Systems biology's dirty secret:

Parameter estimation, sensitivity analysis, and sloppiness
Ryan Gutenkunst
Molecular and Cellular Biology University of Arizona
q-bio school - July 27, 2015

My story

B.S. in physics

Ph.D. in physics, minor in biophysics with Jim Sethna

Postdoc in population genetics with Carlos Bustamante

Postdoc in immune signal transduction with Byron Goldstein

Faculty in Molecular and Cellular Biology Affiliations:Applied Mathematics, Statistics, Ecology \& Evolutionary Biology, Genetics, BIO5 Institute

Gutengroup

Networks, models, and parameters

Growth factor signaling in PCI 2 cells

Brown et al.
Phys Biol (2004)

Biochemically detailed models Often very complex, but....

- Close correspondence with expts
- Can integrate with other pathways
- Close to evolutionary mechanism

I5 nonlinear differential equations

But... 48 biochemical parameters \vec{k}, none quantitatively measured

Parameter fitting

- Biochemical parameters are difficult to measure directly
- Need to express and purify protein
- Measure in vitro, questionable extrapolation to in vivo

- Measuring cellular responses often easier (and more interesting)
- Model parameters need to be fit

What to extremize?

- Maximizing the likelihood of the data given the model extracts maximal information about parameters.
- Likelihood: probability of generating the observed data given your model and parameter values.
- Independent data points with Gaussian noise:

$$
\begin{gathered}
\mathcal{L}=\prod_{i} \exp \left[-\frac{\left(y_{i}(\vec{\theta})-d_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right] \\
-\log \mathcal{L}=\frac{1}{2} \sum_{i} \frac{\left(y_{i}(\vec{\theta})-d_{i}\right)^{2}}{\sigma_{i}^{2}} \equiv \sum_{i} r_{i}^{2} \equiv C(\vec{\theta})
\end{gathered}
$$

Inhomogenous data typically demands a more ad-hoc approach (e.g. fitting Western blots + flow cytometry)

Cost landscape

Optimization methods

- "Local" optimizers
- Nelder-Mead simplex ("amoeba")
- Steepest descent, Conjugate gradient
- Levenberg-Marquardt
- "Global" optimizers
- Simulated annealing
- Genetic algorithms

See Numerical Recipes or Ashyraliyev et al. FEBS Lett (2009)

General advice

- An art, rather than a science
- Method comparisons are dubious, since performance can be very problem-specific

- Hand-fiddling to use your brain is useful, both to develop understanding and to find a starting point
- Most optimizers work best if all parameters have similar scale

Nelder-Mead simplex ("amoeba")

$\mathrm{N}+\mathrm{I}$ points define a tetrahedron in N -dimensional parameter space.

- Reflect worst point across tetrahedron
- Reflect and expand worst point
- Contract worst point

- Contract whole tetrahedron toward lowest point

Derivative-free, so very robust, but slower than gradient-based methods

Steepest descent

I. Calculate gradient
2. Minimize along gradient direction

Simple and intuitive
Performs very poorly, because each step must be orthogonal to the previous.

Solution: conjugate gradient, to pick more productive directions.

Levenberg-Marquardt

$$
\begin{gathered}
C=\frac{1}{2} \sum_{i} r_{i}^{2} \\
\frac{\partial^{2} C}{\partial \theta_{j} \partial \theta_{k}}=\sum_{i} \frac{\partial r_{i}}{\partial \theta_{j}} \frac{\partial r_{i}}{\partial \theta_{k}}+\sum_{\gamma} r_{j} \frac{\partial^{2} \mathbb{T}_{i}}{\partial \theta_{j} \partial \theta_{k}}
\end{gathered}
$$

- Direct estimate of quadratic form, using only single derivatives
- Very efficient when started "close to" local optimum

Simulated annealing

- Each step test a new set of parameters sampled from a proposal density.
- If C' < C accept move with probability I, otherwise accept with probability $\exp \left[\left(C-C^{\prime}\right) / T\right]$.
- Slowly reduce T to zero, via cooling schedule.
- Guaranteed convergence if cooling is "slow enough"
- Robust, applicable to discrete optimization, but slow

Evolutionary optimization

- Population of "individuals", each a set of parameters
- Apply mutations (changes in single parameter values) and recombinations (swaps of multiple values between individuals)
- Fitness of each individual is inversely proportional to cost
- Next generation reproduce according to fitness
- Robust, very easy to parallelize.

Sensitivity analysis

- How sensitive is your model to parameter changes?
- Conversely, how reliable are your parameter estimates?
- I-D
- Multi-dimensional

I-dimensional sensitivities

- Transects of the cost function
- Width is proportional to uncertainty
- First derivatives of interesting quantities are "easy" with ODEs

$$
\begin{gathered}
\frac{d \vec{y}}{d t}=f(\vec{y}, t, \vec{p}) \\
\frac{d}{d t} \frac{d y_{i}}{d p_{i}}=\frac{\partial f}{\partial p_{i}}+\sum_{j} \frac{\partial f}{\partial y_{j}} \frac{d y_{j}}{d p_{i}}
\end{gathered}
$$

Multidimensional sensitivities

- Quadratic form

$$
\begin{aligned}
& C(\theta)=C\left(\theta^{*}\right)+\left(\theta-\theta^{*}\right) \cdot H \cdot\left(\theta-\theta^{*}\right)+\cdots \\
& H_{i j}=\frac{d^{2} C}{d \theta_{i} d \theta_{j}}
\end{aligned}
$$

- Approximating probability distributions as multidimensional normal or log-normal

Multidimensional sensitivities

- Parameter ensembles
- Bayesian MCMC

$$
P(\vec{\theta} \mid D)=\frac{P(D \mid \vec{\theta})}{P(D)} P(\vec{\theta}) \propto \exp [-C(\vec{\theta})]
$$

- Frequentist bootstrapping (resampling of data)
- Approximate Bayesian Computation (when can't compute the likelihood, use summary statistics)

Summary

- Parameter optimization is hard
- Your toolbox should contain a variety of algorithms, both local and global
- Algorithms are no substitute for understanding your model and your data
- Even trickier for stochastic systems

Sloppiness in biochemical networks

Ryan Gutenkunst

Molecular and Cellular Biology
University of Arizona
July 27, 2015
with Jim Sethna, Chris Myers
Kevin Brown, Josh Waterfall, Fergal Casey

Sloppiness

$\chi^{2}(\vec{k}) \propto \sum_{y} \int\left(\frac{y(t, \vec{k})-y\left(t, \vec{k}_{0}\right)}{\sigma_{y}}\right)^{2} \mathrm{~d} t$
$\chi^{2}(\vec{k})=\chi^{2}\left(\vec{k}_{0}\right)+\left(\log \vec{k}-\log \vec{k}_{0}\right) \cdot H \cdot\left(\log \vec{k}-\log \vec{k}_{0}\right)+\cdots$

$$
H_{i j}=\frac{d^{2} \chi^{2}}{d \log k_{i} d \log k_{j}}
$$

Sloppiness is universal in biochem. network models.

Gutenkunst et al. (2007) PLoS Comp Biol

Erguler et al. Mol Biosyst (201I) - I60 more sloppy models

Sloppiness elsewhere

Sloppiness is a general feature of nonlinear least-squares fits.
† Gordan Berman, Jane Wang
t+ Cyrus Umrigar
ttt Chris Mayes, Georg Hoffstaetter

Origins of sloppiness

In some simple models, sloppiness can be shown to arise from macroscopic observations that obscure microscopic parameter effects.

Machta et al. (2013) Science

Information geometry

- A model is a mapping from Mdimensional parameter space to a manifold within N -dimensional data space ($\mathrm{N}>\mathrm{M}$)
- For non-linear models, these manifolds are often bounded and contain singular points.
- Local sloppy analysis predicts the global shape of this manifold.
- These torture optimizers, but clever algorithms can work around them.

Why do literature params work?

Often, previous experiments were done in a different cell type or in vitro. Why do those parameter values work in other model contexts?
Usually, at least a few degrees of freedom left to leverage sloppiness.
k1
from lit

In sloppy basin, so fit is still reasonable.

Sloppiness \& uncertainties

(All uncertainties by MCMC)

All measured

Gutenkunst et al. (2007) PLoS Comput Biol

Sloppiness \& uncertainties

Gutenkunst et al. (2007) PLoS Comput Biol

Sloppiness \& uncertainties

All measured

(2007) PLoS Comput Biol

Sloppiness \& uncertainties

All measured

 (2007) PLoS Comput Biol

Refining predictions

Optimized design for variance

Loose prediction

Casey et al.
(2007) IET Sys Biol

Design results

Experiment

Casey et al. (2007) IET Sys Biol

Resulting tight prediction

No change in parameter uncertainties

More sophisticated expt design

Apgar et al. (20I0) Mol Biosyst

EGF (mol. per cell)	NGF (mol. per cell)	Overexpressed	Knocked down
1.00×10^{5}	4.56×10^{7}	Sos, Ras, C3G	Raf1PPtase
1.00×10^{1}	4.56×10^{1}	Mek, Erk	RapGap
0.00	4.56×10^{5}	BRaf, Rap1	
1.00×10^{1}	4.56×10^{7}	P90Rsk, PI3K, Akt	RasGap
1.00×10^{3}	4.56×10^{3}	Raf1	Ras

Conclusions

Parameter estimation ain't easy.
Toolbox should include a variety of optimization algorithms.
Sloppy parameter sensitivities appear to be universal.
Sloppiness implies focusing on predictions not parameters.
Experimental design is key to optimizing experiments
http://gutengroup.mcb.arizona.edu/publications/Mannakee2015.pdf
http://arxiv.org/abs/I50I. 07668

Join us!

Seeking a computationally skilled postdoc interested in evolutionary systems biology or population genomics

http://gutengroup.mcb.arizona.edu

