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Short Abstract — Quantitative models suggest that the 
stochasticity in gene expression informs on molecular 
mechanism, for example, by distinguishing between fast or slow 
promoter dynamics. To validate these models, we measured the 
fundamental rate constants for the heat shock promoter SSA1 in 
S. cerevisiae. We show that even accounting for cell volume, 
protein distributions measured are inconsistent with the 
generally accepted random telegraph model of gene expression, 
likely due to 70% of the noise, or more, deriving from extrinsic 
sources. Finally, we show that destabilizing our reporter gene 
fails to increase intrinsic noise as predicted. 

 
 

ENE expression is known to be a stochastic process, first 
revealed by the wide variation of protein levels 

observed among genetically identical E. coli [1]. Subsequent 
measurements of single cell eukaryotes and mammalian cells 
confirm the universality of stochastic gene expression in 
living organisms [2-4]. 
 Quantitative biologists have proposed a variety of models 
explaining the origin of observed gene expression noise. The 
prevailing “random telegraph” model imagines stochastic 
switching of DNA promoters between an active and inactive 
state [2-4]. Transcription occurs from the active state, RNA 
is further translated into protein, and both RNA and protein 
degrade with first-order rates. Single-molecule RNA-FISH 
experiments support the random telegraph model for RNA 
production [2-4]. At the protein level, we [5] and others [6,7] 
have proposed computational methods for inferring the 
fundamental rate constants of the random telegraph model 
from steady-state or perturbed protein distributions. We 
sought to use these state-of-the-art methods to understand the 
regulatory mechanisms underlying basal and induced 
expression in the heat shock promoter SSA1 in S. cerevisiae. 
 We cloned the SSA1 promoter in front of an eGFP 
reporter and integrated our gene chromosomally at the 
ΔHIS3 locus in the yeast laboratory strain BY4741. Using 
flow cytometry, we measured population variability in 
protein expression in high-throughput. Since significant 
additional information can be obtained from distributions of 
absolute numbers of proteins per cell, we coupled flow 
cytometry with single molecule counting by fluorescence 
correlation spectroscopy (FCS). 

A significant body of work postulates relationships 
between the random telegraph rate constants and population 
stochasticity [5-7]. However, few of these methods have 

 
1 Center for Genome Sciences, Department of Genetics, Washington 

University in St. Louis, St. Louis, MO, United States. E-mail: 
marc.sherman@wustl.edu and cohen@genetics.wustl.edu 

been verified experimentally. Using a combination of heat-
shock and cyclohexamide block experiments, we measured 
the bulk rate constants for SSA1 under inducing (37°C) and 
non-inducing (22°C) conditions. 

With estimates for the fundamental rate constants in hand, 
we were surprised to find our model, and others, failed to 
predict the actual rate constants; equivalently, Gillespie-
simulation of the random telegraph model with measured 
rate constants failed to reproduce measured protein 
distributions. Given the ubiquity of extrinsic variance [3,6,9], 
we asked whether our predictions could be improved by 
measuring and accounting for extrinsic noise. Remarkably, at 
least 70% of the noise arose from extrinsic sources. This 
noise was robust to normalization by forward and side 
scatter, in contrast to the findings in a previous study [8]. 

To reduce the impact of extrinsic noise, we destabilized 
our GFP reporters by various magnitudes using the N-end 
pathway. Despite predictions to the contrary [6,9], we found 
that reporter destabilization marginally impacts the balance 
of intrinsic and extrinsic noise for SSA1. 

The random telegraph model of gene expression is 
inconsistent with SSA1 expression stochasticity at the protein 
level. This observation is robust to the common methods for 
reducing extrinsic noise.  
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