In contrast, the autocorrelation of the intrinsic noise (16) decays rapidly: \(\tau_{\text{intrinsic}} < 10 \text{ min} \approx \tau_{\text{corr}} \) (Fig. 4E). Thus, the observed slow fluctuations do not result from intrinsic noise; they represent noise extrinsic to CFP expression (see supporting online text). The concentration of a stable cellular factor would be expected to fluctuate with a time scale of the cell cycle period (7, 10). For instance, even though intrinsic fluctuations in production rates are fast, the difference between the total amounts of YFP and CFP in the symmetric branch experiments has an autocorrelation time of \(\tau_{\text{total}} = 45 \pm 5 \text{ min} (16) \). A similar time scale may well apply to other stable cellular components such as ribosomes, metabolic apparatus, and sigma factors. As such components affect their own expression as well as that of our test genes, intrinsic noise may be self-perpetuating.

These data indicate that the single-cell GRF cannot be represented by a single-valued function. Slow extrinsic fluctuations give the cell and the genetic circuits it comprises a memory, or individuality (29), lasting roughly one cell cycle. These fluctuations are substantial in amplitude and slow in time scale. They present difficulty for modeling genetic circuits and, potentially, for the cell itself. In order to accurately process an intracellular signal, a cell would have to average its response for well over a cell cycle—a long time in many biological situations. This problem is not due to intrinsic noise in the output, noise that fluctuates rapidly, but rather to the aggregate effect of fluctuations in other cellular components. There is thus a fundamental tradeoff between accuracy and speed in purely transcriptional responses. Accurate cellular responses on faster time scales are likely to require feedback from their output (1, 4, 6, 10, 30). These data provide an integrated, quantitative characterization of a genetic element at the single-cell level: its biochemical parameters, together with the amplitude and time scale of its fluctuations. Such systems-level specifications are necessary both for modeling natural genetic circuits and for building synthetic ones. The methods introduced here can be generalized to more complex genetic networks, as well as to eukaryotic organisms (18).

References and Notes

16. Materials and methods are available as supporting material on Science Online.
31. We thank Z. Ben-Haim, R. Clifford, S. Itzkovitz, Z. Kam, R. Kishony, A. J. Levine, A. Mayo, R. Milo, R. Phillips, M. Ptashne, J. Shapiro, B. Shraiman, E. Sigga, and M. G. Surette for helpful discussions. M.B.E. is supported by a CASI award from the Burroughs Wellcome Fund, the Searle Scholars Program, and the Seaver Institute. U.A. and M.B.E. are supported by the Human Frontiers Science Program. P.S.S. acknowledges support from a Tier II Canada Research Chair and the Natural Sciences and Engineering Research Council of Canada. N.R. dedicates this work to the memory of his father, Yasha (Yaakov) Rosenfeld.

Noise Propagation in Gene Networks

Juan M. Pedraza and Alexander van Oudenaarden*

Accurately predicting noise propagation in gene networks is crucial for understanding signal fidelity in natural networks and designing noise-tolerant gene circuits. To quantify how noise propagates through gene networks, we measured expression correlations between genes in single cells. We found that noise in a gene was determined by its intrinsic fluctuations, transmitted noise from upstream genes, and global noise affecting all genes. A model was developed that explains the complex behavior exhibited by the correlations and reveals the dominant noise sources. The model successfully predicts the correlations as the network is systemically perturbed. This approach provides a step toward understanding and manipulating noise propagation in more complex gene networks.

The genetic program of a living cell is determined by a complex web of gene networks. The proper execution of this program relies on faithful signal propagation from one gene to the next. This process may be hindered by stochastic fluctuations arising from gene expression, because some of the components in these circuits are present at low numbers, which makes fluctuations in concentrations unavoidable (1). Additionally, reaction rates can fluctuate because of stochastic variation in the global pool of housekeeping genes or because of fluctuations in environmental conditions that affect all genes. For example, fluctuations in the number of available polymerases or in any factor that alters the cell growth rate will change the reaction rates for all genes. Recent experimental studies (2–5) have made substantial progress identifying the factors that determine the fluctuations in the expression of a single gene. However, how expression fluctuations propagate from one gene to the next is largely unknown. To address this issue, we designed a gene network (Fig. 1A) in which the interactions between adjacent genes could be externally controlled and quantified at the single-cell level.

This synthetic network (6) consisted of four genes, of which three were monitored in single Escherichia coli cells by cyan, yellow, and red fluorescent proteins (CFP, YFP, and RFP). The first gene, lacI, is constitutively transcribed and codes for the lactose repressor, which down-regulates the transcription of the second gene, tetR, that is bicistronically transcribed with cfp. The gene product of tetR, the tetracycline repressor, in turn down-regulates the transcription of the third gene, reported by YFP. The fourth gene, rfp, is under
the control of the lambda repressor promoter P\text{L}, which is a strong constitutive promoter. Because this gene is not part of the cascade, this reporter was used to evaluate the effect of global fluctuations. This cascade was used to measure how fluctuations in an upstream gene (tet\text{R}, reported by CFP) transmit downstream (and are reported by YFP). The inducers isopropyl-\beta-D-thiogalactopyranoside (IPTG) and anhydrotetracycline (ATC) bind to and inhibit the repression of the lactose and tetracycline repressors, respectively, and were used to tune, respectively, the expression of the upstream gene and the coupling between the two genes.

We assayed the response of single cells to various amounts of inducers by using automated fluorescence microscopy. In each experimental run, the level of the three fluorescent reporters was quantified for \(~2000\) individual cells. Figure 1B shows that the average signal of the upstream gene displayed a sigmoidal response to changes in the concentration of IPTG in the growth media. In response, the average signal of the downstream gene (Fig. 1C) behaved inversely and decreased sharply at larger IPTG concentrations. The enhanced sensitivity of the YFP response, compared to the CFP response, when IPTG is varied demonstrates the utility of cascades for generating steep switches (7–10). However, the average expression alone does not capture the population behavior, because the expression of most cells is quite different from the average (Fig. 1D). Even for a fixed IPTG concentration, the fluctuations in gene expression resulted in a broad distribution that reflects the interaction between the upstream and downstream genes.

To quantify the expression fluctuations and the degree of correlation between different genes, we computed the correlation
averaging over all cells in the population, and
values \((\text{characterized by three different expression val-
ues})\) defined in Fig. 1A. Because each cell is
correlated by a single upstream repressor (Fig. 1A). The
self-correlation is identical to the square of
the coefficient of variation,
with
Because RFP is not part of the cascade, one
factor on IPTG concentration (Fig. 2, E and F).
Because both fluctuations came from the
same sources, correction terms arise
that depend on the strength (and sign) of
the interaction \((15)\).
In Fig. 3C, these different noise compo-
nents are shown for gene 2. The intrinsic
component (Fig. 3C, green line) varies as the
inverse of the square root of the mean,
resulting in increased noise at higher IPTG
concentrations. The transmitted intrinsic
component (Fig. 3C, blue line) corresponds
roughly to the square of the logarithmic gain
(Fig. 3B, inset) times the noise in the
upstream gene (Fig. 2A) \((18)\). The global
noise component (Fig. 3C, red line) is not
constant but rather shows the modulation as
explained above. Thus, the main features of
the noise in this gene are determined by
the network interactions, rather than by its
own intrinsic noise characteristics.

The effect of modulating the global noise is
also demonstrated by the behavior of the cor-
rrelations between noninteracting genes (Fig. 2,
E and F). A global fluctuation that raises the
expression of RFP will also raise the expres-
sion of YFP and CFP. An increased CFP
expression will result in a decreased YFP ex-
ression by an amount that depends on the
interaction between gene 1 and gene 2 and
hence will vary with IPTG \((19)\). This can be
seen in the expression for the correlations \((15)\).
A consequence of this modulation is that the
coefficients \(C_{ij}\) and \(C_{23}\) display qualitatively
similar behavior as IPTG is varied \((2, D \text{ and F})\). This indicates that \(C_{ij}\) is dominated by the
global noise that is transmitted from gene 1
to gene 2. Similarly, the correlation \(C_{12}\) is domi-
nated by the global noise transmitted from
gene 0 to gene 1 and therefore displays a dif-
ferent behavior compared to \(C_{12}\) and \(C_{23}\) \((6)\).

We directly quantified the intrinsic and
extrinsic noise for genes 1 to 3 as a function
of the upstream gene \(i\) is varied. For example,
the main term in the transmitted intrinsic noise
from gene 1 to gene 2 \((\text{Fig. 1A})\) is proportional
to the squared logarithmic gain \(H_{21}^2\) \((\text{Fig. 3B,}
inset)\). The pronounced peak in \(H_{21}^2\) occurs at
an IPTG concentration for which the response
of the downstream gene is most sensitive to
changes in the upstream signal. Consistently,
the downstream fluctuations reach a maximum
at this concentration \((\text{Fig. 2B})\) \((6)\). The last
component of the noise reflects the effect of
the global fluctuations. It includes the direct
effect on the gene, the transmitted effect from
the upstream genes (Fig. 3A), and the effect of
the correlated transmission, which depends on
the interactions. The latter illustrates the main
difference between transmitted intrinsic and
transmitted global noise. The different intrinsic
noise sources are uncorrelated, whereas the
global fluctuations arise from the same sources
(Fig. 3A). This means that the transmitted
global noise \((\text{Fig. 3A, purple arrows})\) does not
simply add to the direct global noise \((\text{Fig. 3A,}
red arrows})\).
of the IPTG concentration (Fig. 4, A and B) by measuring the correlation between CFP and YFP in constructs in which both reporters were driven by the same promoter (3, 5, 6). The total noise was generally dominated by extrinsic fluctuations. The experimentally obtained intrinsic and extrinsic noise of genes 1 and 2 was consistent with the predictions of the model.

To probe the predictive power of the stochastic model, we used it to predict the noise and correlations as the coupling between genes 1 and 2 was altered by adding ATC to the growth media (6). We compared these predictions to experimental results. As an example, \(\eta_2 \) and \(C_{12} \) are shown in Fig. 4, C and D. Both \(\eta_2 \) and \(C_{12} \) display rich behavior as a function of both the IPTG and ATC concentrations. As is seen in Fig. 4C, a small perturbation to the network can transform a maximum in the \(\eta_2 \)-IPTG curve (Fig. 4C, black) into a step (red) or even a minimum (green). These features were faithfully predicted by the model (Fig. 4D).

Similarly, the model correctly predicts correlation \(C_{12} \) (Fig. 4, E and F) and the other correlations (6). These experiments demonstrate that the stochastic model is not only descriptive but also has predictive power and can therefore be used as a design tool for synthetic circuits.

Our results show that the noise in a gene affects expression fluctuations of its downstream genes. This transmitted noise can be calculated from the interactions between upstream and downstream genes as quantified by the logarithmic gains. Thus, it is not necessary to have low numbers of molecules to have large fluctuations, because noise could be transmitted from upstream genes. We show that the noise has a correlated global component that is modulated by the network. Thus, even in a network where all components have low intrinsic noise, fluctuations can be substantial and the distributions of expression levels depend on the interactions between genes. Measuring the correlation between a constitutive gene and a gene embedded in a network provides a sensitive probe for correlated sources of noise. This would have been difficult to reveal by monitoring single genes (2, 4) or two copies of the same gene (3, 5). Our results highlight the importance of including stochastic effects in the study of regulatory networks. This will be necessary for understanding faithful signal propagation in natural networks (20) as well as for designing noise-tolerant synthetic circuits (21).

References and Notes

6. Materials and methods are available as supporting material on Science Online.
11. We fitted the analytical results to all means, noises, and correlations simultaneously. To test the resulting parameters (table S1), we conducted Monte Carlo simulations of the network using Gillespie’s stochastic simulation algorithm (22). The results from the Langevin model are consistent with these simulations.
15. The interaction between two genes is determined by the rate of synthesis from the downstream gene as a function of the concentration of upstream proteins \(\gamma_j \); this will be called the transfer function. Assuming that the interactions are Hill-type repression, the parameters for the transfer function \(f_j(\gamma_j) \) for the repression between genes 1 and 2 can be obtained from the two means, up to the conversion constants from fluorescence counts to protein numbers. To match the notation in previous studies (16), we define the logarithmic gain corresponding to genes \(i \) and \(j \) as \(H_{ij} = -\gamma_j \ln(\gamma_j) \), where \(\gamma_j \) is the decay rate of gene \(j \) and the overbar denotes the steady state average. The global and plasmid noise are characterized by the parameters \(\eta_i \) and \(\eta_{ir} \) respectively (6). Subscripts 0 to 3 correspond to genes lacI, cfp, yfp, and rfp (Fig. 1A): \(\eta_{int} \) denotes the intrinsic noise in gene \(i \). In this notation, the total noise in genes 0 to 3 is given by

\[
\eta_0 = \eta_{int} + \eta_{ir}^2 \\
\eta_1 = \eta_{int} + \frac{1}{2} \gamma_2 H_{21} \eta_2 + \eta_{ir}^2 \left(1 + \frac{1}{2} H_{10} - H_{10} \right) + \frac{1}{2} \eta_{ir}^2 \\
\eta_2 = \eta_{int} + \frac{1}{2} \gamma_2 H_{21} \eta_1 + \frac{3}{8} \gamma_2 H_{21} \eta_{0int} + \eta_{ir}^2 \left(1 + \frac{1}{2} H_{10} + \frac{3}{8} \gamma_2 H_{21} + \frac{3}{8} \gamma_2 H_{21} + \frac{3}{8} \gamma_2 H_{21} \right) - H_{11} - \frac{3}{4} \gamma_2 H_{21} \eta_{0int} \\
\eta_3 = \frac{1}{2} H_{21} \eta_{0int} + \eta_{ir}^2 \left(1 + \frac{1}{2} \gamma_2 H_{21} - \frac{3}{4} \gamma_2 H_{21} \right) \\
\eta_{int} = \eta_{int} + \eta_{ir}^2 \frac{1}{2} \gamma_2 H_{21} \\
\eta_{ir} = \eta_{ir} \frac{1}{2} \gamma_2 H_{21}
\]

![Fig. 4](image_url)

(A and B) Experimentally determined intrinsic and extrinsic noise as a function of IPTG (3, 6). The solid lines represent predictions by the stochastic model. (A) Two copies of the lac promoter are driving CFP and YFP. (B) Two copies of the tet promoter are driving CFP and YFP. The model parameters used are those in table S1, except for the basal transcription, which was adjusted to the measured value (6). (C and E) Coefficient of variation \(\eta_2 \) and correlation \(C_{12} \) as a function of IPTG concentration in the steady state for different levels of ATC. The solid lines are guides to the eye. Each experimental data point was obtained from \(\geq 1000 \) single-cell measurements (23). (D and F) Predictions for \(\eta_2 \) and \(C_{12} \) from the Langevin model, given the parameters obtained previously (6).
The translation of cysteine codons in mRNA during protein synthesis requires cysteinyl–transfer RNA (tRNACys) in an adenosine triphosphate (ATP)–dependent reaction catalyzed by cysteinyl-tRNA synthetase (CysRS). Genes encoding CysRS, the essential enzyme that provides Cys-tRNA Cys for translation in most organisms. Partial purification of the corresponding activity from Methanocaldococcus jannaschii indicated that tRNA Cys becomes acylated with O-phosphoserine (Sep) but not with cysteine. Further analyses identified a class II–type O-phosphoseryl-tRNA synthetase (SepRS) and Sep-tRNA:Cys-synthetase (SepCysS). SepRS specifically forms Sep-tRNA Cys, which is then converted to Cys-tRNA Cys by SepCysS. Comparative genomic analyses suggest that this pathway, encoded in all organisms lacking CysRS, can also act as the sole route for cysteine biosynthesis. This was proven for Methanococcus maripaludis, where deletion of the SepRS-encoding gene resulted in cysteine auxotrophy. As the conversions of Sep-tRNA to Cys-tRNA or to selenocysteinyl-tRNA are chemically analogous, the catalytic activity of SepCysS provides a means by which both cysteine and selenocysteine may have originally been added to the genetic code.

The translation of cysteine codons in mRNA during protein synthesis requires cysteinyl-tRNA (Cys-tRNA Cys). Cys-tRNA Cys is normally synthesized from the amino acid cysteine and the corresponding tRNA isoacceptors (tRNA Cys) in an adenosine triphosphate (ATP)–dependent reaction catalyzed by cysteinyl-tRNA synthetase (CysRS). Genes encoding CysRS, cysteine, have been detected in hundreds of organisms encompassing all three living domains (1). The only exceptions are certain methanogenic archaea, the complete genome sequences of which encode no open reading frames (ORFs) with obvious homology to known cysteine sequences (1). Because of the discovery that the genomes of a number of methanogenic archaea either lack cysteine (Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, and Methanopyrus kandleri) or can dispense with it (Methanococcus maripaludis), the formation of Cys-tRNA Cys in these organisms has been a much studied and increasingly contentious topic (2, 3). A noncognate aminoacyl-tRNA synthetase [aaRS (4–6)] and a previously unassigned ORF (7) were variably implicated in Cys-tRNA Cys formation. Recent studies failed to provide conclusive support for either of these routes, leaving the mechanism of Cys-tRNA Cys formation still in doubt (2).

Previous investigations of archaeal Cys-tRNA Cys biosynthesis have been hampered by the significant levels of noncognate tRNA routinely cysteinylated and detected by conventional filter binding assays. This problem was circumvented with a more stringent assay of Cys-tRNA Cys formation: gel-electrophoretic separation of uncharged tRNA from aminoacyl-tRNA [aa-tRNA] and subsequent detection of the tRNA moieties by sequence-specific probing (8). Given that M. jannaschii is a strict anaerobe, and considering that earlier aerobic purification erroneously identified prolyl-tRNA synthetase (4, 5), we used anaerobic conditions for all procedures unless otherwise indicated. When these procedures were used to monitor acylation of total M. maripaludis tRNA by an undialyzed M. jannaschii cell-free extract (S-100), tRNA Cys was charged with an amino acid that gave rise to the same mobility shift (9) exhibited by standard M. maripaludis Cys-tRNA Cys generated by M. maripaludis CysRS (1) (Fig. 1A, lanes 7 and 8). Further optimization of the reaction at this stage showed that Zn²⁺ and ATP were also required for the successful formation of charged tRNA Cys. When the S-