in the position to find the rare event statistics:
namely, we are looking for the probability to findn particles
after time t, that is,Pnstd, wheren is significantly different
from the mean-field predictionn̄=sltd−1. To this end, one
may perform integration, required by Eq.(3), in the station-
ary point approximation to obtain the probability distribution

Pnstd = N expH− n̄S1

2
arccos2ps +

n

n̄
ln psDJ , s18d

whereps=pssn/ n̄d is the solution of the saddle-point equa-
tion: pssps

2−1d−1/2 arccosps=n/ n̄. In limiting cases, the ex-
ponent takes the form

− ln Pnstd < 5
p2

8 n̄ − n lnpn̄
2n , n ! n̄;

3
4sn − n̄d2/n̄, un − n̄u ! n̄;

1
2n2/n̄ − n ln 2, n @ n̄.

6 s19d

The logarithm of the PDF is plotted in Fig. 2 versusn/ n̄
for a fixed n̄= n̄std. The corresponding exponent, resulting
from the solution of the Fokker-Planck equation, is shown in

the same plot for comparison. The two exponents coincide
for small deviations from the mean-field result,un/ n̄−1u!1.
For larger deviations(rare events), n/ n̄,Os1d, the Fokker-
Planck results are significantly off the correct ones. Finally,
the normalization factorN=Î3/s4pn̄d is simply determined
by the immediate vicinity of the maximum of the distribu-
tion, un− n̄u! n̄.

III. BRANCHING AND ANNIHILATION

Let us consider now a more interesting example of binary
annihilation with branching. The model consists of the two

reactions: annihilationA+A→
l

x and branchingA→
s

2A. The
Master equation is written as

d

dt
Pnstd =

l

2
fsn + 2dsn + 1dPn+2std − nsn − 1dPnstdg

+ sfsn − 1dPn−1std − nPnstdg. s20d

One may check that the corresponding Hamiltonian takes the
form

Ĥsp̂,q̂d =
l

2
sp̂2 − 1dq̂2 − ssp̂ − 1dp̂q̂. s21d

As expected, it satisfies the normalization condition,
Hs1,qd=0. The classical equations of motion are

q̇ = − lpq2 + ss2p − 1dq, s22ad

ṗ = lsp2 − 1dq − ssp − 1dp, s22bd

with the same boundary conditions as in the previous ex-
ample, Eqs.(13). The classically conserved energy isE
=H(pstd ,qstd). The mean-field ansatz,p̄std;1, leads to the
mean-field equation for the reaction coordinate,q̄<knl,

FIG. 1. The phase portrait of the binary annihilation process.
Thick lines represent the solution ofHsp,qd=0; the fat dot is a fixed
point. Thinner lines represent dynamical trajectories with nonzero
energy. Linep=1 gives the mean-field dynamics.

FIG. 2. The logarithm of the PDFPnstd as a function ofn/ n̄std
at a fixed timet. The semiclassical result, Eq.(18), is a dashed line;
the exact solution produced by the numerical simulation of the Mas-
ter equation(1) is a dashed-dotted line; the numerical solution of

the FP equation,Ṗ=lhfsn2−ndPg9+sn2Pd8j, is a full line.
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dq̄

dt
= − lq̄2 + sq̄. s23d

This equation possesses two stationary states, namely, the
active stateq̄=s /l;ns and the passive stateq̄=0. Below we
show that the active state isnot actually thermodynamically
stable(in the 0d system) and in a finite time decays into the
passive one.

To proceed with the discussion of the rare event statistics,
we need a phase portrait of the system. It contains three lines
of zero energy: the mean-field linep=1, the empty system
line q=0, and the nontrivial lineq=2nsp/ s1+pd. These lines
determine the topology of the phase diagram, Fig. 3, where
the arrows show the positive time direction. According to the
mean-field equation(23), from any initial state withn0Þ0,
the system reaches the active state withns particles during
the timet<s−1. Hereafter, we assume thatns=s /l@1. We
shall look for a probability to findnÞns particles after a time
t@s−1.

Of particular interest, of course, is the probability of go-
ing to the passive state, namelyn=0, during a large timet.
According to the definition of the generating function, Eq.
(2), this probability is given byGs0,td. We are interested,
therefore, in the trajectory which starts at some initial coor-
dinateq0=n0 (and arbitrary momentum) and ends atpM =0
(and arbitrary coordinate) after time t. In a long time limit,
t→`, such a trajectory approaches the lines of zero energy.
The system first evolves along the mean-field trajectory,p
=1, towards the active state,q=ns, and then goes along the
nontrivial line, q=2nsp/ s1+pd, towards the passive statep
=q=0, cf. Fig. 3. The action is zero on the mean-field part of
the evolution, while it is

S0 = −E
1

0 2nsp

1 + p
dp= ns2s1 − ln 2d s24d

along the nontrivial line.
According to the standard semiclassical description of

tunneling[33], to find an escape probability, one has to sum
up the contributions of all classical trajectories with an arbi-
trary number of bounces froms1,nsd to (0, 0) and back. Each
bounce brings the factorste−S0, where the prefactor reflects
the fact that the center of the bounce may take place at any

time without changing the action(zero mode). Since the dis-
tant (in time) bounces interact with each other only exponen-
tially weakly, the escape attempts are practically uncorre-
lated. As a result, the probability to find an empty system,
P0std=Gs0,td, is

P0std = 1 −e−t/t, s25d

where the decay timet is given by

t = s−1 exph+ S0j. s26d

The semiclassical calculation is valid as long asS0@1 and
thus the decay time is much longer than the microscopic
time, t@s−1.

IV. DIFFUSION

We turn now to the discussion of finite-dimensional sys-
tems. To characterize a microscopic state, one needs to
specify the number of particles at every site of the lattice:
hn1, . . . ,nNj, whereN,Ld is the total number of sites. The
probability of a given microscopic state may be written as
Pn1,. . .,nN

std and the corresponding generating function is

Gsp1, . . . ,pN,td ; o
n1,. . .,nN

p1
n1
¯ pN

nNPn1,. . .,nN
std. s27d

Assuming that the reaction rules are purely local(on-site),
while the motion on the lattice is diffusive, one finds that the
Hamiltonian takes the form

Ĥsp̂1, . . . ,p̂N,q̂1, . . . ,q̂Nd = o
i

fĤ0sp̂i,q̂id + D = p̂i · = q̂ig,

s28d

where Ĥ0sp̂,q̂d is a zero-dimensional on-site Hamiltonian
given, for example, by Eqs.(7) or (21); D is a diffusion
constant and= is the lattice gradient. To shorten notations,
we pass to the continuousd-dimensional variablex and in-
troduce the fieldspsxd andqsxd. The generating function be-
comes a generating functional,G(psxd ,t). The latter may be
written as a functional integral over canonically conjugated
fields psx,td andqsx,td, living in sd+1d-dimensional space,
with the action

Sfp,qg =E
0

t

dtE ddxfH0sp,qd + D = p · = q − qṗg.

s29d

The initial term, e.g., the Poisson term,eddxn0sxdf1
−psx,0dg, should also be added to the action. The corre-
sponding classical equations of motions are

q̇ = D=2q −
dH0

dp
, s30ad

ṗ = − D=2p +
dH0

dq
. s30bd

These equations are to be solved with the following bound-
ary conditions:

FIG. 3. The phase portrait of the branching annihilation process.
Thick lines are lines of zero energy,Hsp,qd=0. Fat dots are fixed
points.
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qsx,0d = n0sxd, s31ad

psx,td = psxd, s31bd

wheren0sxd is an initial space-dependent concentration and
psxd is the source field in the generating functional
G(psxd ,t). The mean-field approximation is obtained by put-
ting psx,td=1 and is described by the reaction-diffusion
equation,

]tq̄ = D=2q̄ − UdH0sp,q̄d
dp

U
p=p̄=1

, s32d

that is the subject of numerous studies.
Equations (30) admit the integral of motion: E

=eddxfH0sp,qd+D=p=qg. In some cases(see below), an
additional infinite sequence of integrals of motion may be
found, making the classical problem, Eqs.(30), analytically
solvable. In a general case, these equations must be solved
numerically. We notice, however, that such a numerical prob-
lem is orders of magnitude simpler than the numerical solu-
tion of the Master and even the FP equations, or direct mod-
eling of the stochastic system. Below, we discuss a fast,
efficient algorithm for the numerical solution of Eqs.(30)
with the boundary conditions Eqs.(31). Moreover, a lot of
insight may be gained by investigating the phase portrait of
the zero-dimensional Hamiltonian,H0sp,qd, which allows to
make some semiquantitative predictions without a numerical
solution.

To illustrate how the method works, we consider the
branching annihilation problem of Sec. III[H0 is given by
Eq. (21)] on a compactd-dimensional cluster—the “refuge”
[34]—denoted asR. Outside of the refuge, there is a very
high mortality rate,A→x, which is eventually taken to in-
finity. This dictates the boundary condition

qs]R,td = 0, s33d

where]R is the boundary of the clusterR. It is convenient
to pass to the dimensionless timest→ t and coordinates
x/j→x, where j;ÎD /s. We also introduce the rescaled
fields qsx,td=nswsx,td (where ns=s /l) and psx,td=1
−ŵsx,td. In these notations, the semiclassical equations, Eq.
(30), take the symmetric form

]tw = =2w + w − w2 + ŵw2 − 2ŵw, s34ad

− ]tŵ = =2ŵ + ŵ − ŵ2 + wŵ2 − 2wŵ. s34bd

Consider first the mean-fieldsŵ=0d evolution, described
by the equation

]tw = =2w + w − w2 s35d

and subject to the boundary conditionws]R ,td=0. For the
small concentrations,w!1, the last term may be omitted and
the solution takes the form

wsx,td = o
n=0

`

ane
s1−lndtYnsxd, s36d

where Ynsxd are normalized eigenfunctions of the Laplace
operator in the regionR with zero boundary conditions and
eigenvalues −ln,0; coefficientsan depend on an initial
condition. Therefore, if the smallest eigenvalue,l0, is larger
than unity(the cluster is small enough), any initial distribu-
tion evolves towards the empty system. The characteristic
lifetime of the system is thus

t = s−1sl0 − 1d−1, l0 . 1. s37d

If l0,1 (the cluster is larger than some critical size), the
mean-field evolution, Eq.(35), leads to a stable nonvanishing
concentrationw0srd, which is given by the solution of the
equation=2w0+w0−w0

2=0 with zero boundary conditions. It
is clear, however, that such a solution is actually a metastable
state of the system. Namely, after a long enough time, the
system will find itself in the empty(passive) state. Our task
is to find the system’s lifetime,t, for the metastable case,
l0,1. According to our previous discussions, the lifetime is
expected to be exponentially long,

t = s−1eSd, l0 , 1, s38d

where Sd is the action along the semiclassical trajectory,
which solves Eqs.(34a) and (34b) with the initial condition
wsx,0d=w0sxd and the final conditionŵsx,ted=1. The extinc-
tion time, te, is to be sent to infinity. Indeed]Sd/]te=Ested
ø0, and thus the longer the extinction time, the smaller the
action. In practice, however, the action almost saturates at
modest values ofte.

In general, the problem cannot be solved analytically and
one needs to resort to numerical approaches. The following
iteration scheme rapidly converges to the desired solution:
one first fixes the momenta to beŵ1sx,td=1 at any time and
solves Eq.(34a) with the initial conditionwsx,0d=w0sxd by
forward iteration fromt=0 to t= te. The result of this proce-
dure,w1sx,td, is kept fixed during the next step, which is the
solution of Eq.(34b) with the conditionŵsx,ted=1 by the
backward iteration fromt= te to t=0. This way, one finds
ŵ2sx,td, which is kept fixed while the next approximation
w2sx,td is obtained by the forward iteration of Eq.(34a).
Repeating successively forward and backward iterations, the
algorithm rapidly converges to the required solution. The ac-
tion Sd=Sdsted is then calculated according to Eq.(29). Fi-
nally, one has to check thatSdsted does not decrease signifi-
cantly upon increasingte.

The action,Sd, for a one-dimensional cluster of size 2R is
plotted in Fig. 4 as a function ofR. The critical radiusRc
=p /2 (in units of j) is found from the conditionl0=1. For
R,Rc, there is no metastable state and thusSd=0, while the
cluster lifetime is given by Eq.(37). For R.Rc, the lifetime
is given by Eq.(38), with the numerically calculatedSd plot-
ted in Fig. 4. The asymptotic behavior of the actionSd for
R@Rc sl0!1d and R−Rc!Rc s1−l0!1d may be readily
found analytically.

For R@Rc sl0!1d, the concentration throughout the bulk
of the cluster is practically uniform, apart from a surface
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layer of thicknessj. One may therefore apply the results of
the zero-dimensional problem, Eq.(24), to find

Sd = 2s1 − ln 2dnsj
dsV − cSd, s39d

whereV and S are the cluster’s dimensionless volume and
surface area correspondingly andc is a numerical constant,
which we shall not evaluate here. For the 1D case, the cor-
responding line is plotted in Fig. 4 by the dashed line.

We turn finally to the clusters that are only slightly larger
than the critical size:e;1−l0!1 [e.g., for a spherical clus-
ter with the radiusR one findse=1−sRc/Rd2, whereRc is a
critical radius, found froml0=1]. In this case, only the ze-
roth eigenfunctionY0sxd is the unstable direction of the lin-
earized mean-field equation. The full nonlinear mean-field
equation(35) possesses, therefore, the stable solutionw0sxd,
that is expected to be of ordere. One may thus look for this
solution in the following form:

w0srd = efhY0sxd + ew1sxdg, s40d

wherew1sxd is orthogonal toY0sxd. One can now substitute
this trial solution in Eq.(35), keeping only the leading(sec-
ond) order ofe terms, and project onY0, using its orthogo-
nality to w1. As a result, the coefficienth is found to be

h−1 =E
R

ddrY0
3srd. s41d

The metastable solution of Eq.(34) in the leading order ine
is thereforew0sxd=ehY0sxd andŵ0sxd=0. To find the optimal
escape trajectory, let us parametrize deviations from this
metastable state as

wsx,td = ehY0sxd + o
n=0

`

anstdYnsxd, s42ad

ŵsx,td = o
n=0

`

bnstdYnsxd, s42bd

whereanstd andbnstd are assumed to be small. One can now
substitute these deviations into the dynamical equations(34)
and linearize them with respect toan,bn. It is easy to see
then that in the leading order ine only a0 andb0 should be
retained. They evolve according to

d

dt
Sa0

b0
D = eS− 1 − 2

0 1
DSa0

b0
D + Ose2d. s43d

The matrix on the right-hand side has two eigenvectors,
(1,0) ands1,−1d, with the eigenvalues −1 and 1 correspond-
ingly. The first eigenvector describes deviation in the mean-
field direction,ŵ=0, and leads to the restoring force back to
the metastable state. The second one gives the most unstable
direction, which describes the way the system escapes to-
wards the empty state. The corresponding trajectory on the
sŵ ,wd plane is plotted in Fig. 5 for the center point of the 1D
cluster,x=0. Different lines correspond to a few values ofte.
For te→`, the energy,E, approaches zero and the trajectory
approaches thes1,−1d direction that leads from the meta-
stable point s0,ehY0d to a symmetric metastable point
sehY0,0d. [The existence of the latter follows directly from
the symmetry of Eqs.(34).] For e!1, the small deviation
analysis describes the entire transition between the two meta-
stable points that takes place, therefore, along the straight
line,

wsx,td = ehY0sxd − ŵsx,td, s44d

on thesŵ ,wd plane. Further evolution takes place along the
w=0 direction. As a result, in the limitte→`, and therefore
E→0, the semiclassical escape action is given by the area of
the straight triangle, with the heightehY0sxd, integrated over
the cluster, cf. Eq.(29),

FIG. 4. The semiclassical action(in units of j dns) for the ex-
tinction of a one-dimensional cluster is shown as a function of the
cluster’s radiusR (in units of j), full line; the large radius approxi-
mation, Eq.(39), is shown by the dashed line; the near-critical,
p /2&R, approximation, Eq.(45), is shown by the dashed-dotted
line.

FIG. 5. Trajectories on thesŵ ,wd plane are shown for the center
point of the 1D cluster,x=0. The horizontal axis isŵ variable and
the vertical axis isw. Different curves are distinguished by their
escape time, marked in dimensionless unitsste. ehY0s0d=0.3.
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Sd = −E
R

ddxE qdp= nsj
dE

R
ddxE wdŵ =

1

2
shed2nsj

d.

s45d

For the 1D cluster[e=1−sp /2Rd2 and h2=9p3/128], Eq.
(45) is shown in Fig. 4 by a dashed-dotted line.(For a cir-
cular cluster in 2D,Rc=2.4 andh2=9.4, while for a spherical
3D cluster,Rc=p and h2=51.7.) One may observe that the
large and small cluster asymptotic results, Eqs.(39) and(45)
correspondingly, provide a reasonable approximation for the
exact numerical calculation of the semiclassical action,Sd.
Finally, the probability of the system staying in the meta-
stable state isPstd=exph−t /tj, where the lifetimet is given
by Eq. (38).

V. RUNAWAY SYSTEMS

In this section, we consider a qualitatively different sys-
tem that exhibits a runaway behavior, characterized by un-
limited proliferation of the number of particles. The simplest
example is given by the population dynamics model, consist-
ing of three reactions: binary reproduction, death, and emi-
gration, characterized by probabilitiesl, s, and m corre-
spondingly. The schematic way to write it is

A+A→
l

3A, A→
s

x, andx→
m

A. The Master equation for the
zero-dimensional system has the form

dPn

dt
= lF sn − 1dsn − 2d

2
Pn−1 −

nsn − 1d
2

PnG
+ sfsn + 1dPn+1 − nPng + mfPn−1 − Png. s46d

The corresponding zero-dimensional Hamiltonian is

Ĥ0sp̂,q̂d =
l

2
sp̂2 − p̂3dq̂2 + ssp̂ − 1dq̂ + ms1 − p̂d s47d

and the classical equations of motions are

q̇ = − lsp − 3
2p2dq2 − sq + m, s48ad

ṗ = lsp2 − p3dq + ssp − 1d. s48bd

As always, the mean-field equation of motion for the reac-
tion coordinateq̄<knl is obtained by the ansatzp=1 and
takes the form

dq̄

dt
=

l

2
q̄2 − sq̄ + m. s49d

According to the mean-field equation, there are two qualita-
tively different scenarios of the system’s evolution. They are
distinguished by the parameter

d2 ; 1 −
2lm

s2 . s50d

If d2,0, the right-hand side of Eq.(49) is strictly positive
and the reaction coordinate always grows to infinity. This is
the scenario, where the population proliferates indefinitely.
Alternatively, ford2.0 the system possesses two stationary

concentrations:n7=nss17dd, where ns=s /l. The point
q̄=n− is the stable one, whileq̄=n+ is unstable. In this case
(the only one we discuss hereafter), the mean field predicts
that for the range of initial concentrations 0,n0,n+ the
system evolves towards the stable populationn−. If the initial
concentration exceedsn+, the system runs away and the
population diverges.

If one goes beyond the mean-field treatment, however,
one realizes that the staten− is actually ametastableone. To
see this fact, and calculate the lifetime of the metastable
state, it is convenient to draw the phase portrait, Fig. 6. It has
two lines of zero energy: the mean-field line,p=1, and the
nontrivial linelp2q2/2−sq+m=0. These two lines intersect
at the mean-field stable pointsp=1,q=n7 and determine the
topology of the phase diagram. It is clear from the phase
portrait that the pointp=1,q=n− is not stable once motion
with pÞ1 (non-mean-field) is allowed. More precisely, there
is a non-mean-field path that brings the system from the
point q=n− to the point q=n+. Once the pointq=n+ is
reached, the system may continue to evolve according to the
mean field towards indefinite population growth. Repeating
the calculations, similar in spirit to the calculations of the
decay time in Sec. III, one finds for the lifetime of the meta-
stable state,q=n−,

t < s−1 exph+ S0j, s51d

whereS0 is the classical action along the nontrivial line of
zero energy between pointss1,n−d and s1,n+d. Calculating
the integral, one findsS0= fsn+d− fsn−d, where fsxd;x
−Î8m /l arctansxÎl /2md.

Two limiting cases are of particular interest:(i) the “near-
critical” system, 0,d2!1 and(ii ) the system with almost no
immigration, m→0+,d→1−. In the former case, the two
mean-field stationary points approach each other, making the
escape from the metastable state relatively easy. Expanding
the f function up to the third order, one findsS0=2nsd

3/3
!ns. As expected, the action is small and correspondingly
the lifetime is short(notice that the quasiclassical picture
applies as long asS0.1). In the latter case, the two mean-
field stationary points tend ton−→0 and n+→2ns. If the
immigration is absent,m=0, the mean-field stable point,
n−=0, coincides with the empty state of the system. The
empty state is absolutely stable since no fluctuations are pos-

FIG. 6. The phase portrait of the runaway process, Eq.(46).
Thick lines represent the solution ofHsp,qd=0. The fat dots are
fixed points.d2=1/2.

V. ELGART AND A. KAMENEV PHYSICAL REVIEW E 70, 041106(2004)

041106-8



sible. Naively, one may expect that in this limit the lifetime
of the metastable state(and thusS0) diverges. This isnot the
case, however. The calculation showsS0→2ns. As a result,
even a negligibly small probability of immigration,m, leads
to a finite probability of unlimited population expansion.
(Strictly speaking, one also needs to show that the preexpo-
nential factor does not go to zero oncem→0.)

We consider now a finite-dimensional generalization of
this population dynamics model. The physics of the phenom-
ena, discussed here, is as follows: if a critically large cluster
“tunnels” into the runaway state, both diffusion and reaction
dynamics work to expand the cluster and flip the entire sys-
tem into the runaway mode. The situation is similar to nucle-
ation of a critical domain in the supercooled state of a system
close to a first-order phase transition. To simplify the algebra,
we shall consider only the case of the “near-critical” system,
0,d2!1, where the apparatus turns out to be rather similar
to that of the theory of the first-order phase transitions.

As discussed above, the finite-dimensional generalization
of the Hamiltonian is Hfp,qg=eddxfH0sp,qd+D=p=qg.
For d!1, it is convenient to make a change of variables
sp,qd→ sŵ ,wd, as p=1+ŵ and q=nss1+wd, where w,d,
while ŵ,d2. Substituting it into the reaction part of the
Hamiltonian, Eq.(47), and keeping terms up tod4, one ob-
tains H0sŵ ,wd=snsfŵsd2−w2d /2−ŵ2g. As a result, the
d-dimensional action, Eq.(29), for the conjugated fields
ŵsx,td andwsx,td takes the form

S= nsj
dE

0

t

dtE ddxFŵSẇ − =2w +
d2 − w2

2
D − ŵ2G ,

s52d

where we have introduced the dimensionless timest→ t and
coordinatex/j→x, wherej=ÎD /s. The functional integra-
tion over the fieldŵ should be understood as running along
the imaginary axis. The field theory with the action, Eq.(52),
may be considered as a Martin-Sigia-Rose[35] representa-
tion of the following Langevin equation:

]w

]t
= =2w −

]V

]w
+ zsx,td, s53d

wherezsx,td is a Gaussian noise with the correlator

kzsx,tdzsx8,t8dl =
2

nsj
ddsx − x8ddst − t8d s54d

and the potential isVswd=−w3/6+d2w /2. This potential has
a metastable minimum atw=−d and an unstable maximum at
w=d. The barrier height isVsdd−Vs−dd=2d3/3 and therefore
the lifetime of the zero-dimensionalsd=0d system is ex-
pected to be given by the activation exponent[with snsj

dd−1

playing the role of temperature] ,exphns2d3/3j, in agree-
ment with Eq.(51).

To discuss the lifetime of the finite-dimensional system,
we shall not use the Langevin approach, but rather return to
the action, Eq.(52), and write down the classical equations
of motion,

]tw = =2w −
]V

]w
+ 2ŵ, s55ad

]tŵ = − =2ŵ + ŵ
]2V

]w2 . s55bd

The energy density, corresponding to these two equations, is
defined asEsx,td=−ŵs=2w−]V/]w+ŵd. The global energy,
E=eddxEsx,td, is, of course, conserved. However, in the
present case ifEsx,0d=0, it keeps holdinglocally at any
time: Esx,td=0. Indeed, the energy density vanishes if either
ŵ=0 or ŵ=−=2w+]V/]w=2ŵ−]tw, and thusŵ=]tw, where
we have employed Eq.(55a). It is easy to check that in both
cases Eq.(55b) is satisfied automatically. Therefore, the evo-
lution with zero-energy density is described by either]tw
==2w−]V/]w, which is the mean-field equation, or by]tw
=−=2w+]V/]w, which gives the motion along the nontrivial
line of zero energy.

Notice that the last equation happens to be the time-
reversed version of the mean field[36]. If one starts, thus,
from the stationary solutionw=−d and perturbs it infinitesi-
mally, then the perturbation grows until it reaches the stable
configuration, satisfying

=2w −
]V

]w
= 0. s56d

The critical domain is given, therefore, by a localized solu-
tion of Eq. (56). Since the energy along the nucleation dy-
namics is zero, the action to nucleate the critical domain is
given by Sd=nsj

deddxedtŵ]tw=nsj
deddxedts−=2w

+]V/]wd]tw. Performing the time integration in this expres-
sion, one finds for the action

Sd = nsj
dE ddxS1

2
s=wdd2 + Vswdd − Vs− ddD , s57d

where wd=wdsxd is a stationary localized solution of Eq.
(56), which is an extremum of the functional(57). As a re-
sult, the problem of the dynamical escape from the meta-
stable configuration is reduced to the static Landau theory of
the first-order transitions. As far as we know, such reduction
is not a general statement, but rather is a consequence of the
assumptiond!1 and the resultinglocal energy conserva-
tion, Esx,td=0. In a general situation, one still has to solve a
considerably more complicated problem of dynamic equa-
tions (48) for wsx,td and ŵsx,td.

From the scaling analysis of Eq.(56), one finds thatw
,d in the core of the critical domain. Employing this fact,
one finds that the characteristic spatial scale of the domain is
given by d−1/2@1 (distance is measured in units ofj
=ÎD /s). Therefore, the action cost to create the critical do-
main is

Sd = cdnsj
dd3−d/2, s58d

where cd is a numerical factor of the order of 1:c0
=2/3,c1=24/5. This result suggests that ford.6, the state
with finite population densityn=nss1−dd is stable, while for
d,6 the state is metastable. The concentration of critical
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domains is given byj−d exph−Sdj and the typical distance
between them isj exphSd/dj. They grow diffusively until the
entire system is flipped over to the runaway state in timet
,s−1 exph2Sd/dj. The semiclassical calculation is applicable
as long asSd.1 and therefored is not too small. For very
small d, the escape is driven by the fluctuations rather than
the semiclassical dynamics.

VI. CONCLUSIONS

Rare events play an important role in a variety of systems
in nature; the immediate practical application may be a sto-
chastic evolution in virology[45]. The process of evolution
is a consequence of the interplay of mutation and selection
on a population of organisms, leading to an observable
change in its genetic makeup. Because of their simple ge-
nomes, viruses make good models for studying and testing
evolutionary theory. “Rare” events are thought to be respon-
sible for processes such as creating new populations with
properties altered dramatically, such as evasion of the im-
mune response or resistance to antiviral therapy.

The examples, considered above, are meant to illustrate
the general technique to calculate the probability of rare
events in reaction-diffusion systems. The technique is based
on the existence of the many-body “quantum” Hamiltonian,
which fully encodes the microscopic Master equation. The
very same Hamiltonian, in its second quantized representa-
tion, serves as a starting point for field-theoretical treatments
of dynamic phase transitions in the reaction-diffusion system
[11–19]. For our present purposes, we have deliberately cho-
sen to work with systems that are away from a possible con-
tinuous phase-transition point. Namely, we focus on the parts
of the phase diagram where the mean-field considerations
suggest a nonvanishing population of particles(or at least
transiently nonvanishing population). In such cases, the
“quantum” fluctuations are small and one may treat the un-
derlying “quantum” dynamics in a semiclassical way.

We stress that the semiclassical treatment isnot equiva-
lent to that of the mean field. The latter requires a very spe-
cial assumption about dynamics of the canonical momenta,
namely,psx,td=1. This assumption may be justified, as long
as one is interested in a typical system’s behavior(even this
is not guaranteed if the system possesses metastable states, as
in our last example). In such cases, the problem is reduced to
a partial differential equation for the reaction coordinates,
qsx,td, only. However, if questions about atypical, rare
events are asked, the mean-field assumption,psx,td=1, must
be abandoned. As a result, one has to deal with the canonical
pair of Hamilton equations for reaction coordinates,qsx,td,
and momenta,psx,td. The degree of deviation from the
mean-field line,p=1, is specified(through proper initial and
finite boundary conditions) by the concrete sort of the rare
event of interest. Finally, the probability of the rare event is
proportional to the exponentiated action along the classical
trajectory, satisfying specified boundary conditions.

We found it especially useful to work with the phase por-
trait of the corresponding dynamical system on thesp,qd
plane. The emerging structures are fairly intuitive and can
tell a great deal about the qualitative behavior of the system

even before any calculations. On one hand, the Hamiltonians
underlying the Master equations of reaction systems are typi-
cally not of the type traditionally considered in the theory of
dynamical systems. For example, they usuallycannotbe cast
into the familiar formHsp,qd=p2/2+Asqdp+Vsqd. On the
other hand, they possess some universal features, such as
Hs1,qd=0, or, if there is an empty absorbing state,Hsp,0d
=0, etc. These features dictate a specific topology of the
phase portrait. It would be extremely interesting to explore
this class of Hamiltonians from the point of view of the
mathematical theory of dynamical systems[37]. A question
of particular interest is a possible, exact integrability of the
resulting Hamiltonian equations(especially ind=1) [38].

There are a number of issues that are not addressed in the
present paper and require further investigation. Let us men-
tion some of them.(i) Throughout the paper we have dis-
cussed rare event probability with exponential accuracy. In
some cases, this is not enough and one would like to know
the preexponential factor rather precisely. This requires a cal-
culation of the fluctuation determinant on top of the non-
trivial classical trajectory. This task is relatively straightfor-
ward for thed=0 systems, where it may be addressed by
writing down “quantum” corrections to the Hamilton-Jacobi
equation and treating them iteratively(in the way it is usu-
ally done in the single-particle WKB method). For extended
systems, the task is reduced to the spectral problem of a
certain matrix differential operator. At present, we are not
aware of a general recipe to solve it. One may show, how-
ever, that on any mean-field trajectory,psx,td=1, the fluctua-
tion determinant is equal to unity. The simplest way of doing
it is to use the discrete representation of the functional inte-
gral, Eq.(10), and notice that the quadratic fluctuation matrix
has a triangular structure with unities on the main diagonal
(and, hence, unit determinant). Unfortunately, this is not the
case away from the mean field,pÞ1.

(ii ) We have restricted ourselves to systems with a single
sort of species only. It is straightforward to generalize the
technique to any number of species,K. The difficulty is that
the phase portrait becomes a 2K-dimensional construction,
which is not easy to visualize. Correspondingly, the mean-
field line becomes aK-dimensional hyperplane. Moreover,
some qualitatively new physics may arise, such as stable
oscillatory limiting cycles on the mean-field hyperplane. A
paradigm of such behavior is a Lotka-Volterra[39] system:

A+B→
l

2A; A→
s

x and B→
m

2B. An example of a rare event
may be an “escape” from the periodic limiting cycle on the
A-B mean-field plane into the empty state in a finite-size
system. Finding an optimal “reaction path” for such an es-
cape is not an obvious matter, however.

(iii ) We have not treated long-range interactions and(local
or nonlocal) constraints. The simplest(“fermionic”) con-
straint is that of a maximum single occupancy of each lattice
site. It was shown recently that such a constraint may be
incorporated into the “bosonic” formulation[40], leading to
a new class of the interesting Hamiltonians. Studying rare
event statistics for such hard-core particles(by studying clas-
sical dynamics of the corresponding Hamiltonians) is a very
interesting subject.

(iv) There is a close resemblance between the formalism
presented here for essentially classical systems and the
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Keldysh technique for nonequilibrium quantum statistics
[41]. The semiclassical solutions withpÞ1, considered here,
correspond to saddle-point configurations of the Keldysh ac-
tion with a different behavior on the forward and backward
branches of the time contour. Although examples of such
saddle points were considered in the literature[42,43], it
would be interesting to learn more about possible applica-
tions of the present technique for true quantum problems.
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APPENDIX A: OPERATOR TECHNIQUE

We give here a brief account of the operator technique
[27–29,44] for completeness. Define the ket-vectorunl as the
microscopic state withn particles. Let us also define the
vector

uCstdl ; o
n=0

`

Pnstdunl. sA1d

Notice that the weight,Pn, is the probability rather than the
amplitude. It is convenient to introduce the creation and an-
nihilation operators with the following properties:

a†unl = un + 1l, sA2ad

aunl = nun − 1l. sA2bd

As a byproduct, one hasau0l=0. One may immediately
check that such operators are “bosonic”:

fa,a†g = 1. sA3d

As for any pair of operators satisfying Eq.(A3), one may
prove the identity

eafsa,a†d = fsa,a† + 1dea, sA4d

where f is an arbitrary operator-value function. In these no-
tations, the whole set of the Master equations may be recast

into a single “imaginary time” Schrödinger equation

d

dt
uCstdl = − ĤuCstdl, sA5d

whereĤ is the “Hamiltonian” operator. One may check that
the Hamiltonian of the binary annihilation process, Eq.(1),
has the form

Ĥ =
l

2
fsa†d2 − 1ga2, sA6d

where the first term in brackets on the right-hand side is the
“out” term and the second is the “in” term.

One may formally solve the Schrödinger equation:

uCstdl=exph−Ĥsa†,adtj uCs0dl. An initial state, uCs0dl, is

specified as, e.g.,uCs0dl=e−n0sa†−1d u0l for the Poisson initial
distribution, oruCs0dl=sa†dn0 u0l for the fixed particle num-
ber. The generating function Eq.(2) is given by

Gsp,td = k0uepae−Ĥsa†,adtuCs0dl. sA7d

The normalization,Gs1,t=0d=1, is guaranteed by the iden-
tity k0ueaunl=1 for anyn [this fact may be checked using Eq.
(A4)] and the constraintonPns0d=1. The normalization is

kept intact at any time ifk0ueaĤsa†,ad=0. Since the coherent
statek0uea is an eigenstate of the creation operator,k0ueaa†

=k0uea, one arrives at the conclusion that any legitimate
Hamiltonian must obey

Ĥsa† = 1,ad = 0. sA8d

For instance, the Hamiltonian of the binary annihilation, Eq.
(A6), indeed satisfies this condition.

One may now employ the standard bosonic coherent state
technique to write the generating function, Eq.(A7), as the
functional integral. The result coincides identically with Eq.
(10) of the main text. One notices, thus, the formal corre-
spondence between the operatorsa† and a, and operatorsp̂
and q̂ correspondingly.
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