
Circadian rhythms exist in all kingdoms of life. 
Computational models of circadian clocks incorporate 
molecular and behavioral period measurements of 
phenotypes of clock mutations. Stochastic models of 
clocks exist to understand the role of noise, yet none 
attempt to explain experimental variances in period. We 
develop an improved method for detecting rhythmicity in 
genome-wide time series, which we apply to a rich RNA-
Seq dataset in Drosophila. We identify novel rhythmic 
genes and test knockouts to identify circadian 
phenotypes. We use these results to explore the effects of 
stochasticity on predicting period variance and compare 
our simulation to prior results.  

Background 
Circadian rhythms are endogenous rhythms with 
approximately 24-hour periods. In Drosophila, a series of 
transcriptional feedback loops creates the rhythm-generating 
core clock. Mutations in the core clock can lead to changes 
in the period of oscillations and strength of rhythmicity, 
which can be measured by an activity profile (actogram) of 
organismal behavior over time.  

Many methods exist for detecting rhythms in time series 
data. When data are noisy, sparse, and contain many false 
positives, as genome-wide time series data does, 
successfully detecting rhythms becomes more difficult. One 
leading method is JTK_CYCLE [1], which uses non-
parametric correlations with reference waveforms to detect 
rhythmicity. This method is limited by an overly 
conservative multiple hypothesis test correction and by only 
using symmetric reference waveforms.  

Many models for the core circadian clock exist that 
attempt to replicate measured mean protein, transcript, and 
behavioral dynamics in wild type and mutant phenotypes. 
Most of these models are deterministic [2-4]. However, 
measurements produce distributions of these different 
dynamics, which can only be simulated via stochastic 
models. Stochastic models of differing complexity do exist 
[5,6], but no known detailed stochastic models attempt to 
match the variance observed in the behavioral period. 

Results 
We develop an improved method for detecting rhythmicity 
in circadian genome-wide data by using asymmetric 
reference waveforms to identify asymmetric rhythmic time 
series and using Monte Carlo simulations to empirically 
correct the p-values for multiple hypothesis testing [7]. We 
show that this gives greater sensitivity and specificity for 
rhythm detection in comparison to six other methods, 
including the original JTK_CYCLE method.  

We apply our method to Drosophila melanogaster RNA-
Seq data to identify novel cycling genes. We test knockouts 
of newly identified circadian genes for changes in circadian 
behavior. We compare these phenotypes to our stochastic 
models of the core clock network, with particular attention 
to the variance in period as well as the mean value. 
Reflecting a previously unappreciated asymmetry in period 
variance in actogram experiments, we find that the period 
distribution in our simulations tends to skew below the mean 
value in the deterministic models. We find that care must be 
taken to accurately assign the period of oscillation in a 
stochastic simulation while taking into account circadian 
arrhythmia, which affects a sizeable fraction of core clock 
mutants.  

To inform our understanding of the role of noise in our 
models, we add noise selectively to each species to observe 
how it propagates through the whole clock. We compare 
these results to clock mutants as well as mutants of the 
newly identified circadian genes to verify our predictions of 
the mechanism by which these genes affect the core clock. 

Conclusion 
We conclude that empirically correcting for multiple 
hypothesis testing and searching for asymmetric waveforms 
provides improved rhythm detection over other methods. We 
find that using stochastic simulations to explicitly model the 
distribution of the period in organismal circadian activity 
provides a useful means of understanding the effects of 
circadian mutants on the core clock. Future work includes 
applying our methods to better understand the temperature-
independence (temperature compensation) of circadian 
rhythms and phenotypic mutants.  
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