
  
Short Abstract — There are a variety of methods that 

attempt to infer networks of positional correlations in proteins 
from multiple sequence data.  Recently, promising results have 
been achieved by using the q-state Potts model to describe the 
probability distribution of symbols in the sequences.   Mean-
field techniques can then be used to compute site-site couplings 
given observed site-site correlations.  We compare four mean-
field methods for protein contact prediction and find that while 
techniques beyond lowest order appear extremely promising in 
principle, the number of sequences needed to gain this 
advantage in practice is well beyond anything currently 
available in typical multiple sequence alignments.  

I. INTRODUCTION 
ITHIN an evolving protein, a complex network of 
amino acid correlations is embedded that drives 

residue substitutions at single sites.  Allosteric protein 
regulation can be achieved by conformational changes 
induced by substrate or ligand binding, which can then 
propagate to distant sites, inducing long-range spatial 
correlations [1].  In addition, long-range interactions can 
exist between charged residues [2] or may reflect other 
modes of long-range energetic coupling in the protein [3]. 

In order to infer this network of interactions from an 
alignment of related protein sequences, a variety of methods 
under the names correlated substitution analysis have been 
developed [4-7].  If one adopts a pairwise probability model 
constrained by the observed pair correlations, maximum 
entropy yields the famous Ising model for binary variables 
[8] and the q-state Potts model for discrete multistate 
variables [9,10]. In either case, one then wishes to “invert” 
the model, in which spin-spin couplings are inferred given 
observed pair correlations. These couplings can be computed 
to successively higher order using high-temperature (small-
correlation) expansions [11,12].  

II. RESULTS 
We derive four mean-field approximations to the 

couplings in the inverse q-state Potts model in order to 
compare their efficacy for correlated substitution analysis.  
The four methods are: naïve mean-field (NMF), independent 
pairs (IP), Thouless-Anderson-Palmer (TAP), and Sessak-
Monasson (SM).  Higher-order methods, particularly SM, 
perform far better than NMF in recovering known couplings 
for the q-state Potts model when the correlations are 
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computed by enumeration of the states.  Unfortunately, 
when Monte Carlo data are used to compute the pair 
correlations, this advantage evaporates unless extremely 
large numbers of Potts chains are available.  For protein 
data, this means the alignment must consist of an enormous 
number of sequences, more than will typically be available.  
We confirm these conclusions using a large set of high-
quality alignments (>1200) from the Pfam database [13]. 

III. CONCLUSION 
For analysis of evolutionary dynamics in proteins, inverse 

q-state Potts models beyond the naïve mean field 
approximation are unlikely to generate better predictions of 
cofluctuating residues.  This may not be the case for genetic 
sequences in which q is much smaller (4 vs. 21 in proteins). 
However, once reproducibility – essentially statistical 
robustness [14] – is considered it is possible that higher-
order methods may have additional advantages; this remains 
an open question. 
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