
 

Models of biological systems typically include many 

parameters.  Furthermore, the model behavior often responds 

to changes in these parameters in highly nonlinear ways.  This 

nonlinear response is responsible for many of the unique 

emergent behaviors of biological systems.  We discuss how 

model nonlinearity can be both quantified and classified.  We 

consider the tensor of model second derivatives, i.e., the vector 

of Hessian matrices for each model prediction or alternatively 

the Jacobian of the Jacobian matrix.  We use a higher-order 

singular value decomposition to identify the principal 

parameter combinations exhibiting the greatest nonlinearity 

(generalizations of singular vectors) and quantify this 

nonlinearity using generalizations of singular values.  We 

further classify types of nonlinearity by decomposing the second 

derivative tensor into geometrically motivated components, 

including extrinsic, intrinsic, and parameter-effects 

nonlinearity.  We discuss applications to model interpretation as 

well as for numerical methods. 

 

ODELS of biological systems, such as those describing 

dynamics of protein signaling, gene regulation, and 

other cellular activity typically include a large number 

parameters.  In many cases these parameters are unknown 

and must be estimated from data.  The response of the model 

behavior to changes in these parameters is often highly 

nonlinear.  The nonlinearity in the model parameters leads to 

challenges for numerical methods, such as data fitting [1].  

Furthermore, parameter nonlinearity makes it difficult to 

interpret the model.  In particular, the nonlinearity makes it 

challenging to identify the particular parameter or parameter 

combination that controls a feature of the model behavior.  

Consequently, highly nonlinear models often exhibit 

nontrivial, emergent behavior that is obscured by this 

nonlinear parameter response [2].   

Understanding the role of parameter nonlinearity in 

models is important for a host of modeling activities 

including numerical algorithms (such as data fitting or 

Bayesian posterior sampling), model interpretation, model 

construction, and experimental design.  We present a 

theoretical and computational framework for understanding 

the effect of nonlinear parameters in complex biological 

models that uses techniques from differential geometry, 

information theory, and linear algebra. 

The response of a model to small changes in parameters 

can be studied using a local linearization of the model: 
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characterized by either a Jacobian matrix (derivatives of 

model predictions with respect to each parameter) or through 

the closely related Fisher Information Matrix (FIM).  

Considerable effort has been devoted to understanding how 

these objects characterize the model, including “sloppy” 

model research [3] with applications to experimental design 

and numerical methods.  

We extend these methods by considering the tensor of 

second derivatives, i.e., the Jacobian of the Jacobian matrix.  

We use the higher-order singular value decomposition [4] of 

this tensor to quantify the nonlinearity and identify the 

principal parameter directions corresponding to this 

nonlinearity.  We further construct other measure of 

nonlinearity motivated by the information geometric 

interpretation of the model, including intrinsic curvature, i.e., 

Riemann and Ricci tensors, extrinsic curvature, and 

parameter-effects curvature, i.e., the connection coefficients 

[5]. 

We find that for many systems biology models, most of 

the parameter nonlinearity is dominated by a few parameter 

combinations.  This result is analogous to “sloppy” models in 

which the Jacobian matrix has an exponential distribution of 

singular values.  The nonlinearity quantifies how principal 

parameter combinations “rotate” into one another and lead to 

compensatory effects.  Using this, we identify groups of 

parameters that act as effective control knobs for model 

behavior.  We compare these groups of parameters with the 

functional relationships identified by the manifold boundary 

approximation method [6] and discuss how these insights can 

guide the interpretation of the model and improve numerical 

methods for data fitting and posterior sampling. 
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