Modeling Tumor Development

Yi Jiang

Theoretical Division

Los Alamos National Laboratory

jiang@lanl.gov

http://math.lanl.gov/~yi

Outline

- Cancer development overview
- What's been done?

Overview of mathematical models for tumor growth

• What have we done?

A cell-based, multiscale model framework

• What can our model do?

Avascular tumor growth, angiogenesis, vascular growth

How good is our model?

Pros and cons

• Where are we going with such a model?

Outline

- Cancer development overview
- What's been done?

Overview of mathematical models for tumor growth

• What have we done?

A cell-based, multiscale model framework

• What can our model do?

Avascular tumor growth, angiogenesis, vascular growth

How good is our model?

Pros and cons

• Where are we going with such a model?

"I know that in the study of material things, number, order and position are the threefold clues to exact knowledge; that these three, in the mathematician's hands, furnish the 'first outlines for a sketch of the Universe'."

On Growth and Form 1917

The theory of Multi-Stage Carcinogenesis

- Many waves of Clonal Selection
- Clonal Selection occurs because of gene mutation
- Adaptation produces cells that proliferate more often than normal cells and undergo cell death(apoptosis) less often

Bielas and Loeb, 2005

Models of cancer evolution

'clonal selection model' (blue)
'parallel evolution' model (red)
an integrated model of cancer
evolution (green)

histological snapshot of normal skin tissue (a), primary tumour (superficial b_1 and deep b_2), subcutaneous metastasis (c), metastasis in the lymph node (d) and metastasis in the lung (e)

Self-sufficiency in growth signals Insensitivity to Evading apoptosis anti-growth signals Tissue invasion Sustained angiogenesis & metastasis Limitless replicative

Hallmarks of Cancer

•6 essential phenotypes

•Many different mutation routes to cancer

Cancer candidate genes

•Chemotherapies select and kill fast-growing cells

•Radiotherapies kill cells that reproduce more and repair less.

Hanahan & Weinberg, Cell 2000

3 Phases of Solid Tumor Growth

Avascular tumor

- •tumor spheroid 10⁶ cells
- maximum diameter ~ 2mm
- necrotic core
- thin proliferating rim

Angiogenesis

- capillary network formation
- supplies tumor with blood

Vascular growth, metastasis

- •irregular structure
- highly invasive
- potentially fatal

Avascular tumor growth (Multicellular Tumor Spheroid)

- In vitro 3D avascular tumor model.
- Precisely controlled external conditions with realistic tumor microenvironment; assays easy; data rich.
- Mimics growth dynamics of tumor in vivo.

Freyer, Sutherland

Outline

- Cancer development overview
- What's been done?

Overview of mathematical models for tumor growth

• What have we done?

A cell-based, multiscale model framework

• What can our model do?

Avascular tumor growth, angiogenesis, vascular growth

How good is our model?

Pros and cons

• Where are we going with such a model?

Mathematical Models

• Empirical data fitting (map)

Gompertz

$$y(t) = a \exp[b \exp(-ct)]$$

$$b = \log(y(0)/a)$$

Marusic et al., Cell Prolif 1994

Mathematical Models

Compartmental model (PDEs)

Chaplain, Sherratt, Byrne, Anderson, Maini

Compartmental Models

free boundary problems

$$\begin{split} \frac{\partial P}{\partial t} + \nabla \cdot (\vec{u}_P P) &= \big(K_B(C) - K_Q(C) \big) P + K_P(C) Q, \\ \frac{\partial Q}{\partial t} + \nabla \cdot (\vec{u}_Q Q) &= K_Q(C) P - \big(K_D(C) + K_P(C) \big) Q, \\ \nabla^2 C &= \mu C, \\ \vec{u}_Q &= \vec{u}_P + \chi \nabla C, \end{split}$$

Mathematical Models

Biochemical kinetics

cancer cell receptor	R, R_a, R_i
fibroblast growth factor, FGF	G
urokinase plasminogen activator, uPA	C
tissue growth factor beta, $TGF\beta$	I_a
latent TGF beta, $TGF\beta_{\ell}$,	$I_{m{i}}$
plasminogen	P_g
plasmin	P_m

$$\begin{split} &\frac{\partial \eta}{\partial t} = \nabla \cdot \left\{ D_{\eta} \nabla \left[\eta \ln \left(\frac{\eta}{\tau(g)} \right) \right] \right\} + \phi(g) \eta (1 - \eta/\eta_0) - \mu_{\eta} \eta, \\ &\partial_t g = D_g \Delta g - \mu_g g + \frac{\sigma_g - \lambda_1 g}{1 + \nu_e \iota_a + g/K_m^1 \eta_0}, \\ &\partial_t c = D_c \Delta c - \mu_c c + \frac{\lambda_1 g}{1 + \nu_e \iota_a + g/K_m^1 \eta_0}, \\ &\partial_t p_m = D_p \Delta p_m - \mu_p p_m + \lambda_2^p c, \\ &\partial_t \iota_a = D_a \Delta \iota_a - \mu_a \iota_a + \lambda_3 \iota_i p_m, \\ &\partial_t \iota_i = D_i \Delta \iota_i - \mu_i \iota_i - \lambda_3 \iota_i p_m + \frac{\sigma_i}{1 + \nu_e \iota_a + g/K_m^1 \eta_0} \end{split}$$

Levine, Boushaba

Hybrid Models

• Cellular automata coupled with PDE for O2, nutrients

Heiko Enderling

Hybrid Models

 Cellular automata coupled with PDEs for O2 dynamics, ECM dynamics, evolution...

Kasia Rajniak Anderson, Guaranta

Multiscale Models

• John Lowengrub, Vittorio Cristini

```
http://math.uci.edu/~lowengrb/RESEARCH/tumor.php
```

• Philip Maini, Helen Byrne, Mark Chaplain

```
http://people.maths.ox.ac.uk/~maini/
http://www.maths.dundee.ac.uk/mbg/
```

Yi Jiang

http://math.lanl.gov/~yi

Outline

- Cancer development overview
- What's been done?

Overview of mathematical models for tumor growth

• What have we done?

A cell-based, multiscale model framework

• What can our model do?

Avascular tumor growth, angiogenesis, vascular growth

How good is our model?

Pros and cons

• Where are we going with such a model?

Modeling Tumor Development

- Cell dynamics: Cell growth and division, death, quiescence = cell cycle arrest, mutation
- Cell-cell interactions: adhesion, competition for space
- Cell-environment interactions

Microenvironment:

- chemicals (absorption, production, and diffusion) = Nutrients, wastes, growth and inhibitory factors
- ECM/basement membrane biomechanics
- Stromal cells

Multicellular Multiscale Dynamics

- Complex emergent behavior and patterns
- Begin by using phenomenological descriptions of cell behaviors: biologically based rules, phenomenological terms for equations
- In many cases very complex pathways have fairly simple effects under conditions of interest, cell = blackbox
- Adding regulations back into the cells.

$$E = \sum_{lattice \ sites} J_{\tau(S_1)\tau(S_2)} [1 - \delta(S_1, S_2)] + \sum_{cells} \gamma \cdot (v - V^T)^2$$

$$p = \begin{cases} 1, & \text{if } \Delta E < 0 \\ e^{-\Delta E/k_b T}, & \text{if } \Delta E \ge 0 \end{cases}$$

Cellular Potts Model

- Cells are on a 3D lattice
- Each cell has a unique ID: S
- Cells have types
- Cells interact at membrane
- Cell keeps a volume.

$$E = \sum_{lattice \ sites} J_{\tau(S_1)\tau(S_2)} [1 - \delta(S_1, S_2)] + \sum_{cells} \gamma \cdot (\nu - V^T)^2$$

$$p = \begin{cases} 1, & \text{if } \Delta E < 0 \\ e^{-\Delta E/k_b T}, & \text{if } \Delta E \ge 0 \end{cases}$$

Cell Sorting – differential adhesion

Glazier et al. (1993,1995, 2001)

$$E = \sum_{lattice \ sites} J_{\tau(S_1)\tau(S_2)} [1 - \delta(S_1, S_2)] + \sum_{cells} \gamma \cdot (v - V^T)^2$$

Cell growth: $V^T \sim 2 V(t=0)$

Cell division —when cell is ready to divide—

- half of mother cell is assigned a new ID
- daughter cells inherit all properties of mother cell (with a probability for mutation).

Protein Regulatory Network for Cell Cycle: G1→S

- P15 = p15 + p16 + p18 + p19
- P27=p27+p57
- Expression level: 0 or 1
- Local chemicals modify protein expression

$$Factor\ level = \left(1 + e^{-\alpha \cdot \left(\frac{gF - ihF}{initGF} - \theta\right)}\right)^{-1}$$

Chemicals: Oxygen, Glucose, Lactate, growth factor, inhibitory factor

$$\frac{\partial Co_2}{\partial t} = D_{O_2} \nabla^2 C_{O_2} + a(x, y, z)$$
 $(C_{O_2} = C_0^{O_2} \text{ at boundary})$

$$\frac{\partial C_n}{\partial t} = D_n \nabla^2 C_n + b(x, y, z) \qquad (C_n = C_0^n \text{ at boundary})$$

$$\frac{\partial C_w}{\partial t} = D_w \nabla^2 C_w + c(x, y, z) \quad (C_w = C_0^w \text{ at boundary})$$

$$\frac{\partial C_{gf}}{\partial t} = D_{gf} \nabla^2 C_{gf} + e(x, y, z) \qquad (C_{gf} = C_0^{gf} \text{ at boundary})$$

$$\frac{\partial C_{if}}{\partial t} = D_{if} \nabla^2 C_{if} + f(x, y, z) \qquad (C_{if} = C_0^{if} \text{ at boundary})$$

Model details –

- Cells interact through surface adhesion as well as competition for space.
- Outcome of cell regulatory network together with growth (stress) determine quiescence.
- Necrosis condition: below threshold O_2 or glucose or above threshold waste; necrotic cell maintains volume.
- Cells can shed from spheroid surface during mitosis.
- Cell clock. (Mutation)
- 1 cell cycle = 12 hours = 4 Monte Carlo Steps = 16 stages (G1 = 6, S = 6, G2+M=4)
- Maximum cell volume = 4x4x4 voxels = $1200 \mu m^3$

Outline

- Cancer development overview
- What's been done?

Overview of mathematical models for tumor growth

• What have we done?

A cell-based, multiscale model framework

• What can our model do?

Avascular tumor growth, angiogenesis, vascular growth

How good is our model?

Pros and cons

• Where are we going with such a model?

Volume Growth

$0.08 \text{ mM O}_2 + 5.5 \text{ mM glucose}$

Necrosis condition for tumor cells:

oxygen concentration below 0.02 mM, glucose concentration below 0.06 mM, waste (lactate) concentration above 8 mM.

Tumor cells can survive in much harsher microenvironment than normal ones.

• Diffusion coefficient for growth factor and inhibitors $10^{-5} - 10^{-6} \text{ cm}^2/\text{hr}$

Molecular weight ~ 70-100 KDa

$0.08 \text{ mM O}_2 + 5.5 \text{ mM glucose}$

$0.28 \text{ mM O}_2 + 16.5 \text{ mM glucose}$

 $0.08 \text{ mM O}_2 + 10.5 \text{ mM glucose}$

tumor growth saturation

individual mechanisms

- Shedding
- Inhibitors
- Nutrient
- Mechanics

P53 mediated tumor-cell growth competition

 P53 mutation leads to better survival in hypoxic conditions

Outline

- Cancer development overview
- What's been done?

Overview of mathematical models for tumor growth

• What have we done?

A cell-based, multiscale model framework

• What can our model do?

Avascular tumor growth, angiogenesis, vascular growth

• How good is our model?

Pros and cons

• Where are we going with such a model?

Pros	Cons
Cell level phenotypes and interactions	Expensive computation
Cellular adhesion	Large scale growth – organ level development
Adding new modules, interactions	Energy based formulation not easy for force based mechanics

Realistic tumor vessel network

Outline

- Cancer development overview
- What's been done?

Overview of mathematical models for tumor growth

• What have we done?

A cell-based, multiscale model framework

• What can our model do?

Avascular tumor growth, angiogenesis, vascular growth

How good is our model?

Pros and cons

• Where are we going with such a model?

To-do's

Summary I (Tumor Growth)

- Cell-based approach
- Multiscale modeling
- Experimental data starting point and validation
- Experimentally testable predictions and hypotheses
- Mechanistic understanding

Tumor Induced Angiogenesis

- Secretion and diffusion of TAFs (VEGF)
- Endothelial cell activation: proliferation and migration
 - Signaling pathways
 - Chemotaxis
 - EC-ECM interactions
 - ECM remodeling
- Vasculature formation

http://www.angio.org/

© 2000 The Angiogenesis Foundation, Inc. All rights reserved.

Continuous

0.0008 0.0006 0.0004 0.0002 0.0002 0.0004 0.0006 0.0008 0.001 0.0002 0.0004 0.0006 0.0008 0.001

Wheeler, et.al., Bull. Math. Biol. (2005)

Discrete Treatment of Cells

Continuous + Binary Capillary Indicator Fcn

Los Alamos

Anderson & Chaplain, Bull. Math. Biol. (1998)

Hypotheses/Assumptions

- o VEGF acts as chemo-attractant for EC.
 - O Freely diffusing VEGF
 - o "Go or grow"
 - o Proliferation region:
 - 1. right behind the tip
 - 2. all activated cells except for tip cell
 - 3. at the base of the sprout
 - o ECs degrade ECM or secrete fibronectin
 - o Sprout tip secretes MMPs that degrade ECM.

- Binding pro- & anti- angiogenic factors
- Regulating cell adhesion and migration

Bauer et al. Biophys J. 2007

Cellular model:

• Cell types: endothelial, normal, extracellular matrix, interstitial fluid

$$E = \sum_{lattice \ sites} J_{\tau(S_1)\tau(S_2)}[1 - \delta(S_1, S_2)] + \sum_{cells} \gamma \cdot (v - V^T)^2 + \sum_{EC} \mu C + \sum_{cells} \gamma'[1 - \delta(v, v')]$$

- Cell-matrix interaction: adhesion (haptotaxis), secretion and degradation, remodel and reorganizing
- Cell-VEGF interaction: binding, activation, sprout tip vs. proliferating vs. dormant; chemotaxis
- EC cell cycle = 18 hours = 5 MCS
- EC size = $16 \times 16 = 100 \mu m^2$

VEGFA Dynamics

$$\frac{\partial V}{\partial t} = D\nabla^2 V - \lambda V - B(x, y)$$

$$B(x,y) = \left\{ \begin{array}{l} \beta, & \text{if } \beta \leq V \text{ and } \{(x,y) \subset \text{EC}\}; \\ \\ V, & \text{if } 0 \leq V < \beta \text{ and } \{(x,y) \subset \text{EC}\}; \\ \\ 0, & \text{if } \{(x,y) \not\subset \text{EC}\}. \end{array} \right.$$

β = maximal amount of VEGF bound by EC= total available receptor numbers

Proliferating region:

VEGF Gradient Profiles

Distance toward Tumor - microns

Branching?

cell recruitment from sprout base

Matrix fiber alignment

Effects of matrix density on sprout extension

Interruption of

Angiogenesis $\rho = 0.99$

With matrix degradation

Intracellular Signaling Network

Glass-type model

- State transition dynamics
 - → Signal transduction

Glass, JTB, 1973. Glass, JCP, 1975.

$$x_i(t) \in [0, 1], \quad X_i(t) = H(x_i - \theta)$$

$$X_i(t) = \begin{cases} 1, & x_i(t) \ge 1/2 \\ 0, & x_i(t) < 1/2 \end{cases}$$

- •Variables in biological systems are usually continuous
- •There are few mechanisms for synchronous updating of the state

Discrete Boolean

$$X_i(t+1) = f_i(X(t)) \qquad f_H = \frac{\lambda x^n}{\theta^n + x^n}$$

$$f_H = \frac{\lambda x^n}{\theta^n + x^n}$$

Continuous Boolean

$$\frac{dx_{i}(t)}{dt} = f_{i}(X_{r_{i}}^{1}(t), ..., X_{r_{i}}^{k_{i}}(t)) - x_{i}(t)$$

Continuous Stochastic Boolean

$$\frac{dx_i(t)}{dt} = \left| f_i(X_{ri}^{1}(t), \dots, X_{ri}^{ki}(t)) - \delta(t) \right| - x_i(t)$$

$$\delta(t) = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{with probability } 1 - p \end{cases}$$

Glass-type model

• Boolean dynamics $f_i(X_{r_i}^1(t), ..., X_{r_i}^{k_i}(t))$

ECM-Integrin = ITG

VEGF- VEGFR2 = RTK

VE-cadherin = cadherin

p53 = !ITG

PIP3 = PI3K &&! PTEN

Rac1 = PIP3 & ! RhoA

MEK1 = Raf-1 || Rac1

. . .

Proliferation

Motility = Actin

Proliferation = cyclin D1

Apoptosis = Bad && !b-catein

Apoptosis

Rac RhoA RhoA

Motility

cell phenotypes

[RTK, ITG] Input State

Robust to internal noise

Fast response to signals

Feedback scheme 2 unstable

Apoptotic switch sensitive

Multi-Scale Model of Tumor Angiogenesis

Cellular model

• Cell types: endothelial, normal, extracellular matrix, interstitial fluid

$$E = \sum_{lattice \ sites} J_{\tau(S_1)\tau(S_2)}[1 - \delta(S_1, S_2)] + \sum_{cells} \gamma \cdot (v - V^T)^2 + \sum_{EC} \mu C + \sum_{cells} \gamma'[1 - \delta(v, v')]$$

haptotaxis, chemotaxis

ExtraCellular chemical

$$\frac{\partial V}{\partial t} = D\nabla^2 V - \lambda V - B(x, y)$$

Static ECM

Phenotype Distribution

Extension Speed and Branching Mediated by Matrix Density

Branching

Thickness

Ave Thickness of Sprout (μm)

Branching & Anastomosis

Emergent Phenomenon: Brush Border Effect

Bauer Thesis 07

Apoptosis:

Receptor dialing as Pro- and Anti-angiogenic therapy

 \uparrow T_I \rightarrow \uparrow Apoptosis

Avasin PTK787/ZK222584

Experimental validation

In vitro In vivo

Cell-ECM Interactions

ECM Mechanics

Integrins

- 17 Integrin-α chains + 8 Integrin-β chains
 → 25 Integrins
- each integrin selectively binds ECM proteins ITG- $\alpha 1/\beta 1$: collagen-I, collagen-IV and laminin; ITG- $\alpha 5\beta 1$: fibronectin
- each integrin is expressed differently in different cell types

IMGT.org

FAK Pathway

ProteinLaunge.com

Mechano-transduction

Weitz lab

Growth, proliferation, polarization, migration, regulation of MMPs, cadherins...

Dimensionality

Cell-Migration Hike at q-Bio 09

when: Friday afternoon (8/7/09)
where: Santa Fe ski basin day hike trail, meet at St. John's College
who: anyone interested

Tumor Invasion

• Migration: brain tumor (glioma, glioblastoma), breast cancer...

http://www.youtube.com/marcuslab

Deryugina & Quigley, 2008

Summary

- Cell tissue organ level mechanistic study
- Cell-based, multiscale modeling framework for tumor growth and angiogenesis.
- Test hypotheses and generate hypotheses that can be tested experimentally
- Mathematical Model vs. in vitro model vs. in vivo animal model vs. in vivo human (model) vs. clinical cases
- 'Simple but not simpler'

Jim Freyer, Bryan Travis

Jelena Pjesivac, Charles Cantrell, Amy Bauer, Kejing He, Kevin Flores, Zhiying Sun

Trace Jackson, Jacques Nor Amy Bauer

Tom Chen, Luisa Iruela-Arispe

Evan Zamir