Stochastic Gene Expression in Systems Biology (Part 2)

Brian Munsky

Center for Non-Linear Studies, Los Alamos National Lab

Kinetic Monte-Carlo Simulation Methods

Stochastic Simulation Algorithm

- •D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
- •M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

• τ leaping

- •D. Gillespie, J. Chem. Phys. **115**, 1716 (2001); **119**, 8229 (2003)
- •M. Rathinam *et al.*, J. Chem. Phys. **119**, 12784 (2003)
- •T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 (2004)
- •A. Chatterjee, et al. J. Chem. Phys. 122, 054104 (2005)
- •Y. Cao, D. Gillespie and L. Petzold, J. Chem. Phys. 123, 054104 (2005)

Chemical Langevin Equations

•D. Gillespie, J. Chem. Phys. 113, 1716 (2000)

System Partitioning Methods

- •C. Rao and A. Arkin, J. Chem. Phys. 118, 4999 (2003)
- •Y. Cao et al., J. Chem. Phys. 122, 014116 (2005)

Hybrid Methods

- •E. Haseltine and J. Rawlings, J. Chem. Phys. 117, 6959 (2002)
- •H. Salis and Y. Kaznessis, J. Chem. Phys. 122, 054103 (2005)

- At any time, the state of the system is defined by its integer population vector: $\mathbf{x} \in \mathbb{Z}^N$
- Reactions are transitions from one state to another:

- At any time, the state of the system is defined by its integer population vector: $\mathbf{x} \in \mathbb{Z}^N$
- Reactions are transitions from one state to another:
- These reactions are random, others could have occurred:

Reaction Stoichiometry (review)

- The Stoichiometric vector, s, refers to the relative change in the population vector after a reaction.
- There may be many different reactions for a given stoichiometry.

Reaction Propensities (review)

- The propensity, w, of a reaction is its rate.
- $\mathbf{w}_{\mu}dt$ is the probability that the μ^{th} reaction will occur in a time step of length dt.
- Typically, propensities depend only upon reactant populations.

Generating Waiting Times

 To generate an exponentially distributed random number, all we need is a uniform random number generator.

• This is the time of the next reaction.

Monte-Carlo Simulation Methods

- The Jump Markov Process
 - Stochastic Simulation Algorithm

•D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
•M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

Stochastic Simulation Algorithm

Step 1. Generate the time of the next reaction.

Step 2. Decide which reaction has occurred.

Step 3. Update current Time (t=t+ τ) and State (**x** = **x**+s_k).

Monte-Carlo Simulation Methods

Stochastic Simulation Algorithm

D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

- Possible SSA methods:
 - First Reaction Method (Gillespie '77)
 - Next Reaction Method (Gibson and Bruck '00)
 - Direct Method (Gillespie '77)

The First Reaction Method (FRM)

Step 1. Generate the time of the next reaction of each type. The time until the next reaction is a random variable of exponential distribution:

$$P_{\tau_{\mu}}(t) = w_{\mu}(\mathbf{x}) \mathrm{e}^{-w_{\mu}(\mathbf{x})t}$$

To generate each next reaction time, generate r_1 from a uniform distribution on (0,1) and use the equation: $\tau_{\mu} = \frac{1}{w_{\mu}(\mathbf{x})} \log \frac{1}{r_{\mu}}$

Step 2. Decide which reaction has occurred. This is simply the reaction with the smallest τ_{μ} :

$$k = \arg \left\{ \min_{\mu \in \{0, \dots, M\}} \tau_{\mu} \right.$$

Step 3. Update current Time (t=t+ τ_k) and State (**x** = **x**+s_k).

In the FRM each reaction requires M rv's.

The First Reaction Method SSA in Matlab.

```
clear all
t=0;tstop = 2000;
x = [0; 0];
S = [1 -1 0 0; 0 0 1 -1];
w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]','x');
while t<tstop
    tpos = 1./w(x).*log(1./rand(4,1));
    [tpos,i]=min(tpos);
    t=t+tpos;
    if t<=t_stop
        x = x+S(:,i);
    end
end
```

%%specify initial and final times
%% Specify initial conditions
%% Specify stoichiometry
%% Specify Propensity functions

% possible times until first reaction % find which is first reaction

% update the configuration

The Next Reaction Method (NRM)

- In the FRM, we generate times, $\{\tau_{\mu}\}$, for all *M* reactions and choose the reaction, *k*, with the smallest time, τ_k .
- Only a few species will change population as a result of this reaction--the rest will remain constant.
- For most reactions, the propensity functions will remain constant.
 - For these, the times can be reused in the subsequent step to find the next reaction: $\{\tau_{\mu}\} \rightarrow \{\tau_{\mu} \tau_{k}\}$.
- When there are many different species and reactions, this NRM approach can be done with far fewer random number than the FRM.
- Particularly useful for compartmental or Reaction-Diffusion processes.

Monte-Carlo Simulation Methods

Stochastic Simulation Algorithm

D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

- Possible SSA methods:
 - First Reaction Method (Gillespie '77)
 - Next Reaction Method (Gibson and Bruck '00)
 - Direct Method (Gillespie '77)

Minimum of two Exponential Random Variables

Let $\{\tau_1, \tau_2, \dots, \tau_M\}$ be a set of exponentially distributed random variables: $\tau_{\mu} \in \text{EXP}(w_{\mu})$

The minimum of $\{\tau_{\mu}\}$ is an exponentially distributed random variable given by:

 $\min_{\mu \in \{0,...,M\}} \tau_{\mu} \in \mathrm{EXP}\left(|\mathbf{w}|_{1}\right)$

The argument, *k*, of this distribution is also a random variable with distribution:

$$P(k=\mu) = \frac{w_{\mu}}{|\mathbf{w}|_1}$$

In the DM we only generate 2 rv's.

The Direct Method (DM)

 $\mu = 1$

Step 1. Generate the time of the next reaction.

The time until the next reaction is a random variable of exponential distribution:

 $P_{\tau}(t) = |\mathbf{w}(\mathbf{x})|_1 \mathrm{e}^{-|\mathbf{w}(\mathbf{x})|_1 t}$

To generate the next reaction time, generate r_1 from a uniform distribution on (0,1) and use the equation: $\tau = \frac{1}{|\mathbf{w}|_1} \log \frac{1}{r_1}$

Step 2. Decide which reaction has occurred. To obtain a realization of which reaction will occur, generate a second uniform random number, r_2 , and find the smallest *k* such that: $\sum_{k=1}^{k-1} w_{\mu}(\mathbf{x}) \leq r_2 |\mathbf{w}|_1 \leq \sum_{k=1}^{k} w_{\mu}(\mathbf{x})$

Step 3. Update current Time (t=t+ τ) and State (**x** = **x**+s_k).

The Direct Method SSA in Matlab.

```
clear all
t=0;tstop = 2000;
                                                      %%specify initial and final times
x = [0; 0];
                                                      %% Specify initial conditions
S = [1 - 1 0 0; 0 0 1 - 1];
                                                      %% Specify stoichiometry
w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]','x');
                                                     %% Specify Propensity functions
while t<tstop</pre>
    w0 = sum(w(x));
                                                     % compute the sum of the prop. functions
    t = t + 1/w0 * log(1/rand);
                                                     % update time of next reaction
    if t<=t_stop</pre>
                                  % generate second random number and multiply by prop. sum
    r2w0=rand*w0;
                                                     % initialize reaction counter
    i=1;
    while sum(w(1:i))<r2w0</pre>
                                         % increment counter until sum(w(1:i)) exceeds r2w0
      i=i+1;
    end
    x = x+S(:,i);
                                                     % update the configuration
  end
end
```

Limitations on the SSA

- The SSA is an "exact" simulation of the system.
- But...
 - Stepping through every reaction can take a lot of time.
 - A statistical representation of the system dynamics may require many realizations (10⁴ to 10⁶).
- Faster approximations are available for some problems.

Monte-Carlo Simulation Methods

- Stochastic Simulation Algorithm (SSA).
- τ-leaping
 - •D. Gillespie, J. Chem. Phys. **115**, 1716 (2001)
 - •D. Gillespie, L. Petzold, J. Chem. Phys. **119**, 8229 (2003)
 - •M. Rathinam et al., J. Chem. Phys. 119, 12784 (2003)
 - •T. Tian and K. Burrage, J. Chem. Phys. **121**, 10356 (2004)
 - •Y. Cao, D. Gillespie and L. Petzold, J. Chem. Phys. **123**, 054104 (2005)

τ Leaping

Step 0. Specify length of each time step, τ .

Assume that all propensity functions are constant over the time interval $(t,t+\tau)$.

The number of times each reaction will fire is a Poisson^{*} random number with mean $w_{\mu}\tau$:

$$P_{k_{\mu}}(n) = \frac{[w_{\mu}(\mathbf{x})\tau]^{n}}{n!} e^{w_{\mu}(\mathbf{x})\tau}$$

Step 1. For each μ , generate \mathbf{k}_{μ} . Step 2. Update the time: $t = t + \tau_{M}$ Update the state: $\mathbf{x} = \mathbf{x} + \sum_{\mu=1}^{M} k_{\mu} \mathbf{s}_{\mu}$

*For some recent studies, binomial RV's are used (T. Tian and K. Burrage, 2004)

τ Leaping

The number of times each reaction will fire is a Poisson random number with mean $\mathbf{w}_{\mu}\tau$: $P_{k_{\mu}}(n) = \frac{[w_{\mu}(\mathbf{x})\tau]^n}{n!}e^{w_{\mu}(\mathbf{x})\tau}$ Step 1. For each μ , generate \mathbf{k}_{μ} . MStep 2. Update the state: $\mathbf{x} = \mathbf{x} + \sum_{\mu=1}^{M} k_{\mu}\mathbf{s}_{\mu}$ Update the time: $t = t + \tau$

Limitations of τ leaping

- For many situations τ leaping significantly speeds up the Monte Carlo simulation, but:
 - Poisson r.v.'s are unbounded
 - Propensity functions may change dramatically over small time intervals.
 - May result in negative populations.

Note that these concerns are most important when the population of some species are very small. Precisely the circumstance where stochastic models are most important!

Chemical Langevin Equation

• Comparison of Poisson and Gaussian random variables.

- For small numbers of reaction steps, tau leaping doesn't give much help.
- For large numbers of reactions, replace the Poisson distribution with a normal distribution (same mean and variance. These are cheaper to generate.
- This is known as the chemical Langevin equation.

Monte-Carlo Simulation Methods

- Stochastic Simulation Algorithm (SSA).
- τ-leaping
- System Partitioning Methods
 - Fast--Slow Partitions
 - •C. Rao and A. Arkin, J. Chem. Phys. 118, 4999 (2003)
 - •Y. Cao et al., J. Chem. Phys. **122**, 014116 (2005)
 - Continuous--Discrete Partitions

•E. Haseltine and J. Rawlings, J. Chem. Phys. **117**, 6959 (2002)
•H. Salis and Y. Kaznessis, J. Chem. Phys. **122**, 054103 (2005)

Fast--Slow partitions.

Separate into "fast" and "slow" partitions.

Assume that the "fast" partitions reach probabilistic equilibrium before a slow reaction occurs.

Fast--Slow partitions.

 P_{SS} Slow Reaction
Propensities \square $\boldsymbol{\chi}$ $\begin{bmatrix} w_{\mu}(\mathbf{x}_{1}) \\ w_{\mu}(\mathbf{x}_{2}) \\ w_{\mu}(\mathbf{x}_{3}) \\ \vdots \end{bmatrix}$ =

Average Slow Reaction Propensities

=
$$\bar{w}_{\mu}$$
, for $\mu = \{1, 2, \dots, M\}$

Use the fast sets' steady state probability distributions to scale the propensity functions of the slow reactions.

Results in a vector of average propensity functions, $\bar{\mathbf{w}}$, for the slow reactions.

Fast--Slow partitions.

The projection to the slow manifold results in a new lower dimensional Markov chain.

This is simulated with SSA.

Continuous--Discrete partitions.

- In some systems, there are great differences in scale:
 - Large populations (continuous)
 - Small populations (discrete)
- All discrete models take too long.
- All continuous models are inaccurate.
- Hybrid models are necessary.

Separate into "continuous" and "discrete" partitions.

Τ

Simulate the continuous part with ordinary or stochastic differential equations.

Choose uniform rv, r.

Numerically integrate propensity functions until: $\int_{t_0}^{t_0+\tau} \sum_{\mu=1}^{M} w_{\mu}(\mathbf{x}(t)) dt = -\log r$

Choose next discrete reaction.

Using the SSA to Find Distributions

• The SSA does an excellent job of producing possible

trajectories.

Convergence of the SSA

- To get more accurate distributions, one needs more SSA runs.
- Unfortunately, the convergence rate of any Monte Carlo algorithm is fundamentally limited: $error = O(n^{-\frac{1}{2}})$
- If very high precision is required, then MC methods will be very inefficient.

After 10^7 tosses there is still an error of about 3×10^{-4} .
Density Computations

Reductions to the FSP

The Chemical Master Equation

The probability that the system is in configuration **x** at *t*+*dt* is equal to the probability that the system is at **x** at *t*, and no reaction occurs between *t* and *t*+*dt* plus the probability that the system is one reaction removed from **x** at *t* and that reaction occurs between *t* and *t*+*dt*.

The CME (McQuarrie '67):

$$\dot{p}(\mathbf{x},t) = -p(\mathbf{x},t)\sum_{k=1}^{M} w_k(\mathbf{x}) + \sum_{k=1}^{M} p(\mathbf{x} - \mathbf{s}_k, t)w_k(\mathbf{x} - \mathbf{s}_k)$$

Define the probability density state vector (pdv): $\mathbf{P}(\mathbf{X}, t) := [p(\mathbf{x}_1, t), p(\mathbf{x}_2, t), p(\mathbf{x}_3, t), \ldots]^T$.

 $\mathbf{P}(\mathbf{X}, t)$ evolves according to the Linear Time Invariant ODE: $\dot{\mathbf{P}}(\mathbf{X}, t) = \mathbf{A} \cdot \mathbf{P}(\mathbf{X}, t)$ The matrix CME

The Chemical Master Equation

• The solution of the CME is a transfer operator:

- The dimension of the CME can be INFINITE.
 - Most CME's cannot be solved, so approximations are needed.

Forming the Generator

 $\mathbf{A} =$

A has one row/column for each state. Each transition, $x_i \rightarrow x_j$, contributes to A in two locations:

 $-w_{\mu}(\mathbf{x}_{i})$ goes in the diagonal element $A_{i,i}$ $+w_{\mu}(\mathbf{x}_{i})$ goes in the off-diagonal element $A_{j,i}$

The Finite State Projection

Select the states to keep.

Find the corresponding projection matrix:

$$\mathbf{A}_{[1,3]} = \begin{bmatrix} -w_1 & w_4 \\ 0 & -w_4 - w_5 \end{bmatrix}$$

Collapse remaining states A = into a single absorbing

$$\begin{array}{l} \textbf{State} \\ \textbf{A}_{[1,3]}^{FSP} = \begin{bmatrix} -w_1 & w_4 & 0 \\ 0 & -w_4 - w_5 & 0 \\ w_1 & w_5 & 0 \end{bmatrix} \end{array}$$

This is the generator for a new Markov chain

The Finite State Projection Method

A Test...

The Finite State Projection Algorithm

The "error" sink of the FSP to get exit times.

- In the original FSP, $\varepsilon(t)$ is the amount of the probability measure that exits the projection region \mathbf{X}_J .
- Solution Median exit time: $t_{50} = t$, s.t. $\varepsilon(t) = 0.5$
- \mathbf{S} In this form $\varepsilon(t)$ gives information as to when the system exits \mathbf{X}_J , but not how.

Multiple FSP sinks to get exit directions.

 $\ref{eq: By using multiple sinks, one can determine how the probability measure exits <math>\mathbf{X}_{\mathcal{J}}$

Which Reaction Leaves X_J ?

Multiple FSP sinks to analyze switch decisions

Using the FSP to determine initial switch decisions.

Advantages of the FSP.

• Deterministic.

- * Every run of the FSP yields the same result.
- Enables easier comparisons of different systems (sensitivity analysis).
- Provides accuracy guarantees.
 - ★ Can be made as precise as required.
 - \star Allows for analysis of rare events.
- Does not depend upon initial conditions.
- Is open to many subsequent model reductions.

Limitations

- Numerical stiffness may lead to computational inefficiency.
- Systems may become very large as distributions cover large regions of the configuration space.
 - * Compact distributions may drift over time.
 - ★ Dilute distributions may spread over large regions.
 - ★ Dimension grows exponentially with the number of species.
- For these problems, the original FSP may not suffice,
- BUT, with additional model reductions and systematic techniques, many of these problems may be alleviated.

Outline

M Finite State Projection (FSP)

- Reductions to the FSP
 - Aggregating unobservable states Munsky/Khammash, CDC, 2006
 - ★ Time interval discretization
 - ★ Slow manifold projection
 - ★ Coarse meshes for the CME

Using Input & Output relations for model reduction.

- Often one is not interested in the entire probability distribution.
- Instead one may wish only to estimate:
 - \star a statistical summary of the distribution, e.g.
 - means, variances, or higher moments
 - ★ probability of certain traits:
 - switch rate, extinction, specific trajectories, etc...
- In each of these cases, one can define an output y(t):

 $\dot{\mathbf{P}}(t) = \mathbf{AP}(t)$ $\mathbf{y}(t) = \mathbf{CP}(t)$

Begin with a Full Integer Lattice Description of the System States.

Population of Species a

Remove Unreachable States and Aggregate the Observable States.

Project the Reachable/Observable States onto a Finite Subspace.

We now have a solvable approximation, for which the FSP gives bounds on the approximation's accuracy.

Outline

M Finite State Projection (FSP)

- Reductions to the FSP
 - ★ Aggregating unobservable states
 - ★ Time interval discretization

Munsky and Khammash, J. Comp. Phys., 2007

Burrage et al, A.A. Markov 150th Anniv. Meeting, 2006

- ★ Slow manifold projection
- ★ Coarse meshes for the CME

- ★ For many systems, the distribution may drift over time.
- ★ At any one time, the distribution may have a limited support, but...
- ★ The FSP solution must include all intermediate configurations.
- ★ This may lead to an exorbitantly large system of ODEs.

 \star Instead:

 \star Instead:

 \star Instead:

 \star Instead:

 \star Instead:

- ★ Solving a few smaller systems can be much easier than solving a single large system.
- ★ Control the error at each step to obtain a guaranteed final error.
- ★ Caching and reusing information from one step to the next may further reduce effort.

Outline

M Finite State Projection (FSP)

Reductions to the FSP

- ★ Aggregating unobservable states
- ★ Time interval discretization
- ★ Slow manifold projection

Peles/Munsky/Khammash, JCP, 2006

★ Coarse meshes for the CME.

Perturbation Theory and the FSP

- Some reactions occur faster and more frequently than others.
- This can result in a separation of time-scales in the CME.
 - Disadvantages: Often results in numerical stiffness and increased computational complexity.
 - - Advantage: May be able to apply perturbation theory to reduce computational effort.

- Begin with a finite state (projected) Markov process.
- 2. Group states connected by frequent reactions.

Red Arrows = Fast (Frequent) Reactions Black Arrows = Slow (Rare) Reactions Orange Arrows = (Rare) Transitions to Sink

- Begin with a finite state (projected) Markov process.
- 2. Group states connected by frequent reactions.
- 3. Find invariant distribution for each group.

Red Arrows = Fast (Frequent) Reactions Black Arrows = Slow (Rare) Reactions Orange Arrows = (Rare) Transitions to Sink

- I. Begin with a finite state (projected) Markov process.
- 2. Group states connected by frequent reactions.
- 3. Find invariant distribution for each group.
- 4. Average to find the rates of the slow reactions.

Dotted Black = Averaged Slow Reactions Dashed Orange = Averaged Transitions to Sink

- I. Begin with a finite state (projected) Markov process.
- 2. Group states connected by frequent reactions.
- 3. Find invariant distribution for each group.
- 4. Average to find the rates of the slow reactions.

Reduced Markov Process

- Dotted Black = Averaged Slow Reactions Dashed Orange = Averaged Transitions to Sink
- 5. Solve for the solution on the slow-manifold.
- 6. Lift solution to original coordinate system.

Outline

Reductions to the FSP

- ★ Aggregating unobservable states
- ★ Time interval discretization
- ★ Slow manifold projection
- ★ Coarse meshes for the CME

Munsky/Khammash, IEEE Trans. on Auto. Conrol, 2008

Coarse mesh approximation of the CME

- Precision requirements may change for different regions of the configurations space.
 - **★** Small populations require great precision.
 - **★** High populations require far less precision.
- By choosing a good coarse approximation of the CME, we can take advantage of this.

Coarse mesh approximation of the CME

Start with the full I-dimensional Markov lattice.

Solve the reduced system ODE: $\dot{\mathbf{q}} = \mathbf{\Phi}^{-L} \mathbf{A} \mathbf{\Phi} \mathbf{q}(t)$ and lift back to the original system coordinates: $\mathbf{P}(t) \approx \mathbf{\Phi} \exp(\mathbf{\Phi}^{-L} \mathbf{A} \mathbf{\Phi} t) \mathbf{\Phi}^{-L} \mathbf{P}(0)$
Coarse Mesh: Multiple-species problems.

- I. Begin with original lattice.
- 2. Choose interpolation points.
- 3. Form interpolation (shape) function: $\mathbf{P}(t) \approx \mathbf{\Phi} \mathbf{q}(t)$
- 4. Project system to find reduced system of ODEs: $\dot{\mathbf{q}}(t) = \mathbf{\Phi}^{-L} \mathbf{A} \mathbf{\Phi} \mathbf{q}(t)$
- 5. Solve reduced system.
- 6. Lift back to original coordinates.

Outline

M Finite State Projection (FSP)

- **Mathematics Keductions** to the FSP
- Case Studies
 - ★ Lambda Phage.
 - \star Heat Shock.

A toy model of phage lambda

- We consider only the core of the lambda switch.
- Two proteins, cl and cro.
- These activate and repress the P_R and P_{RM} promoters according to the model of Shea and Ackers, 1985.

The Phage Lambda Lysis-Lysogeny Decision

Arkin, Ross, McAdams, 1998. Full Model

Lytic fate

- Cro reaches a high level before CI is produced in much quantity.
- ★ Cro represses transcription of CI.

- Lysogenic fate
- \star CI increases a little earlier.
- ★ CI represses transcription of Cro.
- \star CI is free to increase even further.

Relevance of Current Model

Computations done using Gillespie's SSA.

Applying the FSP to the Phage Lambda Switch

cI

Applying the FSP to the Phage Lambda Switch

Efficiency and Accuracy of FSP Results

^aThe FSP algorithm is run only once.

Additional information available with the FSP solution

- In many cases the FSP is faster and more accurate the Monte Carlo methods.
- Higher precision allows greater flexibility.
 - **★** Direct Computation of Switch Rates.

Using the FSP to Compute Switch Rates

cI

Using the FSP to Compute Switch Rates

Using the FSP to Compute Switch Rates

Method	Time (s)	Relative Error	Guarantee?
FSP	$25.5~\mathrm{s}$	< 0.08~%	yes
10^4 SSA runs	$440.0 \ { m s}$	pprox 0.90~%	no

Additional information available with the FSP solution

- In many cases the FSP is faster and more accurate the Monte Carlo methods.
- Higher precision allows greater flexibility.
 - ★ Direct Computation of Switch Rates.
 - ★ Simultaneous consideration of many different initial conditions.

Comparing different initial conditions.

$$\mathcal{P}(t_0) \longrightarrow \mathcal{FSP} \longrightarrow \mathcal{\tilde{P}}(t_0 + \tau)$$

The FSP is an approximate map of distributions from one time to another.
 This map is valid for any initial distribution.
 ★ Once computed, this map is cheap to apply again and again.
 ★ The map automatically provides error bounds for any initial condition!

Comparing different initial conditions. (Increase in cro)

Increasing the initial amount of CTO yields a slight decrease in the lysogeny rate.

Comparing different initial conditions. (Increase in cI)

Increasing the initial amount of cI yields a significant increase in lysogeny rate.

Simultaneous comparison of an array of initial condition.)

Method	Time (s)	# I.C.'s	$ Error _1$	Guarantee?
FSP	66.9 s	2000	$< 1 \times 10^{-4}$	yes
10^4 SSA runs	$440.0 \ { m s}$	1	≈ 0.09	no
10^{13} SSA runs	$\approx 14,000$ years!	2000	$\approx 1 \times 10^{-4}$	no

Additional information available with the FSP solution

- In many cases the FSP is both faster and more accurate than other available methods.
- Higher precision allows greater flexibility.
 - ★ Direct Computation of Switch Rates.
 - ★ Simultaneous consideration of many different initial conditions.
 - ★ Sensitivity to parameter changes.

Parametric Sensitivity of Probability Distributions.

Sensitivity to a small increase in cell Volume.

- * Sensitivity analysis requires a huge degree of accuracy.
- * Monte Carlo methods would require hundreds of millions of runs!!

Outline

M Finite State Projection (FSP)

- **Mathematics Keductions** to the FSP
- Case Studies
 - \star Lambda Phage.
 - ★ Heat Shock.

Toy Heat Shock Model in E. coli

El Samad et al, PNAS, vol. 102, No. 8, 2005

Toy Heat Shock Model in E. coli (cont.) Five Different FSP Solution Schemes:

I. Full FSP

Toy Heat Shock Model in E. coli (cont.) Five Different FSP Solution Schemes:

- I. Full FSP
- 2. Slow manifold (FSP-SM)

Toy Heat Shock Model <u>in E. coli (cont.)</u> Five Different FSP Solution Schemes:

- I. Full FSP
- 2. Slow manifold (FSP-SM)
- 3. Interpolated (FSP-I)

Toy Heat Shock Model <u>in E. coli (cont.)</u> Five Different FSP Solution Schemes:

- I. Full FSP
- 2. Slow manifold (FSP-SM)
- 3. Interpolated (FSP-I)
- 4. Hybrid (FSP-SM/I)

Toy Heat Shock Model in E. coli (cont.) Five Different FSP Solution Schemes:

- I. Full FSP
- 2. Slow manifold (FSP-SM)
- 3. Interpolated (FSP-I)
- 4. Hybrid (FSP-SM/I)
- 5. Multiple time interval (FSP-MTI)

70 sets of 195 or fewer ODEs.

Efficiency and accuracy of the reduced FSP methods

Efficiency and accuracy of the reduced FSP methods

For final time $t_f = 300s$						
Method	Matrix Size	J_{solve}	J_{total}	∞ -norm Error		
FSP	4459	750s	750s	$< 3.0 \times 10^{-5}$		
FSP-MTS	195^{1}	-	40.2s	$< 1.68 \times 10^{-4}$		
FSP-SM	343	0.25s	0.94s	$\approx 5.1 \times 10^{-4}$		
FSP-I	539	5.1s	6.1s	$\approx 7.7 \times 10^{-4}$		
FSP-SM/I	49	0.04s	0.78s	$\approx 8.2 \times 10^{-4}$		
10^4 SSA	Results would take more than 55 hours.					
10^3 SSA-SM	_	-	84.1s	≈ 0.0116		
10^4 SSA-SM	_	-	925s	$\approx 3.4 \times 10^{-3}$		
10^5 SSA-SM	_	_	9360s	$\approx 1.6 \times 10^{-3}$		

The Reduced FSP approaches are much faster and more accurate than alternative approaches!

Conclusions

- Stochastic fluctuations or "noise" is present in the cell
 - Random nature of reactions
 - Quantization of reactants
 - Low copy numbers
- Fluctuations may be very important
 - Cell variability
 - Cell fate decisions
- Some tools are available
 - Monte Carlo simulations (SSA and variants)
 - Moment approximation methods
 - Linear noise approximation (Van Kampen)
 - Finite State Projection
- Many more are needed!

Conclusions

The Finite State Projection: a new tool for stochastic analysis of gene networks

Advantages:

- Accuracy: solutions with a guaranteed error bounds Particularly suitable for studying rare events
- Speed: solutions can be much faster than Monte Carlo methods especially when the system has large number of reactions/reaction firings
- Insight: Provides valuable information at little additional cost: Sensitivity/robustness to parameter changes
 Effect of changes in initial probabilities

Limitations

 Scalability: Not feasible when there are many species with broad distributions (over the time of interest [0, t])