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ABSTRACT
Hypersaline adapted Archaea, due to their habitation of
harsh desert salt lakes, can withstand stress at extreme lev-
els. Their survival in extreme stress relies on genome-wide
shifts in transcription, but it is unclear how their transcrip-
tome is organized locally and globally to ensure survival.
We leverage over a thousand microarrays for the model ex-
tremophile Halobacterium salinarum to understand the dy-
namic states of its transcriptome. Two machine learning
models allow us to decompose H. salinarum gene expression
into sets of co-regulated modules. We investigate the ge-
nomic structures of these modules and use them to predict
other phenotypes.
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H. salinarum resists numerous stress conditions at levels
higher than other organisms, for example tolerating levels
of reactive oxygen species 25 times higher than E. coli [1].
H. salinarum and the halophilic Archaea are also known to
be diverse in their metabolic function, being able to per-
form aerobic respiration, fermentation of arginine, and pho-
totrophy through the light activated proton pump bacteri-
orhodopsin. Both stress response and metabolism are regu-
lated heavily at the transcriptional level, making transcrip-
tional regulation an important area of systems biology in
Archaea. Transcription regulation in Archaea is a hybrid of
Eukaryotes and Bacteria; the general transriptional machin-
ery resembles those of Eukaryotes and the transcriptional
regulators resemble those of Bacteria (on the amino acid se-
quence level).The organization of H. salinarum’s transcrip-
tional network, which allows the organism to survive diverse
sources of and extreme levels of stress, is still unknown.

H. salinarum represents the model for Archaeal transcrip-
tional regulation as it was adopted early for full genome
sequencing and subsequent gene expression microarray anal-
ysis [2]. This has lead to over a decade of gene expression
research for this organism, representing one of the largest
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collections of gene expression for a single organism. The pro-
tocol is consistent between all experiments, using the same
reference strain in all arrays, which reduces the statistical
variability inherent in most gene expression studies across
time and labs.

We apply two popular machine learning algorithms to the H.
salinarum transcriptional data — Gaussian graphical mod-
els and stochastic block models. A Gaussian graphical model
(GGM) is a graphical (network) representation of a multi-
variate normal distribution, where the graph G is the inverse
of the covariance matrix. An edge in G (Gi,j 6= 0) means
the two nodes i and j are correlated when conditioned on
all other variables.

Stochastic block models (SBMs) describe a network as a col-
lection of k clusters, with the probability of an edge between
two nodes described by their cluster memberships. The hid-
den cluster memberships of each node (πi ∈ Rk) and in-
ferred block structure B ∈ Rk×k describing the probability
of edges between two clusters can fully factorize the net-
work. The probability of each edge can then be represented
as p(Gi,j) = πT

i Bπj .

We use a sparse GGM [3] and a mixed membership SBM [4]
to infer the complex transcriptome of H. salinarum. Module
structures found from these models are then analyzed for
their specificity of condition activity, overrepresentation of
function, and conserved promoter motifs.
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