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for example, when studying one of the most important
properties of complex biochemical networks: their modular
structure (Guimerà et al, 2004; Guimerà and Amaral, 2005).
Most biochemical networks are organized into modules,
regions with a high density of interactions; think, for example,
of pathways within the metabolism. The problem is that,
owing to fluctuations, even structure-less networks have sub-
networks with a higher density of interactions than the
network as a whole (Guimerà et al, 2004). The relevant
question is, therefore, whether a given network has a
significantly modular structure. The fact that all biochemical
networks are significantly modular suggests the existence of
evolutionary mechanisms responsible for modularity.
Which are these mechanisms? Why do hub proteins interact

with each other less than expected? What is the interplay
between form and function in biochemical networks? These
are important questions that we need to answer.
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Figure 1 Using the appropriate null model. (A) Network of protein interactions in yeast. (B) Randomization of the network of protein interactions in yeast. The
randomization provides the appropriate null model to study the relationship between form and function in the real network. In the null model, hub proteins are more connected
to each other than in the real network. Additionally, the randomization lacks the modular structure of the real network (represented by different colours in panel A).
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Differential Equations

d [ErkActive]
dt

= kpMekCytoplasmic·[MekActive]·[ErkInactive]
[ErkInactive]+KmpMekCytoplasmic

−

kdErk·[PP2AActive]·[ErkActive]
[ErkActive]+KmdErk

d [ErkActive]

dt
=

kpMekCytoplasmic · [MekActive] · [ErkInactive]

[ErkInactive] + KmpMekCytoplasmic

−

kdErk · [PP2AActive] · [ErkActive]

[ErkActive] + KmdErk

Optimizable Parameters

krbEGF 2.18503e− 05
kruEGF 0.0121008
krbNGF 1.38209e− 07
kruNGF 0.00723811

kEGF 694.731
KmEGF 6086070.0

kNGF 389.428
KmNGF 2112.66

kdSos 1611.97
KmdSos 896896.0

kSos 32.344
KmSos 35954.3

kRasGap 1509.36
KmRasGap 1432410.0
kRasToRaf1 0.884096

KmRasToRaf1 62464.6
kpRaf1 185.759

KmpRaf1 4768350.0
kpBRaf 125.089

KmpBRaf 157948.0
kdMek 2.83243

KmdMek 518753.0
kpMekCytoplasmic 9.85367

KmpMekCytoplasmic 1007340.0
kdErk 8.8912

KmdErk 3496490.0
kpP90Rsk 0.0213697

KmpP90Rsk 763523.0
kPI3K 10.6737

KmPI3K 184912.0
kPI3KRas 0.0771067

KmPI3KRas 272056.0
kAkt 0.0566279

KmAkt 653951.0

1

15 nonlinear differential equations

Biochemically detailed models	

Often very complex, but....	


• Close correspondence with expts	

• Can integrate with other pathways	

• Close to evolutionary mechanism

Networks, models, and parameters

Brown et al.	

Phys Biol (2004)

Growth factor signaling 
in PC12 cells

?

?
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But... 48 biochemical parameters   ,	

none quantitatively measured
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Parameter fitting
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• Biochemical parameters are 
difficult to measure directly	


• Need to express and purify 
protein	


• Measure in vitro, questionable 
extrapolation to in vivo	


• Measuring cellular responses often 
easier (and more interesting)	


• Model parameters need to be fit



What to extremize?
• Maximizing the likelihood of the data given the model 

extracts maximal information about parameters.	


• Likelihood: probability of generating the observed data 
given your model and parameter values.	


• Independent data points with Gaussian noise:

Inhomogenous data typically demands a more ad-hoc 
approach (e.g. fitting Western blots + flow cytometry)



Cost landscape



Optimization methods

• “Local” optimizers	


• Nelder-Mead simplex (“amoeba”)	


• Steepest descent, Conjugate gradient	


• Levenberg-Marquardt	


• “Global” optimizers	


• Simulated annealing	


• Genetic algorithms
See Numerical Recipes	


or Ashyraliyev et al. FEBS Lett (2009)	




General advice

• An art, rather than a science	


• Method comparisons are 
dubious, since performance 
can be very problem-specific	


• Hand-fiddling to use your brain is useful, both to 
develop understanding and to find a starting point	


• Most optimizers work best if all parameters have 
similar scale



Obsolete 2nd Edition. Copyright (C) Numerical Recipes Software 1988-2002.  Try the 3rd Edition in C++!
Obsolete 2nd Edition. Copyright (C) Numerical Recipes Software 1988-2002.  Try the 3rd Edition in C++!

Obsolete 2nd Edition. Copyright (C) Numerical Recipes Software 1988-2002.  Try the 3rd Edition in C++!

Obsolete 2nd Edition. Copyright (C) Numerical Recipes Software 1988-2002.  Try the 3rd Edition in C++!

• Reflect worst point across tetrahedron	


• Reflect and expand worst point	


• Contract worst point	


• Contract whole tetrahedron toward lowest point

Obsolete 2nd Edition. Copyright (C) Numerical Recipes Software 1988-2002.  Try the 3rd Edition in C++!

Nelder-Mead simplex (“amoeba”)

Derivative-free, so very robust,  
but slower than gradient-based methods

N+1 points define a tetrahedron  
in N-dimensional parameter space.



1. Calculate gradient	


2. Minimize along gradient direction

Steepest descent

Obsolete 2nd Edition. Copyright (C) Numerical Recipes Software 1988-2002.  Try the 3rd Edition in C++!

Simple and intuitive	


Performs very poorly, because each step 
must be orthogonal to the previous.

Solution: conjugate gradient,  
to pick more productive directions.



Levenberg-Marquardt

• Direct estimate of quadratic form, using only single 
derivatives	


• Very efficient when started “close to” local optimum

~0



Simulated annealing
• Each step test a new set of parameters sampled 

from a proposal density.	


• If C’ < C accept move with probability 1,  
otherwise accept with probability exp[(C - C’)/T].	


• Slowly reduce T to zero, via cooling schedule.	


• Guaranteed convergence if cooling is “slow enough”	


• Robust, applicable to discrete optimization,  
but slow



Evolutionary optimization
• Population of “individuals”, each a set of parameters	


• Apply mutations (changes in single parameter values) 
and recombinations (swaps of multiple values 
between individuals)	


• Fitness of each individual is inversely proportional to 
cost	


• Next generation reproduce according to fitness	


• Robust, very easy to parallelize.



Sensitivity analysis

• How sensitive is your model to parameter changes?	


• Conversely, how reliable are your parameter 
estimates?	


• 1-D	


• Multi-dimensional



1-dimensional sensitivities

• Transects of the cost function	


• Width is proportional to uncertainty	


• First derivatives of interesting quantities are “easy” 
with ODEs

d~y

dt
= f(~y, t, ~p)



• Quadratic form	


• Approximating probability 
distributions as multidimensional 
normal or log-normal

Multidimensional sensitivities

✓i



• Parameter ensembles	


• Bayesian MCMC	


• Frequentist bootstrapping 
(resampling of data)	


• Approximate Bayesian Computation 
(when can’t compute the likelihood,  
  use summary statistics)

Multidimensional sensitivities



Summary

• Parameter optimization is hard	


• Your toolbox should contain a variety of algorithms, 
both local and global	


• Algorithms are no substitute for 
understanding your model and your data	


• Even trickier for stochastic systems



with Jim Sethna, Chris Myers 
Kevin Brown, Josh Waterfall, Fergal Casey
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Sloppiness is universal in 

biochem. network models.

Sloppiness

Erguler et al. Mol Biosyst (2011) - 160 more sloppy models	
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Sloppiness is a general feature of 
nonlinear least-squares fits.



Origins of sloppiness
stochastic motion. The complex microscopic col-
lisions are described by a general linear dynam-
ical equation for the particle density, r(r, t):

∂trðr; tÞ ¼ Rr − V∂xrþ D∂2xr þ

∑
∞

n¼3
Cn∂nxr ð2Þ

Here, D is the diffusion constant, V is the net
drift, R is the particle creation rate, coefficients
Cn couple to higher-order gradient terms and
scale as Cn º an, where a is some microscopic
length. As time t proceeds, r smoothens over a
length e

ffiffiffiffiffiffi
Dt

p
. The contribution of higher-gradient

terms thus scales as Cn/(Dt)
n/2 ~ (Dt/a2)–n/2 and

can be dropped to yield the three-term diffusion
equation as the emergent continuum limit. Mi-
croscopic parameters describing the particles and
their environment enter into this continuum de-
scription only through their effects on D, V, and
R. We considered a microscopic model of sto-
chastic motion and particle creation on a discrete
one-dimensional (1D) lattice of sites. Parameters
qm give the probabilities that a particle will be at
site j + m after one time step given a starting
particle at site j, for –N ≤ m ≤ N (Fig. 2, inset).
At the initial time, all particles are at the origin,
r0( j) = dj,0. The observables,→x ≡ rtð jÞ, are the
densities of particles at some later time t.

After a single time step, the distribution of
particles is given by r1( j) = q j. This distribution
depends independently on all of its parameters;
thus, the FIM is the identity, gmn = dmn (15).
Because each parameter is independently mea-
surable, there is no parameter space compres-
sion.When particles take several time steps before
their positions are observed, some parameter com-
binations affect observable behavior much more
sensitively than do others: The nth FIM eigen-
value scales as ln ~ t2(Dt/a2)–n–1/2 (Fig. 2) (15),
where a = N is the maximum hopping distance,

our microscopic length scale. The information
theory approach has automatically recapitu-
lated the physics underlying the continuum
limit; successive eigenvalues are separated by

the square of the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt=a2

p
governing the

strength of successive terms in the gradient ex-
pansion (Eq. 2). The three stiffest eigenvalues
can be shown to correspond precisely to R, V,

Fig. 1. Normalized eigenvalues of the FIM of various models. The
diffusion and Ising models are explored here. A radioactive decay model
and a neural network are taken from (14). The systems biology model is a
differential equation model of a mitogen-activated protein kinase (MAPK)
cascade taken from (10), and the adjoining band marked as “Random”
shows a typical eigenvalue spread from a Wishart random matrix of the
same size. (Additional examples are available in fig. S1.) In all models, the
eigenvalues of the FIM are roughly geometrically distributed, with each
successive direction substantially less important for system behavior (only
the first 10 decades are shown). This means that inferring the parameter
combination whose eigenvalue is smallest shown would require ~1010

times more data than would the stiffest parameter combination. Conversely,
the least important parameter combination is

ffiffiffiffiffiffiffiffiffi
1010

p
times less important for

understanding system behavior.
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Fig. 2. FIM eigenvalues of a model of stochastic motion on a 1D lattice. The seven parameters
describe probabilities of transitioning to nearby sites (bottom, inset). Observations are taken after a given
number of time steps for the case in which all parameters take the value qm = 1/7. The top row shows the
resulting densities plotted at times t = 1, 3, 5, and 7. The bottom plot shows the eigenvalues of the FIM
versus number of steps. After a single time step, the FIM is the identity, but as time progresses, the
spectrum of the FIM spreads over many orders of magnitude. The first eigenvector measures deviations in
the net particle creation rate R from 0, the second measures a net drift V in the density, and the third
corresponds to parameter combinations that change the diffusion constant D. Further eigenvectors
describe parameter combinations that do not affect these macroscopic parameters but instead measure
the skew (green), kurtosis (purple), and higher moments of the resulting density (orange and brown).

www.sciencemag.org SCIENCE VOL 342 1 NOVEMBER 2013 605

REPORTS

Machta et al. (2013) Science

In some simple models, 
sloppiness can be shown 
to arise from macroscopic 
observations that obscure 
microscopic parameter 
effects.



Why are Nonlinear Fits to Data so Challenging?

Mark K. Transtrum,* Benjamin B. Machta,† and James P. Sethna‡

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
(Received 22 September 2009; published 10 February 2010)

Fitting model parameters to experimental data is a common yet often challenging task, especially if the

model contains many parameters. Typically, algorithms get lost in regions of parameter space in which the

model is unresponsive to changes in parameters, and one is left to make adjustments by hand. We explain

this difficulty by interpreting the fitting process as a generalized interpolation procedure. By considering

the manifold of all model predictions in data space, we find that cross sections have a hierarchy of widths

and are typically very narrow. Algorithms become stuck as they move near the boundaries. We observe

that the model manifold, in addition to being tightly bounded, has low extrinsic curvature, leading to the

use of geodesics in the fitting process. We improve the convergence of the Levenberg-Marquardt

algorithm by adding geodesic acceleration to the usual step.

DOI: 10.1103/PhysRevLett.104.060201 PACS numbers: 02.60.Ed, 02.40.Ky, 02.60.Pn, 05.10.!a

The estimation of model parameters from experimental
data is astonishingly challenging. A nonlinear model with
tens of parameters, fit (say) by least squares to experimen-
tal data, often demands weeks of human guidance to find a
good starting point; even then, the parameters cannot usu-
ally be extracted from the data. Both general minimization
algorithms and algorithms like the Levenberg-Marquardt
algorithm that are designed for least-squares fits routinely
get lost in parameter space. This becomes a serious ob-
stacle to progress when one is unsure of the validity of the
model, e.g., in systems biology where one wants to auto-
matically generate and explore a variety of alternative
models.

Here we use differential geometry to explain why fits are
so hard. We first explore the structure of the model mani-
foldM, the manifold of predictions embedded in the space
of data D, and find that it is typically bounded, with cross
sections having a hierarchy of widths, so that the overall
structure is similar to that of a long, thin ribbon. We explain
this hierarchy by viewing the fitting process as a general-
ized interpolation procedure with few effective model de-
grees of freedom. We interpret the difficulty in fitting to be
due to algorithms getting stuck near the boundary of M,
where the model is unresponsive to variations in the pa-
rameters. We then discuss how geometry motivates algo-
rithms to alleviate this difficulty.

A typical nonlinear least-squares problem fits a model
Ymð!Þ with N parameters ! to M experimental data points
ym. We define the model manifold M as the parametrized
N-dimensional surface ~Yð!Þ embedded in Euclidean data
space, D ¼ RM. The best fit to the experiment is given by
the point onMwith Euclidean distance closest to the data,
minimizing the cost C ¼ 1

2 ð ~Yð!Þ ! ~yÞ2. The Euclidean
metric of data space [with distance between models given
by the change in residuals, ~r ¼ ~Yð!Þ ! ~y] induces a metric
on the manifold, g"# ¼ @" ~Y % @# ~Y ¼ ðJTJÞ"#, where
Jm" ¼ @

@!"
Ym; g"# is known as the Fisher information

matrix. As an example, the model Yðt;!Þ ¼ f!ðtÞ ¼
e!!1t þ e!!2t sampled at three time points is given in
Fig. 1. The model manifold has been extensively studied
by the information geometry statistics community [1], but
they focus on the intrinsic curvature; as the cost is the
distance in data space, the embedding and its extrinsic
curvature are crucial to finding best fits [2,3].
As seen in Figs. 2 and 3, this model manifold can take

the form of a hyper-ribbon, with thinnest direction 4 orders
of magnitude smaller than the long axes. To understand this
observed hierarchy, consider the special case of analytic
models, fðt; !Þ, of a single independent variable (time)
where the data points are Ym ¼ fðtmÞ. Let R be the typical
time scale over which the model behavior changes, so that
the nth term of the Taylor series fðnÞðtÞ=n! & R!n (roughly
the radius of convergence). If the function is sampled at n
time point (t1; t2; . . . ; tn) within this time scale, the Taylor
series may be approximated by the unique polynomial of
degree n! 1, Pn!1ðtÞ passing through these points. At a
new point, t0, the discrepancy between the interpolation
and the function is given by

fðt0Þ ! Pn!1ðt0Þ ¼ !nðt0ÞfðnÞð$Þ=n!; (1)

FIG. 1 (color online). The model manifold for the two-
exponential problem, with yi evaluated at t ¼ 1=3, 1, and 3.
Boundaries exist when !" ¼ 0;1 and when !1 ¼ !2. (The

ribbonlike structure of Fig. 2 emerges only in higher dimen-
sions.)

PRL 104, 060201 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
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0031-9007=10=104(6)=060201(4) 060201-1 ! 2010 The American Physical Society

Information geometry
• A model is a mapping from M-

dimensional parameter space to 
a manifold within N-dimensional 
data space (N > M)	


• For non-linear models, these 
manifolds are often bounded 
and contain singular points.	


• Local sloppy analysis predicts 
the global shape of this manifold.	


• These torture optimizers, but 
clever algorithms can work 
around them. Transtrum, Machta, Sethna	


(2010) Phys Rev Lett	

(2011) Phys Rev E

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 3. Skewed coordinates. A sloppy model is characterized by a
skewed coordinate mesh on the manifold. The volume of the parallel-
piped is given by the determinant of the metric, which is equal to the
product of the eigenvalues. Because sloppy models have many tiny
eigenvalues, these volumes can be very small with extremely skewed
coordinates. Our toy model has extremely skewed coordinates where
the parameters are nearly equal (near the fold line). Most of the
manifold is covered by regions where the coordinates are less skewed,
which corresponds to a very small region in parameter space.

is covered by a very small region of parameter space that
corresponds to the volumes of (slightly) less skewed meshes.

We will see when we discuss curvature that the large range
of eigenvalues in the metric tensor usually corresponds to a
large anisotropy in the extrinsic curvature. Another geometric
property of sloppy systems relates to the boundaries that
the model imposes on the manifold. The existence of the
boundaries for the toy model can be seen clearly in Fig. 1(c).
The surface drawn in the figure corresponds to the patch of
parameters within 0 ! θ1,θ2 ! ∞. The three boundaries of
the surface occur when the parameters reach their respective
bounds. The one exception to this is the fold line, which
corresponds to when the parameters are equal to one another.
This anomalous boundary (θ1 = θ2) is discussed further in
Sec. IV. Most nonlinear sloppy models have boundaries.

In the next section, we will discuss how boundaries arise
on the model manifold and why they pose problems for
optimization algorithms. Then, in Sec. IV we describe another
surface, the model graph, that removes the boundaries. The
surface described by the model graph is equivalent to a model
manifold with a linear Bayesian prior added as additional
residuals. In Sec. V, we show that introducing other priors
can be even more helpful in keeping algorithms away from the
boundaries.

III. BOUNDED MANIFOLDS

Sloppiness is closely related to the existence of boundaries
on the model manifold. This may seem to be a puzzling claim
because sloppiness has previously been understood to be a
statement relating to the local linearization of model space.
Here we will extend this idea and see that it relates to the global
structure of the manifold and how it produces difficulties for
the optimization process.

To understand the origin of the boundaries on model
manifolds, consider first the model of summing several
exponentials

y(t,θ ) =
∑

µ

e−θµt .

We restrict ourselves to considering only positive arguments in
the exponentials, which limits the range of behavior for each
term to be between 0 and 1. This restriction already imposes
boundaries on the model manifold, but those boundaries
become much more narrow as we consider the range the model
can produce by holding just a few time points fixed.

Fixing the output of the model at a few time points
greatly reduces the values that the model can take on for
all the remaining points. Fixing the values that the model
takes on at a few data points is equivalent to considering a
lower-dimensional cross section of the model manifold, as
we have done in Fig. 4. The boundaries on this cross section
are very narrow; the corresponding manifold is long and thin.
Clearly, an algorithm that navigates the model manifold will
quickly run into the boundaries of this model unless it is
actively avoiding them.

In general, if a function is analytic, the results presented in
Fig. 4 are fairly generic; they come from general theorems
governing the interpolation of functions. If a function is
sampled at a sufficient number of time points to capture its
major features, then the behavior of the function at times

FIG. 4. (Color online) Fixing a few data points greatly restricts
the possible range of the model behavior between those data points
(lower). This is a consequence of interpolation of analytic functions.
In this case, f (t) is a sum of three exponentials with six parameters
(amplitudes and rates). Shown above is a three-dimensional slice of
possible models plotted in data space, with the value of f (0) fixed
to 1 and the value of f (1) fixed to 1/e. With these constraints we
are left with a four-dimensional surface, meaning that the manifold
of possible data shown here is indeed a volume. However, from a
carefully chosen perspective (upper right), this volume can be seen
to be extremely thin—in fact, most of its apparent width is curvature
of the nearly two-dimensional sheet, evidenced by being able to
see both the top (green) and bottom (black) simultaneously. (An
animation of points in this volume rotating in three-dimensional space
is available in the online supplemental material [23].) Generic aspects
of this picture illustrate the difficulty of fitting nonlinear problems.
Geodesics in this volume are just straight lines in three dimensions.
Although the manifold seems to be only slightly curved, its extreme
thinness means that geodesics travel very short distances before
running into model boundaries, necessitating the diagonal cutoff in
Levenberg-Marquardt algorithms as well as the priors discussed in
Sec. V.

036701-6

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 6. (Color online) (a) Geodesic cross-sectional widths of an
eight-dimensional model manifold along the eigendirections of the
metric from some central point, together with the square root of
the eigenvalues (singular values of the Jacobian) [22]. Notice the
hierarchy of these data-space distances—the widths and singular
values each spanning around four orders of magnitude. To a good
approximation, the cross-sectional widths are given by singular
values. In the limit of infinitely many exponential terms, this model
becomes linear. (b) Geodesic cross-sectional widths of a feed-forward
artificial neural network. Once again, the widths nicely track the
singular values.

taken to be the length of that intersection. The widths given by
these two methods are comparable.

We can show analytically that our exponential fitting
problem has model manifold widths proportional to the
corresponding singular values of the Jacobian in the limit of
a continuous distribution of exponents, θµ, using an argument
provided to us by Yoav Kallus. In this limit, the sum can be
replaced by an integral,

y(t) =
∫

dθA(θ )e−tθ = L{A(θ )},

where the model is now the Laplace transform of the ampli-
tudes A(θ ). In this limit, the data can be fit without varying
the exponential rates, leaving only the linear amplitudes as
parameters. If we assume the data have been normalized
according to y(t = 0) ! 1, then it is natural to consider
the hypertetrahedron of parameter space given by An > 0
and

∑
An ! 1. In parameter space, this tetrahedron has a

maximum aspect ratio of
√

2/M , but the mapping to data space
distorts the tetrahedron by a constant Jacobian whose singular
values we have seen to span many orders of magnitude. The
resulting manifold thus must have a hierarchy of widths along
the eigenpredictions equal to the corresponding eigenvalues
within the relatively small factor

√
2/M .

As our third example, we consider a feed-forward artificial
neural network [40]. For computational ease, we choose a
small network consisting of a layer of four input neurons,
a layer of four hidden neurons, and an output layer of two
neurons. We use the hyperbolic tangent function as our sigmoid
function and vary the connection weights as parameters. As
this model is not known to reduce to a linear model in any limit,
it serves as a test that the agreement for fitting exponentials is
not special. Figure 6(b) shows indeed that the singular values of
the Jacobian agree with geodesic widths again for this model.

The result in Fig. 6 is one of our main results and requires
some discussion. Strictly speaking, the singular values of the
Jacobian have units of data space distance per unit parameter
space distance, while the units of the widths are the data
space distance independent of parameters. In the case of the
exponential model, we have used log parameters, making
the parameters dimensionless. In the neural network, the
parameters are the connection weights whose natural scale
is 1. In general, the exact agreement between the singular
values and the widths may not agree if the parameters utilize
different units or have another natural scale. One must note,
however, that the enormous range of singular values implies
that the units would have to be radically different from natural
values to lead to significant distortions.

Additionally, the two models presented in Fig. 6 are
particularly easy to fit to data. The fact that from a centrally
located point geodesics can explore nearly the entire range
of model behavior suggests that the boundaries are not a
serious impediment to the optimization. For more difficult
models, such as the PC12 model in systems biology [2],
we find that the widths estimated from the singular values
and from geodesic motion disagree. The geodesic widths are
much smaller than the singular value estimates. In this case,
although the spacing between geodesic widths is the same
as the spacing between the singular values, they are smaller
by several orders of magnitude. We believe that most typical
starting points of this model lie near a hypercorner of the
model manifold. If this is the case, then geodesics will be
unable to explore the full range of model behavior without
reaching a model boundary. We argue later in this section that
this phenomenon is one of the main difficulties in optimization,
and in fact we find that the PC12 model is a much more difficult
fitting problem than either the exponential or neural network
problem.

We have seen that sloppiness is the result of skewed
coordinates on the model manifold, and we will argue later
in Sec. VI that algorithms are sluggish as a result of this poor
parametrization. Figure 6 tells us that the “bare” model param-
eters are not as perverse as one might naively have thought.
Although the bare-parameter directions are inconvenient for
describing the model behavior, the local singular values
and eigenpredictions of the Jacobian are useful estimates of
the model’s global shape. The fact that the local stiff and
sloppy directions coincide with the global long and narrow
directions is a nontrivial result that seems to hold for most
models.

To complete our description of a typical sloppy model man-
ifold requires a discussion of curvature, which we postpone
until Sec. VII D. We will see that in addition to a hierarchy of
boundaries, the manifold typically has a hierarchy of extrinsic
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FIG. 3: Total surface receptor numbers after EGF stimulation in stably expressing v-Src cells. Endogenous levels of
Cool-1 (dashed curve) or overexpressed Cool-1 (solid curve). The dotted lines show the uncertainties in each of the
best fit predictions
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FIG. 4: Predictions with uncertainty on the time course of the triple complex consisting of active Cool-1, Cbl and
active Cdc42. The quantity plotted is the percentage of total Cbl that is bound in the triple complex.

However the uncertainty bounds are too large to make this assertion; at the level of the lower bound, less
than 4% of Cbl is sequestered at a maximum, and the triple complex dissociates within 15 minutes. This
motivates the need for an optimal design approach. We define a criterion which is the average uncertainty
in the prediction on the triple complex. We then optimize this quantity using a sequential design approach
(therefore we need to perform only line minimizations in the time coordinate for each of the 11 measurable
species in the system) and follow up by finding an approximate optimal continuous design on that species.
The results of such an analysis are shown in Fig. 5.

However, its function in mediating endocytosis still remains controversial (e.g. [11, 12, 13, 14, 15]) as the
receptor can be internalized through more than one endocytic pathway. We do not address that issue here
but rather we assume in our model that Cbl association and activation is necessary for endocytosis, whether
through a CIN85-endophilin interaction [16] or through ubiquitination of the receptor [15] and therefore we
do not include a separate Cbl-independent endocytosis pathway. The overall set of these protein-protein
interactions is summarized in Fig. 1 (we also incorporate phosphatases in the model to act on the various
phosphorylated species, but this is not shown in the network figure). There is a significant overlap between
our model and previous models of EGF receptor signaling and/or trafficking, [17, 18, 19, 20]. Since we
wish to focus on the role of the Cool-1/Cdc42 proteins within the network and to demonstrate the utility
of optimal experimental design, we leave out some of the known intermediate reactions involved in the
MAPK and EGFR-Src activation pathways, preferring a “lumped” description which is more computationally
manageable.

FIG. 1: Schematic diagram showing the set of interactions in the model of EGFR signaling, endocytosis and down-
regulation (see also [1]). Phosphatases are not shown.

The goals of this manuscript are to demonstrate how a modeling approach can be used to

(a) refine the necessary set of interactions in the biological network,

(b) make predictions on unmeasured components of the system with good precision and

(c) reduce the prediction uncertainty on components that are difficult to measure directly, by using the
methods of optimal experimental design.
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However, its function in mediating endocytosis still remains controversial (e.g. [11, 12, 13, 14, 15]) as the
receptor can be internalized through more than one endocytic pathway. We do not address that issue here
but rather we assume in our model that Cbl association and activation is necessary for endocytosis, whether
through a CIN85-endophilin interaction [16] or through ubiquitination of the receptor [15] and therefore we
do not include a separate Cbl-independent endocytosis pathway. The overall set of these protein-protein
interactions is summarized in Fig. 1 (we also incorporate phosphatases in the model to act on the various
phosphorylated species, but this is not shown in the network figure). There is a significant overlap between
our model and previous models of EGF receptor signaling and/or trafficking, [17, 18, 19, 20]. Since we
wish to focus on the role of the Cool-1/Cdc42 proteins within the network and to demonstrate the utility
of optimal experimental design, we leave out some of the known intermediate reactions involved in the
MAPK and EGFR-Src activation pathways, preferring a “lumped” description which is more computationally
manageable.

FIG. 1: Schematic diagram showing the set of interactions in the model of EGFR signaling, endocytosis and down-
regulation (see also [1]). Phosphatases are not shown.

The goals of this manuscript are to demonstrate how a modeling approach can be used to

(a) refine the necessary set of interactions in the biological network,

(b) make predictions on unmeasured components of the system with good precision and

(c) reduce the prediction uncertainty on components that are difficult to measure directly, by using the
methods of optimal experimental design.
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FIG. 7: (a) Without refitting to the new total active Cdc42 data, our prediction matches the data using only a single
multiplicative factor. a.u. = arbitrary units. (b) Reduced uncertainty on the time course of the active Cool, Cbl,
and active Cdc42 complex for the optimal set of design points (dashed line) (same as Fig. 5 (b) ) and for the real
data (dotted line).

The second part of the process is to make predictions on the unmeasured or unmeasurable species of the
system, assuming that the model has been suitably refined. We suggest that for testable predictions to be
made, uncertainty estimates need to be attached to them [26]. In some cases the prediction uncertainties
are rather small, despite large parameter uncertainty. On the other hand, if some predictions show large
uncertainty, and involve species that are not directly measurable, we may then define a suitable design
criterion and suggest new experimental measurements that need to be taken to reduce that uncertainty. The
results of such an analysis are promising, in that we find a rather small number of measurements (realistic
to perform with standard molecular biology techniques) need be taken to begin to make predictions with
good precision. Given such measurements on the EGFR system, we see that the triple complex of active
Cool-1, Cbl and active Cdc42 does indeed form in appreciable quantities in wild type cells and we also get
an estimate for the time of formation and dissociation.

More generally, we believe that experimental design for reducing prediction uncertainties can play an
important role in the iterative process of model refinement and validation and can be used in the testing of
biological hypotheses.

Experiment

However, its function in mediating endocytosis still remains controversial (e.g. [11, 12, 13, 14, 15]) as the
receptor can be internalized through more than one endocytic pathway. We do not address that issue here
but rather we assume in our model that Cbl association and activation is necessary for endocytosis, whether
through a CIN85-endophilin interaction [16] or through ubiquitination of the receptor [15] and therefore we
do not include a separate Cbl-independent endocytosis pathway. The overall set of these protein-protein
interactions is summarized in Fig. 1 (we also incorporate phosphatases in the model to act on the various
phosphorylated species, but this is not shown in the network figure). There is a significant overlap between
our model and previous models of EGF receptor signaling and/or trafficking, [17, 18, 19, 20]. Since we
wish to focus on the role of the Cool-1/Cdc42 proteins within the network and to demonstrate the utility
of optimal experimental design, we leave out some of the known intermediate reactions involved in the
MAPK and EGFR-Src activation pathways, preferring a “lumped” description which is more computationally
manageable.

FIG. 1: Schematic diagram showing the set of interactions in the model of EGFR signaling, endocytosis and down-
regulation (see also [1]). Phosphatases are not shown.

The goals of this manuscript are to demonstrate how a modeling approach can be used to

(a) refine the necessary set of interactions in the biological network,

(b) make predictions on unmeasured components of the system with good precision and

(c) reduce the prediction uncertainty on components that are difficult to measure directly, by using the
methods of optimal experimental design.
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FIG. 7: (a) Without refitting to the new total active Cdc42 data, our prediction matches the data using only a single
multiplicative factor. a.u. = arbitrary units. (b) Reduced uncertainty on the time course of the active Cool, Cbl,
and active Cdc42 complex for the optimal set of design points (dashed line) (same as Fig. 5 (b) ) and for the real
data (dotted line).

The second part of the process is to make predictions on the unmeasured or unmeasurable species of the
system, assuming that the model has been suitably refined. We suggest that for testable predictions to be
made, uncertainty estimates need to be attached to them [26]. In some cases the prediction uncertainties
are rather small, despite large parameter uncertainty. On the other hand, if some predictions show large
uncertainty, and involve species that are not directly measurable, we may then define a suitable design
criterion and suggest new experimental measurements that need to be taken to reduce that uncertainty. The
results of such an analysis are promising, in that we find a rather small number of measurements (realistic
to perform with standard molecular biology techniques) need be taken to begin to make predictions with
good precision. Given such measurements on the EGFR system, we see that the triple complex of active
Cool-1, Cbl and active Cdc42 does indeed form in appreciable quantities in wild type cells and we also get
an estimate for the time of formation and dissociation.

More generally, we believe that experimental design for reducing prediction uncertainties can play an
important role in the iterative process of model refinement and validation and can be used in the testing of
biological hypotheses.

However, its function in mediating endocytosis still remains controversial (e.g. [11, 12, 13, 14, 15]) as the
receptor can be internalized through more than one endocytic pathway. We do not address that issue here
but rather we assume in our model that Cbl association and activation is necessary for endocytosis, whether
through a CIN85-endophilin interaction [16] or through ubiquitination of the receptor [15] and therefore we
do not include a separate Cbl-independent endocytosis pathway. The overall set of these protein-protein
interactions is summarized in Fig. 1 (we also incorporate phosphatases in the model to act on the various
phosphorylated species, but this is not shown in the network figure). There is a significant overlap between
our model and previous models of EGF receptor signaling and/or trafficking, [17, 18, 19, 20]. Since we
wish to focus on the role of the Cool-1/Cdc42 proteins within the network and to demonstrate the utility
of optimal experimental design, we leave out some of the known intermediate reactions involved in the
MAPK and EGFR-Src activation pathways, preferring a “lumped” description which is more computationally
manageable.

FIG. 1: Schematic diagram showing the set of interactions in the model of EGFR signaling, endocytosis and down-
regulation (see also [1]). Phosphatases are not shown.

The goals of this manuscript are to demonstrate how a modeling approach can be used to

(a) refine the necessary set of interactions in the biological network,

(b) make predictions on unmeasured components of the system with good precision and

(c) reduce the prediction uncertainty on components that are difficult to measure directly, by using the
methods of optimal experimental design.
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More sophisticated expt design

Fig. 3 The subset of parameters that can be estimated with different complexity of experiments. (A,B) Doses of EGF and NGF alone.

(C,D) Doses and single knockouts/overexpressions. (E,F) Doses and up to double knockouts/overexpressions. (G,H) Doses and up to triple

knockouts/overexpressions. The network diagrams show the individual parameter errors. Each arrow represents a reaction (black for activating,

red for inhibitory). Each reaction is parameterized by two parameters. If both parameters are estimated to within 10% uncertainty, the line is thick;

if only one of the two parameters is estimated the line is medium weight, and if neither parameter is estimated then the line is thin. The eigenvector

matrices are pictured on the right and show the vector perspective. The eigenvalues decrease from left to right. The green lines indicate the cutoff

for 10% relative error. The yellow and red lines indicate directions with 100% and 1000% error, respectively.
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next 32 most complementary experiments). Most rate constants
could be determined using single changes in protein expression
(45 of 48, but requiring 17 experiments), but doses of
EGF/NGF alone were only able to establish just over half
of the rate constants (25 of 48, requiring just 2 experiments
with no improvement resulting from the remaining 23
experiments in the class). Thus, more complex perturbation
experiments improved model calibration through establishing
a greater number of parameters and generally doing so with
fewer, albeit more difficult, experiments. The tradeoff is such
that in many cases the greater complexity may be justified by
the reduced number of total experiments required. Modifications
to future versions of the optimization could be biased towards

reuse of genetic modifications in experiments with different
dosage treatments, so that the greater effort of the former
might be better leveraged.

Biochemical basis for complementarity of experiments

Analysis of the five experiments sufficient for determining all
the parameters suggests that one role for some selected
experiments is to specifically adjust conditions of enzymatic
reactions so that kcat andKM could be independently determined.
Because the calculations were done in log parameter space, the
(+kcat, +KM) subspace direction corresponds to log(kcat) +
log(KM) = log(kcat ! KM). Interestingly, the (+kcat, "KM)

Fig. 2 (A) Search result for sets of experiments that maximize the number of parameter directions estimated. Each spectrum is the eigenspectrum

of the estimation problem. The goal of the design is to maximize the number of parameter directions with errors less than 10% (eigenvalues above

the dashed line). (B) Design based on selecting the best single experiments when each is carried out alone. (C) Design based on selecting

experiments randomly. (D) The number of parameters estimated by each search method. By the fifth experiment the greedy algorithm is able to

estimate all 48 parameters to the desired accuracy. The error bars show the standard deviation for 10 000 random searches.

Table 1 Parameter-defining experimental set

Exp. EGF (mol. per cell) NGF (mol. per cell) Overexpressed Knocked down

1 1.00 ! 105 4.56 ! 107 Sos, Ras, C3G
2 1.00 ! 101 4.56 ! 101 Mek, Erk Raf1PPtase
3 0.00 4.56 ! 105 BRaf, Rap1 RapGap
4 1.00 ! 101 4.56 ! 107 P90Rsk, PI3K, Akt
5 1.00 ! 103 4.56 ! 103 Raf1 RasGap

1894 | Mol. BioSyst., 2010, 6, 1890–1900 This journal is #c The Royal Society of Chemistry 2010
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next 32 most complementary experiments). Most rate constants
could be determined using single changes in protein expression
(45 of 48, but requiring 17 experiments), but doses of
EGF/NGF alone were only able to establish just over half
of the rate constants (25 of 48, requiring just 2 experiments
with no improvement resulting from the remaining 23
experiments in the class). Thus, more complex perturbation
experiments improved model calibration through establishing
a greater number of parameters and generally doing so with
fewer, albeit more difficult, experiments. The tradeoff is such
that in many cases the greater complexity may be justified by
the reduced number of total experiments required. Modifications
to future versions of the optimization could be biased towards

reuse of genetic modifications in experiments with different
dosage treatments, so that the greater effort of the former
might be better leveraged.

Biochemical basis for complementarity of experiments

Analysis of the five experiments sufficient for determining all
the parameters suggests that one role for some selected
experiments is to specifically adjust conditions of enzymatic
reactions so that kcat andKM could be independently determined.
Because the calculations were done in log parameter space, the
(+kcat, +KM) subspace direction corresponds to log(kcat) +
log(KM) = log(kcat ! KM). Interestingly, the (+kcat, "KM)

Fig. 2 (A) Search result for sets of experiments that maximize the number of parameter directions estimated. Each spectrum is the eigenspectrum

of the estimation problem. The goal of the design is to maximize the number of parameter directions with errors less than 10% (eigenvalues above

the dashed line). (B) Design based on selecting the best single experiments when each is carried out alone. (C) Design based on selecting

experiments randomly. (D) The number of parameters estimated by each search method. By the fifth experiment the greedy algorithm is able to

estimate all 48 parameters to the desired accuracy. The error bars show the standard deviation for 10 000 random searches.

Table 1 Parameter-defining experimental set

Exp. EGF (mol. per cell) NGF (mol. per cell) Overexpressed Knocked down

1 1.00 ! 105 4.56 ! 107 Sos, Ras, C3G
2 1.00 ! 101 4.56 ! 101 Mek, Erk Raf1PPtase
3 0.00 4.56 ! 105 BRaf, Rap1 RapGap
4 1.00 ! 101 4.56 ! 107 P90Rsk, PI3K, Akt
5 1.00 ! 103 4.56 ! 103 Raf1 RasGap
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Parameter estimation ain’t easy.	

Toolbox should include a variety of optimization algorithms.	


Sloppy parameter sensitivities appear to be universal.	

Sloppiness implies focusing on predictions not parameters.	


Experimental design is key to optimizing experiments	

http://gutengroup.mcb.arizona.edu/publications/Mannakee2015.pdf	


http://arxiv.org/abs/1501.07668	
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