## Stochastic Gene Expression in Systems Biology (Part 2)

#### **Brian Munsky**

Center for Non-Linear Studies, Los Alamos National Lab

### Kinetic Monte-Carlo Simulation Methods



#### Stochastic Simulation Algorithm

- •D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
- •M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

#### • $\tau$ leaping

- •D. Gillespie, J. Chem. Phys. **115**, 1716 (2001); **119**, 8229 (2003)
- •M. Rathinam *et al.*, J. Chem. Phys. **119**, 12784 (2003)
- •T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 (2004)
- •A. Chatterjee, et al. J. Chem. Phys. 122, 054104 (2005)
- •Y. Cao, D. Gillespie and L. Petzold, J. Chem. Phys. 123, 054104 (2005)

#### Chemical Langevin Equations

•D. Gillespie, J. Chem. Phys. 113, 1716 (2000)

#### System Partitioning Methods

- •C. Rao and A. Arkin, J. Chem. Phys. 118, 4999 (2003)
- •Y. Cao et al., J. Chem. Phys. 122, 014116 (2005)

#### Hybrid Methods

- •E. Haseltine and J. Rawlings, J. Chem. Phys. 117, 6959 (2002)
- •H. Salis and Y. Kaznessis, J. Chem. Phys. 122, 054103 (2005)

- At any time, the state of the system is defined by its integer population vector:  $\mathbf{x} \in \mathbb{Z}^N$
- Reactions are transitions from one state to another:



- At any time, the state of the system is defined by its integer population vector:  $\mathbf{x} \in \mathbb{Z}^N$
- Reactions are transitions from one state to another:
- These reactions are random, others could have occurred:













#### Reaction Stoichiometry (review)

- The Stoichiometric vector, s, refers to the relative change in the population vector after a reaction.
- There may be many different reactions for a given stoichiometry.





#### Reaction Propensities (review)

- The propensity, w, of a reaction is its rate.
- $\mathbf{w}_{\mu}dt$  is the probability that the  $\mu^{th}$  reaction will occur in a time step of length dt.
- Typically, propensities depend only upon reactant populations.





#### Generating Waiting Times

 To generate an exponentially distributed random number, all we need is a uniform random number generator.



• This is the time of the next reaction.

### Monte-Carlo Simulation Methods

- The Jump Markov Process
  - Stochastic Simulation Algorithm

•D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
•M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

### Stochastic Simulation Algorithm



Step 1. Generate the time of the next reaction.

Step 2. Decide which reaction has occurred.

Step 3. Update current Time (t=t+ $\tau$ ) and State (**x** = **x**+s<sub>k</sub>).

### Monte-Carlo Simulation Methods

Stochastic Simulation Algorithm

D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

- Possible SSA methods:
  - First Reaction Method (Gillespie '77)
    - Next Reaction Method (Gibson and Bruck '00)
  - Direct Method (Gillespie '77)

#### The First Reaction Method (FRM)



Step 1. Generate the time of the next reaction of each type. The time until the next reaction is a random variable of exponential distribution:

$$P_{\tau_{\mu}}(t) = w_{\mu}(\mathbf{x}) \mathrm{e}^{-w_{\mu}(\mathbf{x})t}$$

To generate each next reaction time, generate  $r_1$  from a uniform distribution on (0,1) and use the equation:  $\tau_{\mu} = \frac{1}{w_{\mu}(\mathbf{x})} \log \frac{1}{r_{\mu}}$ 

Step 2. Decide which reaction has occurred. This is simply the reaction with the smallest  $\tau_{\mu}$ :

$$k = \arg \left\{ \min_{\mu \in \{0, \dots, M\}} \tau_{\mu} \right.$$

Step 3. Update current Time (t=t+ $\tau_k$ ) and State (**x** = **x**+s<sub>k</sub>).

In the FRM each reaction requires M rv's.

#### The First Reaction Method SSA in Matlab.

```
clear all
t=0;tstop = 2000;
x = [0; 0];
S = [1 -1 0 0; 0 0 1 -1];
w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]','x');
while t<tstop
    tpos = 1./w(x).*log(1./rand(4,1));
    [tpos,i]=min(tpos);
    t=t+tpos;
    if t<=t_stop
        x = x+S(:,i);
    end
end
```

%%specify initial and final times
%% Specify initial conditions
%% Specify stoichiometry
%% Specify Propensity functions

% possible times until first reaction % find which is first reaction

% update the configuration

#### The Next Reaction Method (NRM)

- In the FRM, we generate times,  $\{\tau_{\mu}\}$ , for all *M* reactions and choose the reaction, *k*, with the smallest time,  $\tau_k$ .
- Only a few species will change population as a result of this reaction--the rest will remain constant.
- For most reactions, the propensity functions will remain constant.
  - For these, the times can be reused in the subsequent step to find the next reaction:  $\{\tau_{\mu}\} \rightarrow \{\tau_{\mu} \tau_{k}\}$ .
- When there are many different species and reactions, this NRM approach can be done with far fewer random number than the FRM.
- Particularly useful for compartmental or Reaction-Diffusion processes.

### Monte-Carlo Simulation Methods

Stochastic Simulation Algorithm

D.T. Gillespie, J. Phys. Chem. A 81, 2340 (1977)
M. Gibson and J. Bruck, J. Phys. Chem. 104, 1876 (2000)

- Possible SSA methods:
  - First Reaction Method (Gillespie '77)
    - Next Reaction Method (Gibson and Bruck '00)
  - Direct Method (Gillespie '77)

#### Minimum of two Exponential Random Variables

Let  $\{\tau_1, \tau_2, \dots, \tau_M\}$  be a set of exponentially distributed random variables:  $\tau_{\mu} \in \text{EXP}(w_{\mu})$ 

The minimum of  $\{\tau_{\mu}\}$  is an exponentially distributed random variable given by:

 $\min_{\mu \in \{0,...,M\}} \tau_{\mu} \in \mathrm{EXP}\left(|\mathbf{w}|_{1}\right)$ 

The argument, *k*, of this distribution is also a random variable with distribution:

$$P(k=\mu) = \frac{w_{\mu}}{|\mathbf{w}|_1}$$

In the DM we only generate 2 rv's.

### The Direct Method (DM)



 $\mu = 1$ 

## Step 1. Generate the time of the next reaction.

The time until the next reaction is a random variable of exponential distribution:

 $P_{\tau}(t) = |\mathbf{w}(\mathbf{x})|_1 \mathrm{e}^{-|\mathbf{w}(\mathbf{x})|_1 t}$ 

To generate the next reaction time, generate  $r_1$  from a uniform distribution on (0,1) and use the equation:  $\tau = \frac{1}{|\mathbf{w}|_1} \log \frac{1}{r_1}$ 

Step 2. Decide which reaction has occurred. To obtain a realization of which reaction will occur, generate a second uniform random number,  $r_2$ , and find the smallest *k* such that:  $\sum_{k=1}^{k-1} w_{\mu}(\mathbf{x}) \leq r_2 |\mathbf{w}|_1 \leq \sum_{k=1}^{k} w_{\mu}(\mathbf{x})$ 

Step 3. Update current Time (t=t+ $\tau$ ) and State (**x** = **x**+s<sub>k</sub>).

#### The Direct Method SSA in Matlab.

```
clear all
t=0;tstop = 2000;
                                                      %%specify initial and final times
x = [0; 0];
                                                      %% Specify initial conditions
S = [1 - 1 0 0; 0 0 1 - 1];
                                                      %% Specify stoichiometry
w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]','x');
                                                     %% Specify Propensity functions
while t<tstop</pre>
    w0 = sum(w(x));
                                                     % compute the sum of the prop. functions
    t = t + 1/w0 * log(1/rand);
                                                     % update time of next reaction
    if t<=t_stop</pre>
                                  % generate second random number and multiply by prop. sum
    r2w0=rand*w0;
                                                     % initialize reaction counter
    i=1;
    while sum(w(1:i))<r2w0</pre>
                                         % increment counter until sum(w(1:i)) exceeds r2w0
      i=i+1;
    end
    x = x+S(:,i);
                                                     % update the configuration
  end
end
```

#### Limitations on the SSA

- The SSA is an "exact" simulation of the system.
- But...
  - Stepping through every reaction can take a lot of time.
  - A statistical representation of the system dynamics may require many realizations (10<sup>4</sup> to 10<sup>6</sup>).
- Faster approximations are available for some problems.

#### Monte-Carlo Simulation Methods

- Stochastic Simulation Algorithm (SSA).
- τ-leaping
  - •D. Gillespie, J. Chem. Phys. **115**, 1716 (2001)
  - •D. Gillespie, L. Petzold, J. Chem. Phys. **119**, 8229 (2003)
  - •M. Rathinam et al., J. Chem. Phys. 119, 12784 (2003)
  - •T. Tian and K. Burrage, J. Chem. Phys. **121**, 10356 (2004)
  - •Y. Cao, D. Gillespie and L. Petzold, J. Chem. Phys. **123**, 054104 (2005)

### τ Leaping

Step 0. Specify length of each time step,  $\tau$ .

Assume that all propensity functions are constant over the time interval  $(t,t+\tau)$ .

The number of times each reaction will fire is a Poisson<sup>\*</sup> random number with mean  $w_{\mu}\tau$ :

$$P_{k_{\mu}}(n) = \frac{[w_{\mu}(\mathbf{x})\tau]^{n}}{n!} e^{w_{\mu}(\mathbf{x})\tau}$$

Step 1. For each  $\mu$ , generate  $\mathbf{k}_{\mu}$ . Step 2. Update the time:  $t = t + \tau_{M}$ Update the state:  $\mathbf{x} = \mathbf{x} + \sum_{\mu=1}^{M} k_{\mu} \mathbf{s}_{\mu}$ 

\*For some recent studies, binomial RV's are used (T. Tian and K. Burrage, 2004)

### $\tau$ Leaping



The number of times each reaction will fire is a Poisson random number with mean  $\mathbf{w}_{\mu}\tau$ :  $P_{k_{\mu}}(n) = \frac{[w_{\mu}(\mathbf{x})\tau]^n}{n!}e^{w_{\mu}(\mathbf{x})\tau}$ Step 1. For each  $\mu$ , generate  $\mathbf{k}_{\mu}$ . MStep 2. Update the state:  $\mathbf{x} = \mathbf{x} + \sum_{\mu=1}^{M} k_{\mu}\mathbf{s}_{\mu}$ Update the time:  $t = t + \tau$ 

### Limitations of $\tau$ leaping

- For many situations  $\tau$  leaping significantly speeds up the Monte Carlo simulation, but:
  - Poisson r.v.'s are unbounded
    - Propensity functions may change dramatically over small time intervals.
    - May result in negative populations.

Note that these concerns are most important when the population of some species are very small. Precisely the circumstance where stochastic models are most important!

## Chemical Langevin Equation

• Comparison of Poisson and Gaussian random variables.



- For small numbers of reaction steps, tau leaping doesn't give much help.
- For large numbers of reactions, replace the Poisson distribution with a normal distribution (same mean and variance. These are cheaper to generate.
- This is known as the chemical Langevin equation.

#### Monte-Carlo Simulation Methods

- Stochastic Simulation Algorithm (SSA).
- τ-leaping
- System Partitioning Methods
  - Fast--Slow Partitions
    - •C. Rao and A. Arkin, J. Chem. Phys. 118, 4999 (2003)
    - •Y. Cao et al., J. Chem. Phys. **122**, 014116 (2005)
  - Continuous--Discrete Partitions

•E. Haseltine and J. Rawlings, J. Chem. Phys. **117**, 6959 (2002)
•H. Salis and Y. Kaznessis, J. Chem. Phys. **122**, 054103 (2005)

### Fast--Slow partitions.



Separate into "fast" and "slow" partitions.

Assume that the "fast" partitions reach probabilistic equilibrium before a slow reaction occurs.

### Fast--Slow partitions.

 $\mathsf{P}_{SS}$ Slow Reaction<br/>Propensities $\square$  $\boldsymbol{\chi}$  $\begin{bmatrix} w_{\mu}(\mathbf{x}_{1}) \\ w_{\mu}(\mathbf{x}_{2}) \\ w_{\mu}(\mathbf{x}_{3}) \\ \vdots \end{bmatrix}$ =

Average Slow Reaction Propensities

= 
$$\bar{w}_{\mu}$$
, for  $\mu = \{1, 2, \dots, M\}$ 

Use the fast sets' steady state probability distributions to scale the propensity functions of the slow reactions.

Results in a vector of average propensity functions,  $\bar{\mathbf{w}}$ , for the slow reactions.

### Fast--Slow partitions.



The projection to the slow manifold results in a new lower dimensional Markov chain.

This is simulated with SSA.

#### Continuous--Discrete partitions.

- In some systems, there are great differences in scale:
  - Large populations (continuous)
  - Small populations (discrete)
- All discrete models take too long.
- All continuous models are inaccurate.
- Hybrid models are necessary.

# Separate into "continuous" and "discrete" partitions.



Τ

Simulate the continuous part with ordinary or stochastic differential equations.

Choose uniform rv, r.

Numerically integrate propensity functions until:  $\int_{t_0}^{t_0+\tau} \sum_{\mu=1}^{M} w_{\mu}(\mathbf{x}(t)) dt = -\log r$ 

Choose next discrete reaction.

#### Using the SSA to Find Distributions

• The SSA does an excellent job of producing possible

trajectories.



### Convergence of the SSA

- To get more accurate distributions, one needs more SSA runs.
- Unfortunately, the convergence rate of any Monte Carlo algorithm is fundamentally limited:  $error = O(n^{-\frac{1}{2}})$
- If very high precision is required, then MC methods will be very inefficient.



After  $10^7$  tosses there is still an error of about  $3 \times 10^{-4}$ .
**Density Computations** 





Reductions to the FSP



### The Chemical Master Equation

The probability that the system is in configuration **x** at *t*+*dt* is equal to the probability that the system is at **x** at *t*, and no reaction occurs between *t* and *t*+*dt* plus the probability that the system is one reaction removed from **x** at *t* and that reaction occurs between *t* and *t*+*dt*.



The CME (McQuarrie '67):

$$\dot{p}(\mathbf{x},t) = -p(\mathbf{x},t)\sum_{k=1}^{M} w_k(\mathbf{x}) + \sum_{k=1}^{M} p(\mathbf{x} - \mathbf{s}_k, t)w_k(\mathbf{x} - \mathbf{s}_k)$$

Define the probability density state vector (pdv):  $\mathbf{P}(\mathbf{X}, t) := [p(\mathbf{x}_1, t), p(\mathbf{x}_2, t), p(\mathbf{x}_3, t), \ldots]^T$ .

 $\mathbf{P}(\mathbf{X}, t)$  evolves according to the Linear Time Invariant ODE:  $\dot{\mathbf{P}}(\mathbf{X}, t) = \mathbf{A} \cdot \mathbf{P}(\mathbf{X}, t)$ The matrix CME

### The Chemical Master Equation

• The solution of the CME is a transfer operator:



- The dimension of the CME can be INFINITE.
  - Most CME's cannot be solved, so approximations are needed.

### Forming the Generator

 $\mathbf{A} =$ 

A has one row/column for each state. Each transition,  $x_i \rightarrow x_j$ , contributes to A in two locations:

 $-w_{\mu}(\mathbf{x}_{i})$  goes in the diagonal element  $A_{i,i}$  $+w_{\mu}(\mathbf{x}_{i})$  goes in the off-diagonal element  $A_{j,i}$ 



### The Finite State Projection

Select the states to keep.

Find the corresponding projection matrix:

$$\mathbf{A}_{[1,3]} = \begin{bmatrix} -w_1 & w_4 \\ 0 & -w_4 - w_5 \end{bmatrix}$$

Collapse remaining states A = into a single absorbing

$$\begin{array}{l} \textbf{State} \\ \textbf{A}_{[1,3]}^{FSP} = \begin{bmatrix} -w_1 & w_4 & 0 \\ 0 & -w_4 - w_5 & 0 \\ w_1 & w_5 & 0 \end{bmatrix} \end{array}$$



This is the generator for a new Markov chain

### The Finite State Projection Method



### A Test...





#### The Finite State Projection Algorithm



# The "error" sink of the FSP to get exit times.



- In the original FSP,  $\varepsilon(t)$  is the amount of the probability measure that exits the projection region  $\mathbf{X}_J$ .
- Solution Median exit time:  $t_{50} = t$ , s.t.  $\varepsilon(t) = 0.5$
- $\mathbf{S}$  In this form  $\varepsilon(t)$  gives information as to when the system exits  $\mathbf{X}_J$ , but not how.

#### Multiple FSP sinks to get exit directions.

 $\ref{eq: By using multiple sinks, one can determine how the probability measure exits <math>\mathbf{X}_{\mathcal{J}}$ 





Which Reaction Leaves  $X_J$ ?





### Multiple FSP sinks to analyze switch decisions

## Using the FSP to determine initial switch decisions.





### Advantages of the FSP.

#### • Deterministic.

- \* Every run of the FSP yields the same result.
- Enables easier comparisons of different systems (sensitivity analysis).
- Provides accuracy guarantees.
  - ★ Can be made as precise as required.
  - $\star$  Allows for analysis of rare events.
- Does not depend upon initial conditions.
- Is open to many subsequent model reductions.

### Limitations

- Numerical stiffness may lead to computational inefficiency.
- Systems may become very large as distributions cover large regions of the configuration space.
  - \* Compact distributions may drift over time.
  - ★ Dilute distributions may spread over large regions.
  - ★ Dimension grows exponentially with the number of species.
- For these problems, the original FSP may not suffice,
- BUT, with additional model reductions and systematic techniques, many of these problems may be alleviated.

### Outline

#### **M** Finite State Projection (FSP)

- Reductions to the FSP
  - Aggregating unobservable states Munsky/Khammash, CDC, 2006
  - ★ Time interval discretization
  - ★ Slow manifold projection
  - ★ Coarse meshes for the CME

# Using Input & Output relations for model reduction.

- Often one is not interested in the entire probability distribution.
- Instead one may wish only to estimate:
  - $\star$  a statistical summary of the distribution, e.g.
    - means, variances, or higher moments
  - ★ probability of certain traits:
    - switch rate, extinction, specific trajectories, etc...
- In each of these cases, one can define an output y(t):

 $\dot{\mathbf{P}}(t) = \mathbf{AP}(t)$  $\mathbf{y}(t) = \mathbf{CP}(t)$ 

### Begin with a Full Integer Lattice Description of the System States.



Population of Species a

# Remove Unreachable States and Aggregate the Observable States.



# Project the Reachable/Observable States onto a Finite Subspace.



We now have a solvable approximation, for which the FSP gives bounds on the approximation's accuracy.

### Outline

**M** Finite State Projection (FSP)

- Reductions to the FSP
  - ★ Aggregating unobservable states
  - ★ Time interval discretization

Munsky and Khammash, J. Comp. Phys., 2007

Burrage et al, A.A. Markov 150th Anniv. Meeting, 2006

- ★ Slow manifold projection
- ★ Coarse meshes for the CME

- ★ For many systems, the distribution may drift over time.
- ★ At any one time, the distribution may have a limited support, but...
- ★ The FSP solution must include all intermediate configurations.
- ★ This may lead to an exorbitantly large system of ODEs.



 $\star$  Instead:



- ★ Solving a few smaller systems can be much easier than solving a single large system.
- ★ Control the error at each step to obtain a guaranteed final error.
- ★ Caching and reusing information from one step to the next may further reduce effort.



### Outline

#### **M** Finite State Projection (FSP)

Reductions to the FSP

- ★ Aggregating unobservable states
- ★ Time interval discretization
- ★ Slow manifold projection

Peles/Munsky/Khammash, JCP, 2006

★ Coarse meshes for the CME.

#### Perturbation Theory and the FSP

- Some reactions occur faster and more frequently than others.
- This can result in a separation of time-scales in the CME.
  - Disadvantages: Often results in numerical stiffness and increased computational complexity.
  - - Advantage: May be able to apply perturbation theory to reduce computational effort.

- Begin with a finite state (projected) Markov process.
- 2. Group states connected by frequent reactions.



Red Arrows = Fast (Frequent) Reactions Black Arrows = Slow (Rare) Reactions Orange Arrows = (Rare) Transitions to Sink

- Begin with a finite state (projected) Markov process.
- 2. Group states connected by frequent reactions.
- 3. Find invariant distribution for each group.



Red Arrows = Fast (Frequent) Reactions Black Arrows = Slow (Rare) Reactions Orange Arrows = (Rare) Transitions to Sink

- I. Begin with a finite state (projected) Markov process.
- 2. Group states connected by frequent reactions.
- 3. Find invariant distribution for each group.
- 4. Average to find the rates of the slow reactions.





Dotted Black = Averaged Slow Reactions Dashed Orange = Averaged Transitions to Sink

- I. Begin with a finite state (projected) Markov process.
- 2. Group states connected by frequent reactions.
- 3. Find invariant distribution for each group.
- 4. Average to find the rates of the slow reactions.



**Reduced Markov Process** 

- Dotted Black = Averaged Slow Reactions Dashed Orange = Averaged Transitions to Sink
- 5. Solve for the solution on the slow-manifold.
- 6. Lift solution to original coordinate system.

### Outline



Reductions to the FSP

- ★ Aggregating unobservable states
- ★ Time interval discretization
- ★ Slow manifold projection
- ★ Coarse meshes for the CME

Munsky/Khammash, IEEE Trans. on Auto. Conrol, 2008

# Coarse mesh approximation of the CME

- Precision requirements may change for different regions of the configurations space.
  - **★** Small populations require great precision.
  - **★** High populations require far less precision.
- By choosing a good coarse approximation of the CME, we can take advantage of this.

## Coarse mesh approximation of the CME

Start with the full I-dimensional Markov lattice.



Solve the reduced system ODE:  $\dot{\mathbf{q}} = \mathbf{\Phi}^{-L} \mathbf{A} \mathbf{\Phi} \mathbf{q}(t)$ and lift back to the original system coordinates:  $\mathbf{P}(t) \approx \mathbf{\Phi} \exp(\mathbf{\Phi}^{-L} \mathbf{A} \mathbf{\Phi} t) \mathbf{\Phi}^{-L} \mathbf{P}(0)$
Coarse Mesh: Multiple-species problems.

- I. Begin with original lattice.
- 2. Choose interpolation points.
- 3. Form interpolation (shape) function:  $\mathbf{P}(t) \approx \mathbf{\Phi} \mathbf{q}(t)$
- 4. Project system to find reduced system of ODEs:  $\dot{\mathbf{q}}(t) = \mathbf{\Phi}^{-L} \mathbf{A} \mathbf{\Phi} \mathbf{q}(t)$
- 5. Solve reduced system.
- 6. Lift back to original coordinates.



## Outline

#### **M** Finite State Projection (FSP)

- **Mathematics Keductions** to the FSP
- Case Studies
  - ★ Lambda Phage.
  - $\star$  Heat Shock.

## A toy model of phage lambda



- We consider only the core of the lambda switch.
- Two proteins, cl and cro.
- These activate and repress the  $P_R$  and  $P_{RM}$  promoters according to the model of Shea and Ackers, 1985.

### The Phage Lambda Lysis-Lysogeny Decision

#### Arkin, Ross, McAdams, 1998. Full Model



Lytic fate

- Cro reaches a high level before CI is produced in much quantity.
- ★ Cro represses transcription of CI.

- Lysogenic fate
- $\star$  CI increases a little earlier.
- ★ CI represses transcription of Cro.
- $\star$  CI is free to increase even further.

### Relevance of Current Model



Computations done using Gillespie's SSA.

### Applying the FSP to the Phage Lambda Switch

cI



## Applying the FSP to the Phage Lambda Switch



## Efficiency and Accuracy of FSP Results



<sup>a</sup>The FSP algorithm is run only once.

# Additional information available with the FSP solution

- In many cases the FSP is faster and more accurate the Monte Carlo methods.
- Higher precision allows greater flexibility.
  - **★** Direct Computation of Switch Rates.

## Using the FSP to Compute Switch Rates

cI



## Using the FSP to Compute Switch Rates



## Using the FSP to Compute Switch Rates



| Method          | Time (s)          | Relative Error | Guarantee? |
|-----------------|-------------------|----------------|------------|
| FSP             | $25.5~\mathrm{s}$ | < 0.08~%       | yes        |
| $10^4$ SSA runs | $440.0 \ { m s}$  | pprox 0.90~%   | no         |

# Additional information available with the FSP solution

- In many cases the FSP is faster and more accurate the Monte Carlo methods.
- Higher precision allows greater flexibility.
  - ★ Direct Computation of Switch Rates.
  - ★ Simultaneous consideration of many different initial conditions.

### Comparing different initial conditions.

$$\mathcal{P}(t_0) \longrightarrow \mathcal{FSP} \longrightarrow \mathcal{\tilde{P}}(t_0 + \tau)$$

The FSP is an approximate map of distributions from one time to another.
 This map is valid for any initial distribution.
 ★ Once computed, this map is cheap to apply again and again.
 ★ The map automatically provides error bounds for any initial condition!

## Comparing different initial conditions. (Increase in cro)



Increasing the initial amount of CTO yields a slight decrease in the lysogeny rate.

## Comparing different initial conditions. (Increase in cI)



Increasing the initial amount of cI yields a significant increase in lysogeny rate.

## Simultaneous comparison of an array of initial condition.)



| Method             | Time (s)                | # I.C.'s | $  Error  _1$              | Guarantee? |
|--------------------|-------------------------|----------|----------------------------|------------|
| FSP                | 66.9 s                  | 2000     | $< 1 \times 10^{-4}$       | yes        |
| $10^4$ SSA runs    | $440.0 \ { m s}$        | 1        | $\approx 0.09$             | no         |
| $10^{13}$ SSA runs | $\approx 14,000$ years! | 2000     | $\approx 1 \times 10^{-4}$ | no         |

# Additional information available with the FSP solution

- In many cases the FSP is both faster and more accurate than other available methods.
- Higher precision allows greater flexibility.
  - ★ Direct Computation of Switch Rates.
  - ★ Simultaneous consideration of many different initial conditions.
  - ★ Sensitivity to parameter changes.

Parametric Sensitivity of Probability Distributions.

Sensitivity to a small increase in cell Volume.



- \* Sensitivity analysis requires a huge degree of accuracy.
- \* Monte Carlo methods would require hundreds of millions of runs!!

## Outline

#### **M** Finite State Projection (FSP)

- **Mathematics Keductions** to the FSP
- Case Studies
  - $\star$  Lambda Phage.
  - ★ Heat Shock.

### Toy Heat Shock Model in E. coli



#### El Samad et al, PNAS, vol. 102, No. 8, 2005

Toy Heat Shock Model in E. coli (cont.) Five Different FSP Solution Schemes:

I. Full FSP



Toy Heat Shock Model in E. coli (cont.) Five Different FSP Solution Schemes:

- I. Full FSP
- 2. Slow manifold (FSP-SM)



Toy Heat Shock Model <u>in E. coli (cont.)</u> Five Different FSP Solution Schemes:

- I. Full FSP
- 2. Slow manifold (FSP-SM)
- 3. Interpolated (FSP-I)



Toy Heat Shock Model <u>in E. coli (cont.)</u> Five Different FSP Solution Schemes:

- I. Full FSP
- 2. Slow manifold (FSP-SM)
- 3. Interpolated (FSP-I)
- 4. Hybrid (FSP-SM/I)



Toy Heat Shock Model in E. coli (cont.) Five Different FSP Solution Schemes:

- I. Full FSP
- 2. Slow manifold (FSP-SM)
- 3. Interpolated (FSP-I)
- 4. Hybrid (FSP-SM/I)
- 5. Multiple time interval (FSP-MTI)



70 sets of 195 or fewer ODEs.

Efficiency and accuracy of the reduced FSP methods



## Efficiency and accuracy of the reduced FSP methods

| For final time $t_f = 300s$ |                                        |             |             |                              |  |  |
|-----------------------------|----------------------------------------|-------------|-------------|------------------------------|--|--|
| Method                      | Matrix Size                            | $J_{solve}$ | $J_{total}$ | $\infty$ -norm Error         |  |  |
| FSP                         | 4459                                   | 750s        | 750s        | $< 3.0 \times 10^{-5}$       |  |  |
| FSP-MTS                     | $195^{1}$                              | -           | 40.2s       | $< 1.68 \times 10^{-4}$      |  |  |
| FSP-SM                      | 343                                    | 0.25s       | 0.94s       | $\approx 5.1 \times 10^{-4}$ |  |  |
| FSP-I                       | 539                                    | 5.1s        | 6.1s        | $\approx 7.7 \times 10^{-4}$ |  |  |
| FSP-SM/I                    | 49                                     | 0.04s       | 0.78s       | $\approx 8.2 \times 10^{-4}$ |  |  |
| $10^4$ SSA                  | Results would take more than 55 hours. |             |             |                              |  |  |
| $10^3$ SSA-SM               | _                                      | -           | 84.1s       | $\approx 0.0116$             |  |  |
| $10^4$ SSA-SM               | _                                      | -           | 925s        | $\approx 3.4 \times 10^{-3}$ |  |  |
| $10^5$ SSA-SM               | _                                      | _           | 9360s       | $\approx 1.6 \times 10^{-3}$ |  |  |

The Reduced FSP approaches are much faster and more accurate than alternative approaches!

### Conclusions

- Stochastic fluctuations or "noise" is present in the cell
  - Random nature of reactions
  - Quantization of reactants
  - Low copy numbers
- Fluctuations may be very important
  - Cell variability
  - Cell fate decisions
- Some tools are available
  - Monte Carlo simulations (SSA and variants)
  - Moment approximation methods
  - Linear noise approximation (Van Kampen)
  - Finite State Projection
- Many more are needed!

#### Conclusions

The Finite State Projection: a new tool for stochastic analysis of gene networks

#### **Advantages:**

- Accuracy: solutions with a guaranteed error bounds Particularly suitable for studying rare events
- Speed: solutions can be much faster than Monte Carlo methods especially when the system has large number of reactions/reaction firings
- Insight: Provides valuable information at little additional cost: Sensitivity/robustness to parameter changes
   Effect of changes in initial probabilities

#### Limitations

 Scalability: Not feasible when there are many species with broad distributions (over the time of interest [0, t])