
  
Short Abstract — Simulation algorithms have become 

indispensable tools in modern quantitative biology, providing 
deep insight into many biochemical systems including gene 
regulatory networks. However, current stochastic simulation 
approaches handle the effects of fluctuating extracellular 
signals and upstream processes poorly, either failing to give 
qualitatively reliable predictions or being very inefficient 
computationally. Here, we introduce the Extrande method, a 
novel approach for simulation of bio-molecular networks 
embedded in the dynamic environment of the cell and its 
surroundings. The method is accurate and computationally 
efficient, and hence fills an important gap in the field of 
stochastic simulation. We employ it to study a bacterial 
decision-making network and demonstrate that robustness to 
fluctuations from upstream signaling places strong constraints 
on the design of networks determining cell fate. 
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YNAMIC simulation is an essential and widespread 
approach for studying models of bio-molecular 

networks in cell biology [1]. Often such models need to take 
into account biochemical stochasticity [2] as well as the 
effects of interactions with other fluctuating processes in the 
cell and/or with signals arising extracellularly [3].  

The stochastic simulation algorithm (SSA) [4] allows the 
random timing of reactions in the network model to be taken 
into account (often known as intrinsic noise). However, the 
SSA assumes constant propensities between reactions and 
cannot be used when other processes interacting with the 
network cause its propensities to fluctuate between reaction 
occurrences. Here, we introduce a new approach relaxing 
this assumption, which we call Extrande. The method allows 
stochastic simulation of a bio-molecular network of interest 
embedded in the dynamic, fluctuating environment of the 
cell and its surroundings. 

There are two existing approaches to stochastic simulation 
of reaction networks subject to dynamic, fluctuating inputs. 
The first class of algorithms [5-7] simply implements the 
SSA, under the approximation that the input remains 
constant between the occurrences of any two reactions. We 
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term these collectively the naive method. The second class 
of algorithms [8-10] involves step-wise numerical 
integration of reaction propensities until a target value for 
the integral is reached. We term these collectively the 
integral method. The naive method can yield qualitatively 
misleading predictions (even when dynamic inputs change 
relatively slowly) while the integral method can impose 
large and impractical computational burdens due to 
numerical integration of propensities. 

We demonstrate the clear advantages of Extrande in terms 
of speed and accuracy using two illustrative case studies. In 
the first case study, we study how various biological sources, 
including effects related to circadian oscillations, chromatin 
remodeling, the cell cycle, and pulsatile transcription factors, 
affect variation in gene expression levels across cells and 
over time. In the second case study, we use Extrande to 
study how fluctuations in the protein componentry of signal 
transduction networks affect downstream networks 
determining cell fate. We find that robustness to fluctuations 
from upstream signaling places strong constraints on the 
design of networks determining cell fate. 
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