Integration of Experimentation with Modeling

Alissa Weaver, M.D., Ph.D. Vanderbilt University Medical Center Dept of Cancer Biology

Outline

- Rationale for integrated studies
- Stages of experimental integration into models
 - Framing the question
 - Choosing assumptions
 - Parameterization
 - Validation
 - Model refinement
- Examples of data integration into 2 models.

Rationale for Experimental Integration with Mathematical Models

- Usefulness of models depends upon ability to test or answer difficult biological questions
 - Avoid modeling for modeling sake
 - The dialogue between experimentalists and modelers is critical in setting up useful models
 - Specific experimental systems can help define general biological questions and provide a starting platform for modeling

Rationale for Experimental Integration with Mathematical Models

- Much of biology is context-dependent
 - Microenvironment-dependence of cellular responses: cancer, angiogenesis, etc.
 - Standardization of experimental conditions
 - using data purely from the literature can be misleading
 - Gathering data appropriate for models

Rationale for Experimental Integration with Mathematical Models

- The process of data integration is informative
 - Data frequently gathered in a different way: gives unexpected results
 - Simulation results inspire new experimental hypotheses
 - Model refinement, based on experimental results, leads to reconsideration of assumptions

Stages of Integration: framing the question

- What kind of question to ask with models?
 - Something that you can't fully answer with data alone
 - Complex systems: many variables
 - Experimentation technically difficult
 - Enough biology known to formulate reasonable assumptions
 - Broad enough to be of general interest...and/ or...narrow enough to be used by others to answer specific questions

Stages of Integration: framing the question

- Examples of questions to ask?
 - What is the role of the microenvironment in regulating tumor invasion?
 - Specifics: ECM, growth factors, cellular heterogeneity, paracrine, autocrine interactions, intracellular responses
 - How are molecular changes converted into cellular and tissue phenotypes?
 - Can we predict drug response and resistance?
 - Different scales

Generation of Assumptions

- Often the most useful stage
- Sets structured theoretical framework for experimental work
- Use broad understanding from literature
- May require additional experimental work

Parameterization

- Uses:
 - <u>Parameters are critical determinants of model</u> <u>results</u>
 - Provide biological context: obtain parameters under certain microenvironmental conditions
 - Unanticipated or incompatible values may test assumptions
 - Model tuning: allows adaptation of model to specific experimental or biological systems

Model testing (validation)

- Testing whether model predictions are true
 - Broad vs. specific
 - Tells about context
 - Are assumptions correct?
 - Are there things missing from the model?
 - Are the conditions different?
 - Takes you forward into future work

Post-validation

- Model development
- Use of additional models