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Welcome to Blacksburg, VA!

The q-bio Conference is an annual event intended to advance predictive modeling of cellular regulation. The q-bio 

community emphasizes the integration of modeling and quantitative experimentation to understand and predict 

behaviors of specific cell regulatory systems, to interpret manifestations of complex biological phenomena, and to 

elucidate general principles of cellular information processing and related biological phenomena. The single-track 

program includes invited talks from leading experimental and theoretical researchers, as well as contributed talks, 

poster presentations, and invited and contributed tutorials selected from abstract submissions.

This short printed program provides a brief overview, including the program schedule, titles of presented work, and 

a local map.  Please refer to the primary conference website for the most complete and recent information:

http://q-bio.org/wiki/The_Ninth_q-bio_Conference

Virginia Tech is proud to be the first host of the q-bio summer conference outside of its New Mexico home.  It is our 

sincerest hope to continue the q-bio tradition of excellence.  If you have questions or concerns, please contact CPE 

(Holly McClung, hmcclung@exchange.vt.edu) or any of the local organizers:

William Mather,   wmather@vt.edu

John Tyson,  tyson@vt.edu

Jianhua Xing,  xing1@pitt.edu

Yang Cao,  ycao@cs.vt.edu

Silke Hauf,  silke@vt.edu

Continuity and success of the q-bio conference has been ensured by the efforts of the Program Committee:

Jim Faeder, University of Pittsburgh, School of Medicine (Chair)

Aleksandra Walczak, Ecole Normale Superieure (co-Chair)

Rosalind Allen, University of Edinburgh

S. Gnanakaran, Los Alamos National Laboratory

Sidhartha Goyal, University of Toronto

William Hlavacek, Los Alamos National Laboratory and University of New Mexico

Yi Jiang, Georgia State University

William Mather, Virginia Tech

Ashok Prasad, Colorado State University

Orna Resnekov, Molecular Sciences Institute

David Schwab, Northwestern University

Lev Tsimring, University of California, San Diego

John Tyson, Virginia Tech

Jeroen Van Zon, AMOLF

Michael E. Wall, Los Alamos National Laboratory

Bridget Wilson, University of New Mexico

Finally, we would like to thank our corporate sponsors (Nikon and Science Signaling), our 

local sponsors (Dept. of Biological Sciences, Dept. of Physics, VBI, Fralin Institute, and 

VTCRI), and NSF (award number 1542329) for generous support.
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Program Schedule
Wednesday, August 5

Registration (12:00 - 13:30, Squires Student Center  and  18:00 - 19:00, The Inn at Virginia Tech)

Session 1: Tutorial Session (13:00 - 18:00, Squires Student Center, Various Rooms)
13:00-14:30 John Sekar, Robert Sheehan, and Jose Juan Tapia, University of Pittsburgh, Modeling Complex 

Biochemical Systems in Time and Space Using BioNetGen and MCell

13:00-14:30 William Mather, Virginia Tech, COPASI for Biochemical Network Simulation

14:45-16:15 Steven S. Andrews, Fred Hutchinson Cancer Research Center, Smoldyn: Spatial Cell Biology 
Simulation

14:45-16:15 Emek Demir, Memorial Sloan Kettering Cancer Center, Pathway Commons/BioPAX

14:45-16:15 Ilya Nemenman, Emory University, Information Theory for Cells

16:30-18:00 Michael Blinov, University of Connecticut Health Center, VCell: Spatial Modeling, Reactions, and 
Rules

16:30-18:00 Alexander L. R. Lubbock and Oscar O. Ortega, Vanderbilt University, PySB, a programming 
environment to generate algorithmic representations of biological systems

Session 2: Opening Banquet (18:30 - 20:30, The Inn at Virginia Tech)
18:30-18:35 Welcome to q-bio, Will Mather, Virginia Tech

18:35-18:45 Viva q-bio! Jim Faeder, University of Pittsburgh

18:45-18:50 q-bio Summer School Recap, Brian Munsky, Colorado State University

18:50-18:55 q-bio Special Issue, Ilya Nemenman, Emory University

18:55-19:30 Dinner

19:30-19:35 Banquet Speaker Introduction 

19:35-20:30, John Tyson, Virginia Tech, Network Dynamics and Cell Physiology

Thursday, August 6

7:30-9:00 Breakfast (on own or Dining Hall)

Registration (8:00 - 10:00, Squires Student Center)

Session 3 (9:00-12:20, Squires Student Center, Colonial Hall)
Chair: James Faeder, University of Pittsburgh

9:00-9:30 Johan Elf, Uppsala University, SMeagol Simulated Microscopy - a tool against inverse crimes

9:30-9:50 Tatiana Marquez-Lago, Okinawa Institute of Science and Technology, Cell-cycle synchronized 
oscillations of a negatively self-regulated gene in E. coli



9:50-10:20 Hang Lu, Georgia Tech, Automation and Microfluidic Tools for Q-Bio

10:20-10:50 Coffee Break

10:50-11:10 Poster Spotlights 1

Deborah Striegel, NIH, Morphology of Pancreatic Islet Cytoarchitecture with Type 2 Diabetes

Jae Kyoung Kim, Ohio State, Determining the validity of Hill functions in stochastic simulations

Ryan Nikin-Beers, Virginia Tech, The role of antibody in dengue viral infection

Ji Hyun Bak, Princeton, Characterizing the statistical properties of protein surfaces

11:10-11:40 Oskar Hallatschek, UC Berkeley, Microbes Under Pressure

11:40-12:00 Lily Chylek, Cornell, IgE receptor signaling encodes dynamic memories of antigen exposure

12:00-12:20 Ryan Suderman, University of Kansas, The Noise is the Signal: Information Flow in Single Cells 
and Cellular Populations

12:20-14:30 Lunch (Dining Hall)

Session 4 (14:30-17:30, Squires Student Center, Colonial Hall)
Chair: William Mather, Virginia Tech

14:30-15:00 Alejandro Colman-Lerner, University of Buenos Aires, Use of information far from steady-state by 
signal transduction systems.

15:00-15:20 Thomas Ouldridge, Imperial College, On the connection between computational and biochemi-
cal measurement

15:20-15:40 Jeremy Purvis, UNC-Chapel Hill, Single-cell dynamics reflect underlying signaling mechanisms

15:40-16:10 Coffee Break

16:10-16:30 Poster Spotlights 2

Abed Alnaif, UC Irvine, Pattern formation and morphogen gradients: A causality dilemma

Rory Donovan, University of Pittsburgh, Enhanced Sampling in Spatial Stochastic Systems Biology 
Models Using a Weighted Ensemble of Trajectories

Mark Transtrum, BYU, Effective models of emergent behavior from the manifold boundary approximation 
method

Vipul Periwal, NIH, The Universality of Cancer

16:30-16:50 Vernita Gordon, UT-Austin, The bacterial population’s spatial structure non-monotonically 
impacts bacterial growth

16:50-17:10 Nicholas C. Butzin, Virginia Tech, Entrainment of synthetic gene oscillators by a noisy stimulus

17:10-17:30 Arolyn Conwill, MIT, Seasonality gives rise to population oscillations in a bacterial cross-protec-
tion mutualism

17:30-19:00 Dinner (on own)



Session 5 (19:00-20:00, Squires Student Center, Colonial Hall)
19:00-19:30 Sudhakaran Prabakaran, Science Signaling, How to Get Published in a Science Journal
19:30-20:00 Craig Giroux, NIH, Update on NIH Peer Review and Research Initiatives for Quantitative Biolo-

gists

Session 6 (20:00-23:00, Poster Session 1, Squires Student Center, Commonwealth Ballroom)
20:00-23:00 Poster Session 1 (snacks and drinks served)

Friday, August 7

7:30-9:00 Breakfast (on own or Dining Hall)

Session 7 (9:00-12:20, Squires Student Center, Colonial Hall)
Chair: Yi Jiang, Georgia State
9:00-9:30 Arup Chakraborty, MIT, How to hit HIV where it hurts
9:30-9:50 Robin Lee, University of Pittsburgh, Cell fate decisions in response to a short pulse of TNF
9:50-10:20 John Hancock, UT Health Center, Ras nanoclusters: lipid-based assemblies for signal processing

10:20-10:50 Coffee Break

10:50-11:10 Poster Spotlights 3
Philip Hochendoner, Virginia Tech, Queueing Entrainment – Downstream control of a synthetic oscillator
Sargis Karapetyan, Duke, Redox rhythms reinforce the plant circadian clock: New insights into coupled 
biological oscillators
Xiuxiu He, Georgia State, How Adhesion Regulates Cell Migration Plasticity: A Computational Study
David Wooten, Vanderbilt, Transcription factor network supports phenotypic heterogeneity in cancer

11:10-11:40 Tamar Schlick, NYU, Simulating Large-Scale Chromatin Fibers
11:40-12:00 Allison Lopatkin, Duke, Microbial growth dynamics are the primary contributor to observed 

increase in resistance exchange following antibiotic treatment
12:00-12:20 Xiling Shen, Cornell, MicroRNA and protein cell fate determinants synergize in asymmetric 

division as safeguard against stem cell proliferation

12:20-14:30 Lunch

Session 8 (14:30-17:20, Squires Student Center, Colonial Hall)
Chair: Orna Resnekov, Molecular Sciences Institute
14:30-15:00 Martin Howard, John Innes Center, How to control the size of a fission yeast cell
15:00-15:20 Robert Sheehan, University of Pittsburgh, Novel positive feedback loop sets antigen dose-de-

pendent threshold for T cell differentiation
15:20-15:40 Megan McClean, University of Wisconsin, Robust network structure of the Sln1-Ypd1-Ssk1 



three-component phosphorelay prevents unintended activation of the HOG MAPK pathway in Saccharo-

myces cerevisiae

15:40-16:10 Coffee Break

16:10-16:30 Poster Spotlights 4

Byoungkoo Lee, Georgia State, Cancer cell invasion analysis in ECM using in vitro models

Xiao-jun Tian, University of Pittsburgh, Molecular Cooperativity Leads to Monoallelic Olfactory Receptor 

Expression

Faisal Reza, Yale, Modeling Genomic Recombination Potentials Regulated by Synthetic Donor DNA and 

Triplex-forming Molecules

Fei Li, Virginia Tech, Stochastic Model of the Histidine Kinase Switch in the Caulobacter Cell Cycle

16:30-17:00 Zhaoping Li, UCL/Tsinghua, A theory of the primary visual cortex, its zero-parameter quantitative 

prediction, and its experimental tests

17:00-17:20 Xiao Wang, Arizona State, Quorum-sensing crosstalk driven synthetic circuits: from unimodality 

to trimodality

17:20-19:00 Dinner (on own)

Session 9 (19:00-20:00, Squires Student Center, Colonial Hall)
19:00-20:00 Special session, Paul Cohen, DARPA, Machines that Assemble Signaling Pathways by Reading 

the Literature: Progress in DARPA's Big Mechanism Program

Session 10 (20:00-23:00, Poster Session 2, Squires Student Center, Commonwealth Ballroom)
20:00-23:00 Poster Session 2 (snacks and drinks served)

Saturday, August 8

7:30-9:00 Breakfast (on own or Dining Hall)

Session 11 (9:00-12:30, Squires Student Center, Colonial Hall)
Chair: Yang Cao, Virginia Tech

9:00-9:30 Karsten Weis, ETH, Global Changes In Chromosome Conformation In Budding Yeast In Different 

Physiological Conditions

9:30-9:50 Ilya Nemenman, Emory, Sensing Multiple Ligands with a Single Receptor

9:50-10:10 Eric Batchelor, NCI, Functional Roles of p53 Dynamics in Regulating Target Gene Expression

10:10-10:30 David Bruce Borenstein, Princeton, Established microbial colonies can survive Type VI secretion 

assault

10:30-11:00 Coffee Break

11:00-11:30 Linda Broadbelt, Northwestern, Discovery and Analysis of Novel Biochemical Transformations

11:30-11:50 Rhys Adams, ENS, Measuring the sequence-affinity landscape of antibodies



11:50-12:10 Heungwon Park, Duke, A synthetic oscillator couples to the cell division cycle in budding yeast

12:10-12:30 David Fange, Uppsala, Growth rate variations establish distributions of generation times and 
division sizes in E. coli

12:30-14:30 Lunch

Session 12 (14:30-18:00, Squires Student Center, Colonial Hall)
Chair: John Tyson, Virginia Tech

14:30-15:00 Carla Finkielstein, Virginia Tech, A systems-driven experimental approach reveals the complex 
regulatory distribution of p53 by circadian factors

15:00-15:20 Daniel Lewis, UC Davis, Unraveling dynamics of reconfigurable network motifs using a synthetic 
biology approach

15:20-15:40 Alan L. Hutchison, University of Chicago, Stochastic modeling of variability in circadian rhythms 
utilizing measured variance

15:40-16:00 Ertugrul Ozbudak, Albert Einstein, Stochasticity and the Mechanism of Precision in the Verte-
brate Segmentation Clock

16:00-16:30 Coffee Break

16:30-17:00 Jeff Hasty, UCSD, Engineered Gene Circuits: From Clocks and Biopixels to Stealth Delivery

17:00-17:20 Neil Adames, Virginia Tech, Testing predictions of a new model for the budding yeast START 
transition using novel cell cycle mutants

17:20-17:40 Andre Leier, Okinawa Institute of Science and Technology, Hierarchical membrane compart-
mentalization stabilizes IFN receptor dynamics

17:40-18:00 Erel Levine, Harvard, Coordinated heat-shock response in C. elegans

Session 13: Closing Banquet (18:30-20:45, The Inn at Virginia Tech)
18:30-18:35 Acknowledgments, Will Mather, Virginia Tech

18:35-18:40 Closing remarks

18:40-18:45 Long live q-bio!, Jim Faeder, University of Pittsburgh

18:45-18:50 Introduction of q-bio 2016

18:30-19:45 Dinner

19:45-19:50 Banquet Speaker Introduction

19:50-20:45 Phil Nelson, University of Pennsylvania, Old and new news about single-photon sensitivity in 
human vision



1. Deborah A Striegel (spotlight), Laboratory of Biological 
Modeling, NIDDK, NIH, Morphology of Pancreatic Islet 
Cytoarchitecture with Type 2 Diabetes

2. Jae Kyoung Kim (spotlight), Mathematical Biosciences 
Institute, The Ohio State Univ., Determining the validity of 
Hill functions in stochastic simulations

3. Ryan Nikin-Beers (spotlight), Department of Mathematics, 
Virginia Tech, The role of antibody in dengue viral infection

4. Ji Hyun Bak (spotlight), Princeton University, Characteriz-
ing the statistical properties of protein surfaces

5. Abed Alnaif (spotlight), University of California, Irvine, 
Pattern formation and morphogen gradients: A causality 
dilemma

6. Rory Donovan (spotlight), CMU-Pitt Ph.D. Program in 
Computational Biology, Enhanced Sampling in Spatial 
Stochastic Systems Biology Models Using a Weighted 
Ensemble of Trajectories

7. Mark Transtrum (spotlight), Brigham Young University, 
Effective models of emergent behavior from the manifold 
boundary approximation method

8. Vipul Periwal (spotlight), LBM, NIDDK, NIH, The Univer-
sality of Cancer

9. Steve Andrews, Fred Hutchinson Cancer Research 
Center, A Model of Lipid A Biosynthesis in E. coli

10. Jeanette Baran-Gale, University of North Carolina at 
Chapel Hill, Dynamics of estrogen stimulated regulatory 
networks in breast cancer

11. Madeleine Bonsma, University of Toronto, Building bacte-
ria-phage interaction networks using the CRISPR locus

12. Anthony Burnetti, Duke University, The yeast metabolic 
cycle is coupled to cell division cycle Start across diverse 
strains

13. Minghan Chen, Computer Science Department, Virginia 
Tech, Two-dimensional Modeling on PopZ Bipolarization 
in Caulobacter Cell Cycle

14. Matthias Chung, Virginia Tech, Optimal Experimental 
Design for Biological Systems

15. Nicola Coker Gordon, Oxford University, Regulation of T 
Cell Receptor Phosphorylation

16. Jayajit Das, Battelle Center for Mathematical Medicine, 
the Research Institute at the Nationwide Children's Hospi-
tal and the Ohio State University, Restricted energy dissi-
pation induces glass-like kinetics in high precision 
responses

17. Andrey Dovzhenok, University of Cincinnati, Comprehen-
sive Modeling and Validation of Glucose and Temperature 
Compensation of the Neurospora Circadian Clock

18. Cemal Erdem, University of Pittsburgh, Characterization 
of differences in IGF1 and insulin induced proteomic 
signaling cascades

19. Chad Glen, Georgia Institute of Technology, Dynamic 
Intercellular Communication within Pluripotency Networks

20. Emine Guven, West Virginia University, Toward a Predic-
tive Model of Spontaneous Clustering of VEGF Receptors
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signals from the transcription factor MarA to downstream 
genes

45. Warren Ruder, Virginia Tech, Simulating Emergent Behav-
ior in Host-Microbiome Systems using Robots and 
Synthetic Biology

46. John Sekar, University of Pittsburgh, Visualizing Regula-
tion in Rule-based Models

47. Rati Sharma, Johns Hopkins University, Directional Accu-
racy in a Model of Gradient Signaling during Yeast Mating

48. Christopher Short, West Virginia University, VEGF binding 
with high affinity domains

49. Emrah Simsek, Emory University, Phenotypic heteroge-
neity of nutrient-starved E. coli cells

50. Edward Stites, Washington University in St. Louis, Analy-
sis of Ras as a tumor suppressor

51. Bradford Taylor, Georgia Institute of Technology, Frequen-
cy of multiply infecting bacteriophage in natural environ-
ments exposed by spatial models

52. Xiao-jun Tian, University of Pittsburgh, Ultrasensitivity and 
Bistability arising from miRNA-mRNA Reciprocal Interac-
tion

53. Lior Vered, Department of Chemistry, University of North 
Carolina - Chapel Hill, Bistability and Hysteresis in the 
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Pheromone Response Pathway
54. Margaritis Voliotis, University of Bristol, Stochastic Simu-

lation of Biomolecular Networks in Dynamic Environments
55. Qiuyue Wang, Peking University, Using NF-κB modules 

and DNA elements to engineer combinatorial and dynamic 
gene regulation

56. Andrew White, Brigham Young University, The limitations 
of model-based experimental design in sloppy systems

57. Martin Wong, University of Sydney, Mathematical Model-
ling Reveals Missing Mechanism in AKT Activation

58. Peipei Yin, Peking University, Quantitative Analysis on 
Mitochondrial Apoptosis Pathway

59. Ruoshi Yuan, Shanghai Center for Systems Biomedicine 
Shanghai Jiao Tong University, Construction of Potential 
Landscape Uncovers Robust Dynamical Structure in 
Prostate Carcinogenesis

60. Jingyu Zhang, University of Pittsburgh, Crosstalk among 
TGF-β, Hedgehog and Wnt signaling pathway during EMT

61. Charles Zhao, Georgia Institute of Technology, Examining 
Genetic Background and Synaptic Morphology with 
Heterozygotes
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Network Dynamic and Cell Physiology  
John J. Tyson 

THE PHYSIOLOGICAL capabilities of a living cell (metabolism, reproduction, signaling, motility, etc.) are 

controlled by complex networks of interacting biochemicals (genes, RNAs, proteins and metabolites). Although 

intuitive reasoning about these networks may be sufficient to guide the next experiment, detailed computational 

models are required to codify the results of hundreds of observations, and a sophisticated theoretical framework 

is necessary to understand the “molecular logic” of the rich dynamical repertoire of cellular control systems. 

Over the past 40 years, in collaboration with splendid colleagues such as Art Winfree, Albert Goldbeter, Jim 

Keener, Bela Novak and Kathy Chen, I have been developing methods to predict the dynamical properties of 

biochemical networks and relate these properties to the life-sustaining behaviors of cells. 

Department of Biological Sciences,  
Virginia Polytechnic Institute & State University,  

Blacksburg, VA 



SMeagol Simulated Microscopy - a tool 
against inverse crimes 

 
Martin Lindén, Johan Elf 

 
 

 
INGLE MOLECULE tracking in living cells using fluorescence microscopy is a powerful method 
to study otherwise inaccessible aspects of intracellular kinetics. The development of accurate 

analysis methods for such data is however limited by the lack of ground truth reference data. I 
will present a computational tool that extends the capability of reaction diffusion simulation 
softwares to make physics based simulation of single molecule tracking experiments in living 
cells.  Stochastic reaction diffusion models makes it possible to account for the influence of 
geometry, randomness and diffusion limitations in intracellular kinetics. In addition the new tool 
makes it possible to consider the photo-physics of the labeled molecules, the optics of the 
microscopy system and electronic properties of the camera. In combination this allows for 
optimization of experimental parameters and to testing and improving the data analysis methods. 
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Short Abstract — Robust, tailored behaviours such as genetic 

oscillations have been successfully implemented in prokaryotic 
and eukaryotic organisms. However, periodic processes such as 
gene doubling and cell division are rarely accounted for. 
Accordingly, we studied a chromosome-integrated, negative-
feedback circuit based upon the bacteriophage λ 
transcriptional repressor Cro and observed strong, feedback-
dependent oscillations in single-cell time traces [1]. This finding 
was surprising due to a lack of cooperativity, long delays or fast 
protein degradation [2]. Moreover, we found feedback-
dependent oscillations to be synchronized to the cell cycle by 
gene duplication, with phase shifts predictably correlating with 
estimated gene doubling times. 
 

Keywords — Oscillations, self-regulation, gene-doubling, 
timelapse imaging, λ lysis/lysogeny, synthetic biology, stochastic 
modelling. 

I. BACKGROUND 
 

DVANCED applications in synthetic biology require 
the design of genetic networks that are both predictable 
and robust. However, many critical aspects of cell and 

molecular biology are still poorly characterized and, as a 
consequence, engineering even simple genetic circuits 
remains challenging. This is further accentuated by the 
requirement that synthetic circuits must reliably operate 
within noisy and heterogeneous environments. In fact, 
identical challenges apply to developing predictive models 
of natural biological systems. Thus, among many uses, 
simple circuits can be studied to refine complex gene-
regulation models, providing powerful insights into natural 
organisms. 
 

There are surprisingly few studies of negative feedback 
networks with the single-cell, time-lapse resolution required 
to study gene expression dynamics. Some recent studies 
show how repressor-binding strength impacts protein 
expression, and others how negative feedback increases the 
bandwidth of expression noise [4]. Notably, oscillations in 
Lac repressor expression have been attributed to reaction 
delays combined with fast repressor degradation [5]. 
However, all known experiments utilized genetic constructs 
with multiple high-affinity binding sites and, in some cases, 
additional degrees of cooperativity in autoregulation. 
 

 
1 Integrative Systems Biology Unit, Okinawa Institute of Science and 

Technology, Onna-son, Okinawa, Japan. Email: tatiana.marquez@oist.jp 
 

II. METHODS 
 

To facilitate comparison with recent theoretical and 
stochastic simulation results, we sought to create a simpler 
circuit in which the bacteriophage λ transcriptional repressor 
Cro represses its own expression. We then tracked and 
analysed single-cell expression dynamics over several hours 
for tens of individual microcolonies.  

 
Timelapse imaging revealed oscillations in Cro expression 

that were in phase with the cell cycle, while strong 
oscillations did not occur in the absence of negative 
feedback. The circuit was then integrated at different 
genomic loci to shift the gene doubling time; this produced 
phase shifts with Cro expression peaks tending to lag 
estimated doubling times by ~20 minutes. Consistent with 
our theoretical predictions and simulations [2-3], as well as 
previous experiments, negative feedback increased the 
coefficient of variation and reduced the Fano factor. Aside, 
the size and resolution of our single-cell data sets made it 
possible to calculate the power spectral density of Cro 
expression time series, which showed that negative feedback 
increased the noise bandwidth of Cro expression. 

 

III. CONCLUSION 
Our results suggest that accurate models of bacteriophage 

λ lysis/lysogeny must necessarily include cell-cycle 
dependence and genome-location effects, and suggest a 
molecular and evolutionary basis for biases in chromosome 
integration sites of lamboid prophages. Moreover, these 
factors should also be accounted for in the rational design of 
chromosome-integrated synthetic genetic networks, 
especially in light of the recent development of simplified 
recombineering techniques. 
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N this talk, I will focus on how my lab develops and uses a set of automation, microfluidics, and image-based 
data mining technologies to address questions in quantitative biology. In one example, I will show how we 

take advantage of simple hydrodynamics to design microfluidic systems for large throughput and spatially and 
temporally well-controlled experiments in embryonic development as well as in immunology. In another 
example, I will show how we combine the power of experimental tools and computational tools to study 
problems in development neurobiology and behavior in intact animals.  The power of these engineered systems 
lies in that the throughput that can be achieved by using automation and microfluidics is 100-1,000 times that of 
conventional methods, and furthermore, we can obtain information unattainable or at least not easily attainable 
by conventional tools.  For example, quantitative analysis and unbiased image data mining allowed the 
discovery of phenotypes (and subsequently genes) that are difficult for human users.  
 
 

 
  

Automation and Microfluidic Tools for Q Bio 
Hang Lu 

I 

Georgia Institute of Technology 
311 Ferst Dr. NW 

Atlanta, GA 30332-0100 
 



� 
Short Abstract — Blood glucose levels are maintained by 

hormones secreted by endocrine cells in pancreatic islets of 
Langerhans.  Cell-cell contacts between these cells regulate the 
oscillatory production of insulin and glucagon. Thus 
appropriate cellular arrangement is necessary for normal 
function.  Graph theory provides a framework for quantifying 
cytoarchitectural features. Here, using large-scale imaging data 
for  ~15,000 islets containing 100,000+ cells in human organ 
donor pancreata, we show that quantitative graph 
characteristics differ between control and type 2 diabetic islets. 
We then modeled islet rearrangement to determine processes 
that leave observed islet graph measures invariant, and 
compared these processes between normal and T2D islets.  
 

Keywords — diabetes, pancreatic islets, cytoarchitecture, 
graphs, β cells 

I. PURPOSE 
ANCREATIC islet cells play a major role in blood 
glucose homeostasis by secreting a number of hormones: 
glucagon by α cells, insulin by β cells, and somatostatin 

by δ cells. For normal insulin secretion, these endocrine cells 
need functional patterns of cell-cell contacts [1]. Defining 
the correct anatomical arrangement is difficult since normal 
cellular architecture varies among species and, in humans, 
varies by size of the islet [2]. Recent studies showed that α-
cell locations observed in human islets are not random, but 
instead create a characteristic structure [2].  β-cell mass is 
dynamic due to cell reorganization, death, and replication, in 
individual islets. Type 2 diabetes (T2D) is characterized by 
lack of glucose homeostasis and β-cell mass loss [3].  The 
T2D morphological and physiological changes should have a 
marked effect on this characteristic structure.  Here, we 
capture the cellular arrangement of each islet by utilizing a 
graph, use measures from graph theory to quantify islet 
architecture and changes observed with T2D, and study the 
effects of β cell reorganization on these graphs.  

II.  METHODS 
Data from high resolution large-scale automated imaging of 
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islets in human organ donor pancreas sections [2] was used 
to first compute graphs consisting of α, β, and/or δ cells as 
nodes and cell-cell contacts as edges for each individual 
islet.  This allowed for a comprehensive capture of their 
characteristic structure.  The graphs were quantified using 
measures, such as mean degree (the mean number of edges 
per node) and components.  We examined architectural 
changes under different rearrangement processes. We 
numerically modeled stochastic processes simulating cellular 
reorganization to find degree- and component-specific 
parameter combinations that leave the quantitative graph-
theoretical measures of islet cytoarchitecture invariant. We 
then compared the parameter combinations that leave normal 
islet architecture invariant to those associated with T2D 
islets. 

III.  RESULTS 
We found that T2D islets have a higher mean degree than 
control islets. Furthermore, large control islets have more 
components but fewer cells per component than large T2D 
islets. To maintain an equilibrium population, we found that 
cells with a large degree and respective component size are 
removed independent of the placement of newly added cells.  
Furthermore, if cells are added preferentially to large degree 
cells then the degree and component-size for removing a cell 
is increased to maintain equilibrium. 

IV.  CONCLUSIONS 
Cell-cell interaction graphs give a new quantitative 
perspective on islet endocrine cell interactions in the 
pathophysiology of T2D, and may allow for a better 
understanding of the changes in islet architecture that 
accompany diabetes. We speculate that the higher mean 
degree of T2D islets is due to the increase in demand for 
insulin secretion in T2D that can only be met by β cells that 
have a higher mean degree compared to control. This may 
result in the death of less connected β cells and the 
elimination of components that have lower than average 
degree. Large degree cell loss may maintain optimal contact 
with capillaries for oxygen uptake and glucose sensing.  
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The non-elementary reaction functions (e.g. 

Michaelis-Menten or Hill functions) are used to reduce the 
model of biochemical network. Such deterministic reductions 
are frequently a basis for heuristic stochastic models in which 
non-elementary reaction functions are used as propensities of 
Gillespie algorithm. Despite their popularity, it remains unclear 
when such stochastic reductions are valid. Here, we first 
identify the validity condition for using non-elementary 
reaction functions for the stochastic simulations. This provides 
a simple and computationally inexpensive way to test the 
accuracy of reduced stochastic model.  
 
Keywords – multi-scale stochastic system, stochastic 

simulation, Hill-function, Michaelis-Menten function 

I. INTRODUCTION 
IOCHEMICAL systems are often regulated by processes 
that evolve on widely differing timescales. Simulating 

the fastest of these processes is computationally expensive 
and often not of direct interest. Thus, to replace the fast 
processes, non-elementary reaction functions (e.g. the 
Michaelis-Menten or Hill function) have been used. This 
approach is simple, computationally inexpensive, and has 
been used widely in both deterministic and stochastic 
simulations [1-3].  
While the deterministic reductions have been theoretically 
justified [4], it is not clear when their stochastic counterparts 
will be accurate. Many previous modeling results rely on the 
assumption that the results of stochastic simulations can be 
accepted if their deterministic counterparts are valid. 
However, a number of recent examples show that this is not 
necessarily the case [5-7]. 
In this study [8], we show that the validity of these 
approximations is closely related, but in a more subtle way 
than previously assumed. This insight provides a simple and 
concrete method for testing the validity of using 
non-elementary functions for the propensity functions in 
stochastic simulations. 
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II. RESULTS 
We find that discrepancies between the stochastic and the 

deterministic reduction stem from the fact that, due to the 
random fluctuations, the stochastic system explores a wider 
range of states than its deterministic counterpart. Our 
analysis and simulations show that the stochastic reduction 
is accurate only when the corresponding deterministic 
reduction is accurate over a range that covers the most likely 
states of the stochastic system.  

This finding implies that, for testing the validity of 
stochastic reduction, it is sufficient to examine the validity 
of deterministic reduction post facto -- after the 
corresponding stochastic simulations of the reduced model 
reveal the range of status that need to be tested. 

III. CONCLUSION 
Our work first develops a simple and general method to test 
the validity of stochastic models that include non-elementary 
propensity functions. If the validity condition is satisfied, we 
can perform accurate and computationally inexpensive 
stochastic simulation without converting the non-elementary 
functions to the elementary functions (e.g. mass action 
kinetics). Considering the popularity of Michaelis-Menten or 
Hill functions in various biological models, our results will 
provide a useful tool to a large modeling community.  
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Short Abstract — Dengue virus has four distinct serotypes 

whose cross-reactive immune responses contribute to 
increased disease severity following heterologous infections. 
Since cross-reactive antibodies may play a role in disease 
enhancement, we develop a mathematical model of host-virus 
interaction and predict the mechanisms responsible for virus 
expansion and loss during primary and secondary dengue 
infections. We use the model to determine the role of cross-
reactive antibodies during dengue fever and dengue 
hemorrhagic fever-inducing secondary infections, and 
compare the model to patient data. We predict that the cross-
reactive antibodies interfere with the non-neutralizing 
antibody effects by reducing the phagocyte-mediated removal 
of antibody-virus immune complexes. 

I. BACKGROUND 
N recent years, dengue viral infection has become one of 
the most widely-spread mosquito-borne diseases in the 

world, with an estimated 50-100 million cases annually, 
resulting in 500,000 hospitalizations [1]. Dengue viruses 
(DENV) cause mild dengue fever (DF) and severe dengue 
hemorrhagic fever (DHF). Dengue virus has four distinct 
serotypes, DENV 1-4, whose cross-reactive immune 
responses contribute to increased disease severity 
following heterologous infections. One current hypothesis 
postulates that cross-reactive antibodies are responsible for 
the enhancement of the infection, in a mechanism known 
as “antibody-dependent enhancement” (ADE) [1,2]. When 
a patient is first infected with one dengue strain, the host 
produces neutralizing antibodies specific to that strain. 
After the primary infection is eliminated, long-lived 
antibody-producing plasma cells specific to the first strain 
persist in the body. When infection with a second dengue 
serotype occurs, antibodies from the primary infection bind 
the second virus but do not neutralize it. Instead, 
phagocytes recruited to clear the virus antibody immune 
complexes internalize non-neutralized virus and become 
infected in the process [1,2]. The result is higher levels of 
viremia, which in turn is associated with more severe 
infection [3].    

II. RESULTS 
We first model both the neutralizing and non-

neutralizing antibody effects in dengue primary infection. 
Due to observed host-virus characteristics such as high 
level viremia followed by virus clearance and delayed 
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antibody responses which become detectable after virus 
resolution [4], we are able to determine unknown 
parameters in our model. We find that the neutralizing rate 
has the strongest effect on viral reduction in primary 
infection. 

We next develop a model for secondary infection of a 
heterologous serotype, taking into account that both strain-
specific and cross-reactive antibodies are produced during 
secondary dengue infection [5]. We then fit the model to 
published patient data [6] in order to determine the role of 
the cross-reactive antibodies in both secondary DF and 
secondary DHF. We find that if the neutralizing rate of the 
antibody in secondary infection is enhanced as described 
in ADE, the model gives results which contradict clinical 
reports [4,6]. However, we are able to fit the known 
biological data when the cross-reactive antibody results in 
the decrease of the overall heterologous virus clearance. 
This suggests that the non-neutralizing antibody effects 
have more of a role in explaining the difference between 
secondary DF and secondary DHF. One biological 
explanation for this result may be that by binding 
heterologous virus, cross-reactive antibodies render it 
unavailable for binding and subsequent removal by strain-
specific antibodies.   

III. CONCLUSION 
We developed mathematical models of antibody 

response (including both neutralizing and non-neutralizing 
effects) to model both primary dengue infection and 
secondary dengue infection. In primary dengue infection, 
the neutralizing antibody effect was shown to have the 
strongest effect on viral reduction. In secondary dengue 
infection, the difference between mild and severe disease 
can be attributed to the non-neutralizing antibody effect. 
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Characterizing the statistical properties
of protein surfaces
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Short Abstract — In order to ensure the accuracy as well as the
specificity of biological signaling, it is crucial that proteins recog-
nize their correct interaction partners. An important ingredient
of recognition is shape complementarity. Not only does shape
complementarity allow the short-ranged chemical attractions to
be at work, but it also provides additional degrees of freedom
in the space of interactions. Here we aim to characterize the
statistical properties of the ensemble of protein surface shapes.
Specifically, we evaluate the intrinsic dimensionality of the space
of protein surfaces, and show how it is related to the characteristic
length scale of the surfaces.

Keywords — protein-protein interaction, specificity, shape com-
plementarity, space of protein surfaces

I. INTRODUCTION

PROTEINS and their interactions form the body of the
signaling transduction pathways in many living systems.

In order to ensure the accuracy as well as the specificity of
signaling, it is crucial that proteins recognize their correct
interaction partners. How difficult, then, is it for a protein to
discriminate its correct interaction partner(s) from the possibly
large set of other proteins it may encounter in the cell?

An important ingredient of recognition is shape complemen-
tarity. While there has been much attention to the determinants
of protein-protein recognition [1], most efforts were directed
to the role of chemical compositions, and we are still a
long way from a system-level understanding of the role of
shape. In fact, shape complementarity is a prerequisite for
the recognition process, because of the short-ranged nature
of chemical interactions.

The ensemble of protein shapes should be constrained by
the need for maintaining functional interactions while avoiding
spurious ones. There must be enough degrees of freedom
to accommodate the whole proteome while maintaining the
specificity of interactions, while too many effective degrees
of freedom would make the recognition problem difficult.
To address this aspect of protein recognition, we start by
investigating the dimensionality of the space of protein shapes.

II. METHODS

We consider the ensemble of proteins in terms of their three-
dimensional shapes, more precisely in terms of their solvent-
excluded surfaces. We take into account all complete high-
resolution X-ray crystalized structures from E. coli non-DNA-
binding cytoplasmic proteins that can be retrieved from the
Protein Data Bank, resulting in a database of 397 proteins.

——————
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In order to measure the intrinsic dimension of the dataset,
we apply a statistics that was first developed in chaotic theory,
called the correlation dimension [2], to the high-dimensional
space where each point corresponds to a shape object. The
space of surfaces is the set of geodesic-disk patches with a
fixed surface area, sampled from the protein surfaces in the
dataset. The space of curves is the set of geodesic curves with
a fixed length, also sampled from the surfaces.

III. RESULTS

The dimension D2 of the space of surface patches turns out
to be high, about D2 = 30 for patches with area 1000 Å2,
typical size of reported interfaces [3]. However, it is known
that the effect of systematic error in calculating the correlation
dimension of a finite dataset aggravates as the true dimension
increases [4]. On the other hand, if we consider the dimension
D1 of the space of geodesic curves sampled from the surfaces,
generically we can expect the dimensions to scale as D2 ⇠
(D1)2. Our statistics can therefore be more reliable with this
lower dimensional dataset.

We find that D1 grows with the length of the curves, and
that there is a clear transition between two regimes of growth:
there is an initial steep growth, followed by a less steep and
linear growth regime at larger curve lengths. We argue that
this pattern of growth can be explained by a single length
scale, which corresponds to the characteristic scale of the
protein surface (that can actually be measured). Beyond the
characteristic scale, there is roughly one extra dimension per
characteristic scale, representing an extra degree of freedom;
below this scale the steep growth reflects the smaller-scale
“noisy” features, such as the roughness of the surface at the
atomic scale. We test this idea by generating synthetic curves
characterized by a single correlation length and calculating the
dimensionality of the generated dataset.

Taking this argument further, we also discuss how these
results may be connected back to the question of interaction
specificity through a simple model with harmonic interactions,
where each surface is modeled as a set of independent points.
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hen cells grow in crowded environments, such as biofilms, organs or tumors, they need to push their 
surroundings to accommodate space for new cells. The magnitude of the resulting mechanical forces and 
their bio-physical consequences have remained difficult to study using common in vitro techniques that 

lack mechanical control. Using a novel microfluidic chemostat, we show that populations of budding yeast can 
develop highly fluctuating mechanical pressures in the MPa range when they are growing in leaky cavities. The 
growth-induced compressive stresses strongly modify the shape and dynamic arrangement of the cells and slow 
down their growth rates, correlated with a cell cycle arrest in the G1 phase. By using the cell shape deformation 
as an indication for locally acting mechanical stresses, we show that dense cell packings are mechanically 
stabilized by heterogenous force networks with ‘force-chains’ spanning numerous cells. These force networks 
are interrupted and reformed by sudden collective rearrangement events with a broad distribution of magnitudes 
that allow cells to flow out of the leaky cavity. These features strikingly resemble those of driven granular 
materials and can be reproduced in overdamped simulations of proliferating soft particles. In both experiments 
and simulations, cell-cell cohesion strongly promotes jamming-induced clogging of confined spaces. The self-
driven jamming and build-up of significant mechanical pressures could thus be a natural tendency of microbes 
growing in confined spaces, and possibly contribute to microbial pathogenesis, biofilm formation, and 
biofouling. 
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Short Abstract — Mast cells drive allergic reactions in 

response to allergen-mediated crosslinking of the high-affinity 
IgE receptor. The relationship between patterns of allergen 
exposure and cellular responses is unclear. To investigate this 
issue, we used a microfluidics platform to expose cells to pulses 
of stimulatory multivalent antigen interrupted by intervals of 
inhibitory, excess monovalent antigen. We measured secretion 
of inflammatory mediators. Results were analyzed with the aid 
of a mathematical model. The secretory response to a repeated 
antigen pulse was diminished when the inhibitory interval was 
<1 hr, which we were able to attribute to a desensitization 
process involving the lipid phosphatase Ship1. After an interval 
of ~1 hr, response to repeated stimulation became similar to the 
initial response. Hyperactive responses were then observed for 
longer intervals of up to 4 hrs, suggesting that Ship1 is slowly 
deactivated after termination of signaling and eventually (on an 
even slower time scale) becomes refractory to (re)activation. 
Hyperactivity is linked to proteosomal degradation of a Ship1 
co-factor, the adaptor protein Shc1.  
 

Keywords — cell signaling, microfluidics, modeling 

I. INTRODUCTION 
LLERGIES afflict ~25% of people in the developed 
world. Central players in allergic reactions include mast 

cells and basophils, which release histamine and other 
mediators of inflammation upon allergen interaction with 
cell-surface IgE-FcεRI complexes. Aggregation of FcεRI 
leads to activation of several kinases, including the protein 
tyrosine kinase Syk. Like most receptor-initiated signaling 
cascades, signaling by FcεRI is held in check by 
desensitization processes. The dynamic interplay between 
these positive and negative signaling axes likely govern how 
a cell responds to complex inputs.  

Study of cellular outputs in response to complex inputs 
has been accelerated by the advent of microfluidics devices, 
which allow for precise manipulation of fluids at small 
length scales from micrometers to millimeters. These new 
and distinctive capabilities enable the study of fundamental 
cellular behaviors, including cellular information processing 
and decision-making. Microfluidics facilitates controlled 
exposure profiles to single cells including pulsatile, ramp, 
square-wave and oscillatory signals. In this work, we used a 
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microfluidic platform to examine desensitization linked to 
pulsed stimulation of FcεRI. This work represents an 
investigation of the system’s frequency response properties. 

II. RESULTS 

A. Short- and long-term molecular memory 

Two surprising phenomena were observed in experiments: 
rapid desensitization, or short-term molecular memory, 
and hypersensitization after a delay, or long-term 
molecular memory. A model reproducing the observed 
responses to pulsed stimulation and capturing (fast) 
positive signaling by Syk and (slow) negative signaling by 
Ship1 was developed and used to guide investigation of 
short- and long-term memory. Enzyme activity assays 
confirmed that Syk signals decay quickly, whereas Ship1 
signals decay slowly, after IgE-FcεRI aggregate breakup is 
induced by excess monovalent antigen. 

B. Ship1 and the proteasome regulate memory 
The model, as initially formulated, predicted that inhibition 

of Ship1 phosphatase activity would abrogate short-term 
memory, whereas inhibition of Ship1 degradation would 
abrogate long-term memory. The former prediction was 
confirmed experimentally but not the latter. Although 
proteosome inhibition eliminated long-term memory, Ship1 
levels stayed constant over time. The model was able to 
explain the available observations when it was modified to 
include a Ship1 co-factor that is degraded in response to 
multivalent antigen inputs. 

C. Shc1 plays a role in delayed hypersensitivity 
We hypothesized that the Ship1 co-factor in the model 

might correspond to one of the several known Ship1 binding 
partners, such as Shc1. The model predicted that co-factor 
knockdown would result in accelerated hyperdegranulation. 
This prediction was confirmed experimentally in cells with 
reduced levels of Shc1 after siRNA treatment. 

III. CONCLUSION 
We leveraged a microfluidic platform enabling precisely 

controlled complex waveform inputs and mathematical 
modeling to elucidate how signaling processes operating on 
distinct time scales (quickly induced and rapidly reversed 
Syk activation, slowly induced and slowly reversed Ship1 
activation, and very slow decay of the Ship1 co-factor Shc1) 
can give rise to short- and long-term molecular memories of 
antigen exposure.  

IgE receptor signaling encodes dynamic 
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Short Abstract — Intracellular signaling networks 

controlling critical cell-fate decisions (e.g. apoptosis) have 
been shown to exhibit exceedingly high levels of noise, 
preventing the reliable transmission of information.  Our 
results reveal that this poor information transfer in 
individual cells is required to increase the information 
available to cellular populations, so that a single extracellular 
stimulus can induce graded behavior among an isogenic 
population of cells.  We also show that responses relevant to 
individual cells (e.g. chemotaxis) exhibit more reliable 
information transfer.  Thus, noisy signaling is not necessarily 
a consequence of some inherent physical limitation.  Our 
work provides an explanation for the observed high levels of 
noise prevalent in certain metazoan signaling networks, and 
how noise might be exploited by evolution.  
 

Keywords — Information Theory, Cellular Heterogeneity 

I. INTRODUCTION 
IGNALING networks allow cells to make fate-altering 
decisions based on changing environmental factors.  

Apoptosis and commitment to cell division are typical 
binary responses to a signal, whereas chemotaxis and gene 
expression are examples of continuously variable 
responses.  Traditionally, increasing the information 
available to the cell via these signaling networks has been 
viewed as beneficial, spurring investigation of the 
reliability of dose-response behavior given certain network 
motifs (1).  However, the observed heterogeneity among 
certain isogenic cellular populations confounds this 
perspective and has become an object of considerable 
interest in recent years (2).  Recently, the application of 
information theory to intracellular signaling has provided a 
means to quantify the impact of variability (3).   
 Levchenko and coworkers employed this strategy to 
characterize maximum information transduction (i.e. the 
channel capacity) in the TNF-α signaling network and 
found that the network transferred less than 1 bit of 
information from the extracellular stimulus to the   
transcription factor, NF-κB (4).  Due to stochasticity in 
gene expression, the channel capacity between stimulus 
and phenotypic response is likely even lower.   
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II. RESULTS 
To explore information transfer in the context of a 

system with a clear phenotypic output (i.e. cell death), we 
examined the channel capacity of extrinsic apoptosis 
signaling (5).   Measuring individual cells’ intracellular 
response to signal resulted in low channel capacities (<0.4 
bits), however, if population-level response (fraction dead) 
is considered, the channel capacity increases dramatically 
(>3 bits, dependent on population size).  Using a simple 
theoretical model, we showed that an increase in 
population-level channel capacity generally involves a 
corresponding decrease in channel capacity in single cells.   

One possible explanation of these findings is that noise 
in individual cells arises from some kind of biophysical 
limit on information transfer, and organisms might simply 
take advantage of that limit to control cellular populations.  
To test this possibility, we considered two cases where the 
response of individual cells is paramount: eukaryotic 
chemotaxis and mating in yeast cells.  In each case, we 
found single-cell channel capacities much higher than 
those previously observed (>2 bits).   This implies that 
signaling networks are capable of transmitting relatively 
high levels of information despite the inherently stochastic 
nature of biochemical signaling.   

III. CONCLUSION 
Our findings strongly suggest that the low channel 

capacities previously observed at a single cell level does 
not reflect an inherent physical limit, but rather a natural 
trade off between information transfer at the single cell vs. 
population levels.  This implies that the level of noise in 
individual signaling networks and cells can be regulated to 
produce reliable information at the level of individuals or 
populations, depending on the phenotypic requirements of 
the organism.  Ultimately, our work provides a framework 
for understanding the high levels of noise observed in a 
wide variety of growth factor signaling networks in 
metazoan cells (2, 5). 
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e present a mechanism that enables signaling systems to discriminate between different levels of 
extracellular signals that saturate receptors at equilibrium. This mechanism, which we called PRESS, for 

Pre Equilibrium Sensing and Signaling, operates when the kinetics of ligand receptor binding is slower than a 
transient downstream signaling step. This dynamic coupling between slow receptor binding and fast 
downstream transduction enables sensing systems to use information about the initial rate of receptor 
occupation, which is proportional to ligand concentration, even at concentrations that yield almost complete and 
practically indistinguishable levels of occupied receptors. We provide experimental and modeling evidence that 
PRESS is involved in the directional budding of yeast cells in gradients of mating pheromone. We further show 
by mathematical modeling that PRES is not limited to plasma membrane receptor signaling: it can also operate 
at other levels, such as cycles of phosphorylation and dephosphorylation, provided that a slow activation step 
couples to a faster downstream step. 

PRESS expands and shifts the dynamic range of sensing systems, allowing cells to generate distinct responses 
to ligands or signaling components concentrations so high that cannot be distinguished by the levels of binding 
site occupation at steady-state. Published kinetic data for receptor ligand interactions in mammalian systems 
suggests that PRESS operates in many cell-signaling systems throughout biology. 
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Short Abstract — Cells use readout molecules to record the 

state of cell-surface receptors, apparently analogously to 
computational measurements. But at what level does this 
analogy hold? Do living cells operate at the thermodynamic 
limits of efficiency? We consider a canonical biochemical 
network for receptor readout and map it onto a typical 
idealized computational measurement protocol. The 
biochemical network does not achieve thermodynamic limits of 
efficiency, facing a tradeoff between dissipation and accuracy of 
measurement that is more severe than and qualitatively distinct 
from that required thermodynamically.  Biomolecules can, 
however, perform optimal measurements when the 
concentrations of ATP and ADP are externally manipulated.  
 

Keywords — Cellular sensing, computation, biochemical 
networks, non-equilibrium thermodynamics. 

I. INTRODUCTION 
rom the literature on computation developed in the 20th 
century, and particularly in the wake of Maxwell's 
demon, much is known about the thermodynamics of 

taking a measurement or copying a system's state into a 
memory device. If it were possible to perform many 
measurements using a single bit of memory without putting 
in work, Maxwell's demon would be able to violate the 
second law of thermodynamics. It has been argued, however, 
that this is impossible, and the necessity of work in the 
measurement cycle has been demonstrated in a range of 
physical models [1-3]. The Landauer bound of kTln2 sets the 
minimum amount of work that is required to perform a copy 
if it is perfectly accurate and has a 50/50 outcome [1,3]. 
 At least superficially, many biological processes appear to 
perform computational copies [1]. Perhaps the most 
tantalising analogy is in the context of cellular sensing of 
external ligand concentrations. In 1977, Berg and Purcell 
suggested remarkable accuracy can be achieved in spite of 
the noisy signal from a single receptor by averaging the 
receptor signal over time [4]. It has since been argued that 
downstream signaling networks can achieve this by taking 
multiple measurements of the same receptor, essentially 
copying the receptor's state into memory [5-7]. Currently, 
however, the analogy between computational and biological 
systems is qualitative, rather than quantitative. How efficient 
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are biological networks at performing copies, and can they 
reach the Landauer bound? Can the action of biological 
networks be understood in terms of typical idealised 
computational protocols?  
 In this work we formally describe a steady-state receptor-
readout network as a process that performs copies at a 
certain rate and with a certain accuracy. We relate the 
network directly to typical idealized protocols from the 
computational literature, highlighting the limitations placed 
on the biochemical network. We find that the biochemical 
network does not reach the limits of thermodynamic 
efficiency, with a cost per copy that diverges logarithmically 
as the system approaches 100% accuracy. This deviation is 
qualitative as well as quantitative, and optimal behaviour 
cannot be achieved simply by reducing copying speed. The 
biochemical network, however, is more adaptive than 
standard thermodynamically optimal protocols. Biased 
measurement outcomes (i.e., not 50:50) have a lower 
minimal cost per measurement [3], but achieving this limit 
requires a distinct ideal protocol for each bias. By contrast, 
the biochemical network automatically adapts to dissipate 
less when the measurement outcome is biased. 

Fundamentally, the biochemical network has a constant 
thermodynamic drive set by the free energy stored in fuel 
molecules such as ATP, whereas optimally efficient 
computational protocols involve quasistatic manipulation of 
biasing potentials. We conclude by demonstrating that this 
difference can be overcome through exogeneous 
manipulation of ATP and ADP concentrations. This 
approach enables the design of biochemical protocols that 
reach the optimal Landauer bound. Our proposed system 
suggests a novel setting for the experimental investigation of 
non-equilibrium and computational thermodynamics. 
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Short Abstract — Individual cells show differences in their 

signaling dynamics that can lead to alternate cellular fates. We 
exploited this phenomenon by developing a computer algorithm 
that searches for a common signaling mechanism that can 
explain the individual responses of each cell in a population. 
With no prior knowledge of the pathway, the algorithm 
successfully identified network motifs that were consistent with 
known pathway architectures. Predictions became better as 
more cells were added to the analysis, while random pairing of 
single-cell measurements responses led to poorer network 
predictions. Out results show that averaged measurements 
obscure mechanistic information that is naturally embedded in 
single-cell dynamics. 
 

Keywords — cell signaling, single-cell dynamics, network 
inference. 

I. BACKGROUND 
ELLS use molecular signaling networks to respond to 
complex and changing environmental cues [1,2]. The 

components of signaling networks are often organized into 
specialized structures, or motifs, that allow the network to 
carry out a specific signal-processing goal [3,4]. For 
example, a network may contain strong negative feedback 
that allows it to adapt to different levels of an input signal. 
Understanding the functional roles of different network 
motifs is a major goal of systems biology because it provides 
a mechanistic description of how cellular systems work. 

A major advance in our understanding of cell signaling 
has come from the ability to visualize signaling events in 
single, living cells. A collective observation from single-cell 
studies is that individual cells show considerable 
heterogeneity in their dynamic responses—even when 
exposed to the same stimulus. This observation suggests an 
exciting but untested possibility: if differences between 
individual cells have predictable effects on downstream 
responses, then it is possible that all cells share a common 
signaling mechanism that consistently interprets each cell’s 
unique signaling dynamics. We reasoned that it may be 
possible to infer this mechanism given enough examples of 
the signaling response among individual cells. 
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II. RESULTS 
We first considered how a single decoding mechanism 

could convert a set of varying input signals, representing 
individual cells, to a corresponding set of output signals. We 
chose a simple input signal representing a step function 
corresponding to a 2-fold increase. We then simulated this 
input signal in individual cells by allows the step function to 
vary in its delay, amplitude, and noise. For simpler network 
architectures, instantaneous measurements of input signal 
correlated well with the output signal. However, for more 
complicated signaling mechanisms, slices through time 
showed no correlation between input and output signal. 

We next asked whether a common decoding mechanism 
could be inferred from single-cell traces with no prior 
knowledge of the system. To do this, we developed an 
algorithm, Mechanism Inference from Single Cells (MISC), 
which analyzes pairs of input and output signals among 
individual cells to infer a common signaling mechanism that 
produced them. An implicit feature of MISC is the ability to 
exploit heterogeneous time-series data by detecting 
mechanistic relationships between input and output signals. 
When applied to single-cell data describing the yeast stress 
response, we identified a small subset of networks that 
explained, in mechanistic terms, how these upstream signals 
may be integrated to produce the downstream responses. 
Network predictions became better as more cells were added 
to the analysis, providing a benchmark for the number of 
single cells needed to describe the underlying network. 

III. CONCLUSIONS 
Here, we show that single-cell measurements contain 

information that constrains the prediction of signaling 
mechanisms. Our results also demonstrate that more than 
one network may achieve the same functional goal but that 
the correct network is robust to topological perturbations. 
Thus, single-cell dynamics contains information that reflects 
underlying signaling mechanisms.  
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Short Abstract — The development of multicellular organisms 
depends on pattern formation – the spatial organization of cell 
types. This, in turn, depends on the ability of cells to acquire 
positional information. A longstanding paradigm for the 
establishment of positional information in tissues is through the 
concentration gradients of "morphogens". Our studies of the 
Drosophila wing suggest that patterns feed back onto the shape 
of the morphogen gradients that produce them. This suggests a 
degree of self-organization in morphogen-dependent pattern 
formation that departs from the common view that patterns are 
formed strictly "downstream" of morphogens. 
 

Keywords — pattern formation, morphogen gradients, Dpp,  

I. BACKGROUND 
ORPHOGENS are signaling factors that are secreted 
from specific regions of a developing tissue, and 

whose decreasing concentrations over space provide 
positional information to cells; i.e., a cell can use the local 
concentration of a morphogen in order to determine its 
distance from the morphogen’s source.  

The shape of a morphogen concentration gradient is 
important in determining how positional information is 
communicated in a tissue, as well as how that information is 
affected by perturbations. The concentration gradient of a 
morphogen that experiences no consumption, except at a 
boundary far from its source, will be linear. Such “source-
sink” gradients have desirable adaptive properties (e.g., 
automatic scaling in differently sized tissues), and were 
originally proposed to underlie pattern formation [1]. 
However, it is now known that most morphogens are 
consumed throughout the tissues in which they diffuse, 
usually through receptor-mediated endocytosis (via the same 
cell-surface receptors used to sense morphogen 
concentration). A morphogen experiencing uniform 
consumption will exhibit a decaying exponential gradient, 
the steepness of which can be described by a constant decay 
length (which depends on the consumption rate and 
diffusivity of the morphogen). 

II. RESULTS 
One of the best-understood morphogen gradient systems is 
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the Decapentaplegic (Dpp; an orthologue of the vertebrate 
BMP2/4) gradient that patterns the wing primordium (wing 
disc) of the fruit fly Drosophila melanogaster (reviewed in 
[2]). Many studies have shown that the overall shape of the 
Dpp gradient is well-fit by a decaying exponential.  Our 
measurements support this view broadly, but when we 
examine sub-regions of the gradient more carefully, we 
conclude that the gradient's shape is closer to linear up to the 
boundary of a specific pattern element, the location where 
the Dpp target gene Spalt switches from being on to off (this 
boundary is important in determining the placement of adult 
wing veins [2]). This conclusion is supported by the presence 
of reproducible trends in the residuals from exponential fits 
across many wing discs.  From solutions to reaction diffusion 
equations with spatially varying decay lengths, we know that 
a necessary and sufficient condition for the observed trends 
in fitting-residuals is for the morphogen gradient to have a 
long (intrinsic) decay length proximal to the pattern 
boundary, and a short one distal to it (this would make this 
distal region act as a “sink” for the proximal region, thus 
causing the gradient to fall linearly in the proximal region). 
By “intrinsic” decay length, here, we mean the decay length 
that would be observed without any distal “sink”.   

The possibility that Spalt itself is responsible for the 
change in decay length at the Spalt boundary is supported by 
the observation that the Dpp gradient is much steeper in 
Spalt-mutant wing discs. One possible explanation for these 
results is that Spalt downregulates the expression of Dpp’s 
cell-surface receptor, a phenomenon we confirm using clonal 
loss-of-function experiments.   

III. CONCLUSIONS 
Although many feedback loops have been identified in 
morphogen gradient systems, this is, to our knowledge, the 
first example where what has been identified as a 
downstream pattern element feeds back onto the shape of a 
morphogen gradient. This suggests that morphogen gradients 
do not just passively provide positional information, that 
their shapes may be modified by patterns in the course of 
pattern formation.    
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Short Abstract — We demonstrate that the weighted 

ensemble (WE) sampling strategy, initially developed for 
molecular simulations, can be effectively employed for spatial 
cell-scale simulations.  Here, we use WE to orchestrate kinetic 
Monte Carlo simulations of the MCell platform, which include 
spatial geometry (e.g. organelles, membranes) and biochemical 
interactions among mobile molecular species.  We study a 
series of models exhibiting spatial, temporal, and biochemical 
complexity and show that WE can achieve performance 
significantly exceeding standard parallel simulation by orders 
of magnitude for measuring certain observables. 
 

Keywords — Stochastic Dynamics, Monte Carlo, Signaling 
Networks, Enhanced Sampling, Weighted Ensemble. 

I. INTRODUCTION 
TOCHASTIC effects are of crucial importance in many 
biological processes, from protein dynamics, to gene 

expression, to population-level phenotypic heterogeneity 
[1,2]. Unfortunately, due to the high computational cost of 
simulating complex stochastic systems, the effects of 
stochasticity on system response remain under-studied in 
complex, realistic biological models. 

Spatial models of stochastic reaction-diffusion processes 
have found widespread use as tools in understanding the 
mechanics of biological processes on the cellular level and 
beyond [3]. Regrettably, exhaustively simulating large, 
realistic models and extracting well-sampled values of 
experimentally relevant quantities is often beyond the 
current realm of computational feasibility. 

Enhanced sampling algorithms offer an attractive 
resolution to the dilemma of sampling complex systems: 
instead of compromising on model complexity in order to 
achieve well sampled results, rather use one's simulation 
resources more effectively and extract more information 
given the same resources. There has been significant interest 
in sampling algorithms in the field of protein simulation; 
arguably, such approaches have transformed the field of 
molecular simulation [4].  
 

1Joint CMU-Pitt Ph.D. Program in Computational Biology 
2Department of Computational and Systems Biology, School of 

Medicine, University of Pittsburgh 
3Department of Computational Biology, School of Computer Science,  

Carnegie Mellon University 
4Pittsburgh Supercomputing Center 
E-mail: donovanr@pitt.edu 

II. RESULTS 
Here, we demonstrate a method to drastically decrease the 

cost of simulating spatial models of stochastic cellular 
systems, by applying the weighted ensemble sampling 
procedure [5]. The WE approach runs an ensemble of 
parallel trajectories and uses a statistical strategy of 
replicating and pruning trajectories to focus computational 
effort on difficult-to-sample regions, which it uses to 
generate unbiased estimates of non-equilibrium and 
equilibrium observables. 

We present initial results for a toy diffusive binding 
system, as well as two more complex systems: a cross-
compartmental signal transduction model in a realistic 
cellular geometry, and a model of an active zone in a frog 
neuromuscular junction. We demonstrate speedups of many 
orders of magnitude in sampling these models of cellular 
behavior with spatial dependence.  

III. CONCLUSION 
We are able to sample the rare events and full probability 

distributions for stochastic systems biology models over a 
wide range of complexity. We demonstrate speed-ups over 
brute-force sampling that are dramatic enough to encourage 
the design of more complex, more realistic models. Long 
time-scale behavior can be extrapolated from short 
simulations, providing a bridge between dynamics over 
multiple time-scales. Weighted ensemble is an ideal 
approach to employ in addressing the issue of difficult-to-
sample stochastic systems, and we anticipate further 
applications to more realistic systems. 
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Understanding the collective behavior (e.g, signaling or gene 

regulation) of complex biological systems in terms of their 
fundamental components (e.g., proteins, genes, reaction rates), 
is a fundamental problem in systems biology.  While a coarse, 
macroscopic model can describe system level behavior it often 
comes at the cost of a microscopic, causal explanation for that 
behavior.  Connecting the microscopic to the macroscopic 
descriptions is particularly important for predicting the 
outcome of new experiments that directly manipulate the 
microscopic components.  We present a new model reduction 
method called the Manifold Boundary Approximation Method 
(MBAM) that derives simple macroscopic models of collective 
behavior directly from a microscopic description.  The result is 
an effective model of the system that retains the causal 
explanation in terms of the microscopic components.  We 
illustrate the method with three systems: EGFR signaling, Wnt 
signaling, and a fully connected network of Michaelis-Menten 
reactions fit to adaptation behavior.  The resulting models have 
only a few parameters that are statistically identifiable from 
experimental data (i.e., not sloppy), dramatically highlight the 
effective control mechanisms, and remain expressed in terms of 
the microscopic components.  

 
ODELS of complex biological phenomena, are often 
built by combining several microscopic elements 

together. This constructionist approach to modeling is a 
powerful tool, finding widespread use in many fields. 
Nevertheless, it is not without its pitfalls, most of which arise 
as models grow in scale and complexity. Overly complex 
models can be problematic if they are computationally 
expensive, numerically unstable, or difficult to fit to data [1]. 
These problems, however, are only manifestations of a more 
fundamental issue. Specifically, although reductionism 
implies that the system behavior ultimately derives from the 
same fundamental laws as its basic components, this does not 
imply that the collective behavior can easily be understood in 
terms of these laws [2]. The collective behavior of the 
system is typically compressed into a few key parameter 
combinations while most other combinations remain 
irrelevant [3]. 
 The Manifold Boundary Approximation Method (MBAM) 
has recently been proposed as a general purpose 
approximation method for connecting microscopic models 
with macroscopic theories in complex systems [4].  It is 
particularly promising for understanding complex biological 
systems because it identifies the combinations of 
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microscopic components, i.e., those components that are 
directly manipulated by experiment or evolution, that control 
a particular collective behavior. 

The idea behind the method is that a model can be 
interpreted as a manifold of predictions embedded in data 
space.  It has been observed that complex models with many 
parameters often exhibit a low-effective dimensionality: all 
but a few of the dimensions of this manifold are very thin 
[1].  The MBAM operates by approximating this long, 
narrow manifold by its boundary.  Boundaries are identified 
using computational differential geometry.  Geodesics 
(analogs of straight lines) are constructed numerically along 
the least-important parameter combination (identified by the 
eigenvalues of the Fisher Information Matrix).  From the 
geodesic, a limiting approximation is identified that can be 
analytically evaluated in the functional form of the model. 

We illustrate the method with three examples from 
systems biology: a model of EGFR signaling [5], Wnt 
signaling [6], and a fully-connected network of Michaelis-
Menten reactions fit to adaptation data [7].  In each case, the 
MBAM identifies a simple effective model of the complex 
system.  Through the sequence of limiting approximations, 
the parameters of the effective model are identified with 
nonlinear combinations of parameters in the original model.  
By connecting the macroscopic and microscopic descriptions 
in this way, the MBAM characterizes the equivalence class 
of microscopic systems that are statistically indistinguishable 
from their collective behavior and predicts which 
microscopic control knobs govern the system behavior. 
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Short Abstract — Cancer is a constellation of diseases differing in 
underlying mutations and on cellular environments. The stochastic 
process of carcinogenesis has been studied for sixty years, but there 
is no accepted model. We show that the hazard rates of all cancers 
are  characterized by a simple dynamic stochastic process on a half-
line, with a universal linear restoring force balancing a universal 
simple Brownian motion starting from a universal initial 
distribution. Only a critical radius defining the transition from 
normal to tumorigenic genomes distinguishes between different 
cancer types when time is measured in cell-cycle units. 
Reparametrizing to chronological time units introduces two 
additional parameters: the onset of cellular senescence with age and 
the time interval over which senescence takes place. Thus, there 
may exist a finite separation between normal cells and tumorigenic 
cells in all tissue types that may be a viable target for both early 
detection and preventive therapy. 

Keywords — cancer, DNA replication, DNA damage, DNA 
repair, senescence 

I. PURPOSE 
ANCER is part of life for multi-cellular organisms 
when individual fitness in propagation overcomes the 
checks and balances required for collective fitness. It is 

a multifaceted disease where the phenotypic similarities of 
tumor progression are a veneer over a multitude of possible 
underlying genetic alterations[1]. 75-80 % of all cancers are 
sporadic. As an organism ages, the accumulation of 
mutations increases the likelihood of alteration in an 
oncogene or in a tumor suppressor gene, which in turn can 
lead to an accumulation of mutations and other alterations 
allowing for unchecked proliferation. The process of 
carcinogenesis has been modeled for over 60 years[2]. 
Tomasetti and Vogelstein[3] showed that the lifetime risk of 
cancers of many different types is correlated with the total 
number of divisions of the normal self-renewing cells 
maintaining each tissue's homeostasis. Thus most cancer is 
due to random mutations arising during DNA replication in 
normal, noncancerous stem cells. This motivates the 
existence of a simple universal quantitative physical model 
for this stochastic process of tumorigenesis. We posited that 
DNA replication could be described by a continuous 
diffusive process on a mean mutational distance, or error, 
coordinate from an initial genome. Following the Ornstein-
Uhlenback process[4], we hypothesized that DNA 
replication error correction could be modeled by the simplest 
possible restoring force, just Hooke's law with a universal 
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spring constant in this coordinate. 

II.  METHODS 
Harding, Pompei and Wilson[2] have analyzed the 
Surveillance, Epidemiology and End Results (SEER, 
specifically SEER 9) cancer registries to compile age-
specific incidence rates, with particular care accorded to the 
data on the very elderly (ages > 80 years). [2] suggested that 
tissue and cellular senescence are the likely biology 
mechanisms for the observed drop off in cancer incidence in 
the very elderly.  These incidence rate curves provide a test 
for our model. We defined cancer incidence as the likelihood 
that the diffusing DNA has moved beyond a cancer-type 
independent critical threshold radius, R, in this coordinate, 
with the cancer incidence rate defined as the derivative of 
this likelihood. As the number of replicating stem cells 
differs from tissue to tissue[3], we explicitly set the 
maximum value of the incidence rate to the maximum value 
of the incidence rate of the data for each cancer type[2]. 

III.  RESULTS 
We could fit the age-specific incidence rates for all cancers 
with our models. The best model selected by the Bayes 
Information Criterion has a width of the initial distribution 
about 0.16 for all tissues in units where the equilibrium 
Ornstein-Uhlenbeck distribution has width 1.  

IV.  CONCLUSIONS 
The space of mutational histories has a natural diffusion 
away from the initial starting distribution. The rate of 
moving beyond a relatively sharp tissue-specific threshold is 
the incidence rate for all cancers. An interval between 
normal cells and tumors that could serve as a target for early 
detection, and a relatively sharp demarcation between 
tumors and normal cells, are concrete predictions of our 
model of tumorigenesis. Combining cancer mutation data 
and epidemiology to find an appropriately weighted cell-
type specific mutational burden that could serve as the 
tissue-specific error coordinate would be of great value. 
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Short Abstract — In most natural settings, most bacteria are 

found in spatially-structured, pluralistic communities.  The 
spatial structure of these communities governs interactions 
within and between species, and with the environment.  Here, 
we present two cases in which cooperative and competitive 
inter-bacterial interactions impact growth fitness.  (1) The per-
cell likelihood of growth for antibiotic-resistant mutants in an 
antibiotic environment depends non-monotonically on the 
density of the surrounding, antibiotic-susceptible wild-type 
cells.  (2) The relative growth fitness of large, multicellular 
aggregates, compared with single cells, depends on the density 
of competition, which is set by the concentration of single cells. 
 

Keywords — Pseudomonas aeruginosa, cooperation, 
competition, antibiotic, aminoglycoside, spatial structure, 
growth substrate, modeling, Poisson distribution. 

I. SPATIAL STRUCTURE IN BACTERIAL POPULATIONS 
Most microbial communities consist of interacting, 

multispecies populations with inter- and intra-species 
interactions governed by the spatial structure of the 
microbial population and the environment. Recent work has 
shown that heterogeneity in the spatial distribution of 
antibiotic in the environment can accelerate the evolution of 
genetically-based antibiotic resistance [1,2]. Here, we 
examine the impact of ecological changes resulting from the 
spatial distribution of the microbial population on the 
growth of genotypic antibiotic resistance.  

Biofilms are three-dimensional, sessile communities that 
promote phenotypic antibiotic resistance and differentiated 
patterns of gene expression and growth [3].  Differentiation 
is often linked to the positioning of cells in the biofilm 
structure, which helps control resource transport.  Three-
dimensional, multicellular aggregates can slough off to seed 
new biofilms, yet their role in seeding new biofilms is 
unknown.  

Here, we examine how the spatial structure of the 
microbial population impacts growth fitness as the result of 
ecological interactions of bacteria with their environment.  
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Our primary model organism is Pseudomonas aeruginosa, 
an opportunistic human pathogen that notoriously forms 
biofilm infections.   

II. GROWTH OF ANTIBIOTIC-RESISTANT MUTANTS 
In the presence of aminoglycoside antibiotic, we find that 

the per-cell likelihood of growth for antibiotic-resistant 
mutants depends non-monotonically on the overall cell 
density, which is primarily antibiotic-susceptible, wild-type 
(WT) bacteria.  Two effects compete:  mutants are inhibited 
by an alkaline, diffusible catabolic by-product, and protected 
when the local concentration of WT cells is sufficiently high 
to reduce the per-cell concentration of antibiotic+inhibitory 
factor below an effective threshold.  We use the Poisson 
distribution to describe local fluctuations in cell density as a 
function of overall cell density and show that the resulting 
model describes our experimental data well [4]. 

III. RELATIVE FITNESS OF BIOFILM STRUCTURES 
When the overall cell density, and therefore the 

competition for growth resources, is low, we experimentally 
find that single cells have a growth advantage over 
multicellular aggregates.  However, when competition is 
high, multicellular aggregates have a growth advantage over 
single cells.  Agent-based modeling shows that cells in the 
aggregate interior have restricted access to growth substrate 
and therefore produce fewer progeny than do exterior cells.  
When competition is low, single cells have unfettered access 
to growth substrate and therefore have an overall growth 
advantage over the aggregate.  However, when competition 
is high, the height of multicellular aggregates gives cells at 
the top better access to growth substrate, so that aggregates 
are at an overall growth advantage [5]. 
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Short Abstract —We investigate experimentally and 

theoretically the entrainment of an ensemble of synthetic gene 
oscillators by a noisy stimulus. Stochastic simulations suggested 
that a synthetic gene oscillator would be strongly entrained by 
two aperiodic signals: telegraph noise and phase noise. This 
simulation-based prediction was tested by a combination of 
microfluidic and microscopy using a real synthetic circuit in 
Escherichia coli. We use delayed feedback models to analyze 
these cells. We show that cells are entrained by two noisy 
signals: telegraph and phase noise. Cells are entrained when 
either signal period or amplitudes are varied.    

 
Keywords — Entrainment, oscillators, synthetic and systems 

biology, aperiodic and periodic noise. 

I. PURPOSE 

Most organisms (bacteria to humans) regulate processes 
using molecular clocks to synchronize their physiology and 
behavior to stimuli from their environment [1]. When 
individual components that oscillate on their own (self-
sustaining) are forced to synchronize to an outside signal 
(matching their period and phase to the external signal) they 
are said to be entrained (the signal is independent of the 
oscillator). The rhythm of gene expression can be entrained 
where by the expression of the gene correlates with an 
environmental signal e.g. our natural circadian rhythm 
oscillator is entrained to a 24 hour period by the daily cycle 
of sunlight and darkness [1,2]. Periodic signals have been 
intensively studied in this regard, but most natural signals 
contain a strong aperiodic (noisy) component, and it has 
been long known that aperiodic signals can entrain systems 
to common a behavior, e.g. in the stimulation of independent 
neurons [3], or even in the random forcing of material 
particles [4]. Synchronized cells may produce an amplified 
response by activating in unison. Entrainment of neurons by 
aperiodic signal is well documented [3,5,6]; however, we 
failed to identify other biological examples in the literature 
with experimental support. This is likely due to the difficulty 
in doing such experiments and the underestimation of the 
importance of this phenomenon in the biological community.     

A synthetic biology approach has already proven useful in 
understanding the entrainment of oscillators by periodic 
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signaling [7,8], which can mimic the response of a number of 
noisy oscillating systems: cell cycles [9], and NFkB response 
[10], for example. We used stochastic simulations to predict 
that a synthetic gene oscillator would be strongly entrained 
by two aperiodic signals: telegraph noise and phase noise. 
We tested our in silico prediction with in vivo experiments 
using the model organism Escherichia coli and showed that 
cells can be entrained by such signals. Oscillator entrainment 
via aperiodic signaling has been well documented and 
simulated in physics journals [11-13], but this phenomenon 
has rarely been studied in living cells. It is likely that 
oscillator entrainment of cells via aperiodic signaling 
happens all the time. Many natural signals contain a strong 
aperiodic component, but it is difficult to study this in a 
natural ecosystem (biofilm, eukaryotic cells, etc.). Here we 
demonstrate that an aperiodic signal can drive entrain a 
synthetic oscillator; however, this work may have broader 
impact on future studies of other organisms and natural 
ecology’s.  
 

II. References 

 
[1] Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin 

PE, et al. (2005) Circadian rhythms from multiple oscillators: 
lessons from diverse organisms. Nat Rev Genet 6: 544-556. 

[2] Roenneberg T, Merrow M (2007) Entrainment of the human 
circadian clock. Cold Spring Harb Symp Quant Biol 72: 293-299. 

[3] Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in 
neocortical neurons. Science 268: 1503-1506. 

[4] Wilkinson M, Mehlig B, Gustavsson K, Werner E (2012) 
Clustering of exponentially separating trajectories. The European 
Physical Journal B 85: 1-5. 

[5] Read HL, Siegel RM (1996) The origins of aperiodicities in 
sensory neuron entrainment. Neuroscience 75: 301-314. 

[6] Mori T, Kai S (2002) Noise-Induced Entrainment and Stochastic 
Resonance in Human Brain Waves. Phys Rev Lett 88: 218101. 

[7] Mondragon-Palomino O, Danino T, Selimkhanov J, Tsimring L, 
Hasty J (2011) Entrainment of a population of synthetic genetic 
oscillators. Science 333: 1315-1319. 

[8] Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, et 
al. (2008) A fast, robust and tunable synthetic gene oscillator. 
Nature 456: 516-519. 

[9] Stamatakis M, Mantzaris NV (2010) Intrinsic noise and division 
cycle effects on an abstract biological oscillator. Chaos: An 
Interdisciplinary Journal of Nonlinear Science 20: -. 

[10] Gangstad SW, Feldager CW, Juul J, Trusina A (2013) Noisy 
transcription factor NF-kappaB oscillations stabilize and sensitize 
cytokine signaling in space. Phys Rev E Stat Nonlin Soft Matter 
Phys 87: 022702. 

[11] Jensen RV (2002) Synchronization of driven nonlinear oscillators. 
American Journal of Physics 70: 607-619. 

[12] Pikovsky AS, Kurths J (1997) Coherence Resonance in a Noise-
Driven Excitable System. Phys Rev Lett 78: 775-778. 

[13] Teramae J-n, Tanaka D (2004) Robustness of the Noise-Induced 
Phase Synchronization in a General Class of Limit Cycle 
Oscillators. Phys Rev Lett 93: 204103. 

Entrainment of synthetic gene oscillators by 
a noisy stimulus   

Nicholas C. Butzin1, Philip L. Hochendoner1, Curtis T. Ogle1, Paul Hill1, William Mather1,2 



  
Short Abstract — Cooperative behavior plays a vital role in 

ecological communities and, when reciprocal, can result in 
mutualistic relationships. Here, we use an experimental 
microbial system to study the dynamics of a cross-protection 
mutualism in which two bacterial strains cooperate to survive 
in a multidrug environment. When subject to seasonal 
antibiotic dosing, the populations of the two mutualistic 
partners exhibit strong limit-cycle oscillations, even when there 
is long-term coexistence above the concentrations at which the 
individual strains can survive on their own. Our results provide 
insight into the ecological stability of mutualisms and the 
evolution of cooperative antibiotic resistance. 
 

Keywords — mutualism, seasonality, antibiotic resistance, 
oscillations, evolutionary dynamics, model system 

I. PURPOSE 
mutualism arises between two species when each 
increases the fitness of its partner. Since mutualistic 

interactions between species are thought to be fundamental 
to the establishment and maintenance of ecological 
communities [1], much research has focused on studying 
mutualisms in their natural settings. Such studies suggest 
that the nature of the interaction between mutualistic 
partners is context dependent: while two species can be 
mutualistic in a harsh environment, they can nonetheless 
become direct competitors in a more benign environment 
[2]. Laboratory experiments with model systems (e.g., [3]), 
which are more readily controllable than their natural 
counterparts, can provide insight into the population and 
evolutionary dynamics that govern mutualistic relationships.  

II. METHODS 
Our model system consists of a bacterial mutualism that 

arises from cross-protection against antibiotics. Each strain 
produces an enzyme that deactivates one of the two 
antibiotics—ampicillin or chloramphenicol—thereby 
protecting cells from the second strain that would otherwise 
be sensitive to the drug [4]. Serial dilution experiments 
result in a seasonal environment: we dilute the bacterial 
population periodically by a fixed amount into new medium 
supplemented with the two antibiotics. The dilution strength, 
the time between dilutions, and the concentrations of the two 
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antibiotics determine the strength of this periodic change in 
the environment. We experimentally track the population 
dynamics of the mutualism at the end of each growth cycle 
by measuring the density of each subpopulation using a 
combination of spectrophotometry and flow cytometry.  

III. RESULTS 
As the concentrations of the antibiotics in the environment 

increase, the two strains become increasingly dependent on 
each other for survival, with their interaction changing from 
primarily competitive to primarily mutualistic. Together the 
two strains can grow in antibiotic concentrations that inhibit 
growth of either one of the strains alone, thus forming an 
obligatory mutualism and enabling long-term coexistence. 

In a seasonal environment (i.e. increased dilution strength, 
longer time between dilutions, and higher antibiotic 
concentrations), we observe strong limit-cycle oscillations 
between the subpopulations of the two mutualistic partners. 
Even so, the size of the total population exhibits little 
variation. In comparison, in the absence of seasonality (i.e. 
in the limit of a continuous environment), the population 
dynamics settle to an apparent equilibrium. 

This obligatory mutualism persists until even stronger 
seasons give rise to oscillations so large that the population 
ultimately collapses. In particular, at one extreme of the 
oscillation, the population of one partner in the mutualism 
becomes so small that it can no longer protect its partner 
from the antibiotic it deactivates. Interestingly, often times 
the mutualism can successfully survive one dilution cycle 
before collapse, suggesting that the oscillatory dynamics 
cause the subpopulations to become too imbalanced to 
survive indefinitely in extreme environmental conditions. 

We also investigate the evolutionary stability of the 
mutualism in the presence of potential invaders that employ 
different strategies, such as strains that are either sensitive or 
resistant to both antibiotics present in the environment. The 
outcomes provide insight about the evolutionary origins and 
resilience of such mutualisms. 
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HIV%continues%to%wreak%havoc%around%the%world,%especially%in%developing%countries.%%It%is%a%highly%
mutable%virus%which%can%evade%natural%or%vaccine%induced%immune%responses%by%mutating%at%multiple%
sites%linked%by%compensatory%interactions.%%If%one%wishes%to%define%the%mutational%vulnerabilities%of%HIV,%
these%collective%compensatory%pathways%need%to%be%identified%so%as%to%not%target%the%involved%sites%by%a%
vaccine%induced%immune%response.%%Moreover,%the%combinations%of%mutations%that%the%virus%cannot%
make%and%still%maintain%viability%need%to%be%determined,%so%as%to%target%the%pertinent%sites%by%
vaccination.%%Thus,%knowledge%of%the%fitness%landscape%of%HIV%could%enable%rational%design%of%vaccines%
that%can%confront%this%scourge.%%We%developed%models%to%translate%data%on%HIV%protein%sequences%to%
knowledge%of%the%prevalence%landscape%of%the%circulating%HIV%population.%%Theoretical%analyses%and%
biological%reasoning%led%us%to%surmise%that,%unlike%many%other%viruses,%the%relationship%between%the%
prevalence%and%fitness%landscapes%of%HIV%may%be%simple.%%I%will%show%that%this%surmise%is%supported%by%
positive%correlations%between%predictions%emerging%from%our%inferred%fitness%landscape%and%in%vitro%
experiments%and%clinical%data%obtained%from%patients.%%Based%on%these%results,%a%therapeutic%T%cellFbased%
vaccine%was%designed,%which%is%now%being%advanced%to%preFclinical%studies%in%monkeys.%%I%will%also%
describe%how%scaling%laws%describe%the%HIV%population%and%discuss%an%interesting%analogy%with%Hopfield%
neural%networks.%
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Short Abstract — Tumor necrosis factor (TNF) cytokines 

regulate survival and death signaling pathways in the same cell. 
Although exposure to TNF can be of short duration in vivo, in 
experiments cells are often exposed to TNF continuously. To 
understand how survival and death signals respond to transient 
TNF exposure, we monitored live cells expressing fluorescent 
reporter proteins in a microfluidic flow device. We find that a 
TNF pulse of the order of seconds can provoke both pathways. 
Strikingly, a short pulse can be more effective at killing than a 
longer pulse, suggesting that TNF concentration and duration 
together coordinate cell fate decisions. 
 

Keywords — NF-kB transcription factor, apoptosis, caspase 
protease, microfluidics, laminar flow 

I. INTRODUCTION 
NF is a pro-inflammatory cytokine that modulates 
cellular behaviors including proliferation, differentiation 

and apoptotic cell death. While TNF is important for the 
normal development and function of immune cells, 
chronically elevated TNF is associated with autoimmune 
diseases and linked with tumor progression in some cancers. 

TNF regulates many cellular behaviors by sequentially 
activating intracellular signals [1]. Binding of TNF to its 
receptor at the plasma membrane rapidly induces nuclear 
accumulation of the NF-κB transcription factor, driving 
transcription of anti-apoptotic genes to promote cell survival. 
This is followed by internalization of TNF-bound receptors, 
a process that initiates signals for caspase protease-
dependent apoptotic death in the same cell.  

To regulate diverse cell fates in a healthy tissue, TNF 
exposure is strictly controlled and likely to be transient. 
However, little is known about the duration of TNF exposure 
required to activate NF-κB–driven transcription or induce 
apoptosis. Here, we set out to determine the minimum TNF 
pulse duration required for activation of NF-κB, and to study 
TNF-induced apoptosis, comparing cell fates in continuous 
versus transient TNF exposures. 
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II. RESULTS 
We designed and built a microfluidic system that uses 

laminar fluid streams to provide spatiotemporal control over 
TNF delivery to cell cultures. The device was seeded with 
HeLa cells stably expressing EGFP-fused NF-κB, and its 
nuclear fluorescence was quantified from time-lapse 
microscopy. Using our recently collected dataset of same-
cell NF-κB localization dynamics and target transcript 
numbers [2], we established the threshold of nuclear NF-κB 
accumulation required to induce gene transcription in single 
cells. For a high TNF concentration, a short pulse of 10s 
elicits significant NF-κB translocation in a fraction of cells, 
although a 30s pulse or longer is required to approximate 
continuous exposure. We also find that the minimal TNF 
pulse is dose dependent, with lower concentrations requiring 
a longer pulse for comparable NF-κB activation. 

To monitor caspase activity in single cells exposed to a 
pulse of TNF, we imaged HeLa cells stably expressing a 
FRET-based initiator caspase reporter (IC-RP; [3]) by time-
lapse microscopy and quantified IC-RP cleavage in single 
cells. Consistently we observed a non-monotonic relationship 
between TNF pulse duration and both the timing and extent 
of caspase-dependent cell death. There is a relative 
maximum of cell killing in response to a 1-minute pulse 
when compared to a pulse of shorter or longer duration. 

III. CONCLUSION 
Our data show that a short pulse of TNF is sufficient to 

induce substantial activation of pro-survival and pro-death 
signaling, and that the pulse duration in turn affects efficacy 
and timing of cell death. These data also suggest that the 
condition for highest fractional kill may not require sustained 
exposure to the pro-death stimulus. Overall, our study 
complements a growing body of work showing that signaling 
dynamics as well as the timing and sequence of drug addition 
together influence cell fate decisions. 
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y lab studies the plasma membrane nanoscale organization of Ras proteins using quantitative electron 
microscopy and FLIM-FRET microscopy. We have shown that the ubiquitously expressed Ras isoforms, 

H-Ras, K-Ras and N-Ras operate in spatially non-overlapping, transient nanoclusters. Approximately 40% of 
each Ras protein assembles into nanoclusters of ~6 proteins, with radii of ~9nm and lifetimes of <1s. 
Furthermore H-, K- and N-Ras all undergo GTP-regulated segregation, such that GTP- and GDP-nanoclusters of 
each isoform are also spatially segregated. Since Ras effector activation is restricted to Ras-GTP nanoclusters 
interesting emergent properties flow from the imposition of nanocluster spatiotemporal dynamics on Ras signal 
transmission. On one level the system operates as an analog-digital-analog converter to deliver high fidelity 
signal transmission in the Raf-MAPK circuit with signal gain being controlled by the Ras nanocluster fraction. 
Lipid mapping experiments also show that different Ras nanoclusters have distinct compositions revealing 
isoform-selective lipid sorting. The anionic phospholipid phosphatidylserine (PS) is an obligate structural 
component of K-Ras nanoclusters. Our most recent experiments now reveal that PS spatial organization, and 
thereby K-Ras nanoclustering, are sensitive to transmembrane potential, revealing a previously unsuspected 
mechanism whereby electrical signals can control the gain in K-Ras signaling circuits. 
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Short Abstract — Using microfluidic experiments, stochastic 

simulations, and analytical theory, we investigate how a 
synthetic oscillator in E. coli can be entrained via modulation of 
its protein degradation pathway.  The interaction occurs 
primarily through “queueing” of components for degradation, 
where proteins compete for the oscillator’s primary protease, 
ClpXP, which effectively acts as a queueing server with a finite 
bandwidth.  We find that periodically varying the production 
rate of an otherwise independent protein targeted to ClpXP can 
lead to entrainment, which we understand analytically using a 
degrade-and-fire formalism. 

 
 
Keywords — Entrainment, queueing theory, oscillators, 
synthetic biology, systems biology 

 

I. INTRODUCTION 
iological oscillators permeate our daily life, ranging 
from circadian rhythms, to cell cycles, to our very 
heartbeats.  Control over these systems is often done 

through entrainment [1], but detangling the mechanism of 
entrainment tends to be difficult in natural oscillators due to 
their complex web of interactions. 

A complementary strategy to understanding biological 
entrainment is the synthetic biology approach, where 
genetically encoded circuits are constructed using known 
parts with (mostly) known interactions.  Previously, 
investigators successfully leveraged a synthetic oscillator in 
E. coli as a model for transcriptional regulation-based 
entrainment [2].  In the following, we seek to extend this 
investigation to explore a particular form of post-
translational entrainment, where competition of components 
for proteolytic machinery leads to the coupling of 
environment to oscillator.  This entrainment mechanism may 
arise in a number of natural oscillators, since many natural 
oscillators include analogous proteolytic pathways as one of 
their essential components. 

II. A SYNTHETIC OSCILLATOR AND CLPXP QUEUEING 
Our model synthetic oscillator in E. coli functions based on 
two primary ingredients: delayed negative feedback and 
enzymatic degradation [3].  Focusing on the latter, the 

 
Acknowledgements: This work was supported by funds from the 

National Science Foundation Division of Molecular and Cellular 
Biosciences, MCB-1330180.  

1Department of Physics, Virginia Tech. plh5012@vt.edu, ncb@vt.edu, 
cogle@vt.edu, wmather@vt.edu.   
2Department of Biological Sciences, Virginia Tech. wmather@vt.edu.  

oscillator depends on the cell's natural degradation pathways 
to remove proteins from the system quickly.  This 
degradation is due to the processive protease ClpXP 
targeting genetically encoded tags on oscillator proteins. 

Recent work has revealed that the finite bandwidth of 
ClpXP naturally leads to a queueing interpretation of protein 
degradation [4,5], whereby the protease acts as a server for 
proteins.  A consequence is that the protease exhibits 
classical queueing regimes, such as underloaded and 
overloaded regimes where competition for the protease is 
low and high, respectively [6].  These regimes can be 
experimentally realized using synthetic means [4]. 

III. QUEUEING ENTRAINMENT 
We utilize queueing to couple two sets of tagged proteins: 
the oscillator proteins and a protein controlled by an 
externally controlled inducer.  Competition for the protease 
is the primary source of the interaction between the two sets 
of proteins.  This coupling allows us to entrain the oscillator 
with a wide array of external signals with variable strengths 
and periods.  Entrainment is demonstrated experimentally 
using a microfluidic platform, which allows for tightly 
controlled and highly repeatable experiments.  The 
theoretical basis for entrainment stems from the ability for 
queueing coupling to either dilate or contract the oscillatory 
period, depending on oscillatory phase.  This conclusion is 
supported by both stochastic simulations and analytic 
arguments. 
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Short Abstract — Multiple oscillators often co-exist within 

the same cell. Are there mechanisms and regulatory principles 
to ensure functional harmony between these oscillators? Here, 
we show that salicylic acid, a plant immune signaling hormone, 
uniquely perturbs the cellular circadian redox rhythm to 
reinforce the expression of core circadian clock genes through 
the master immune regulator NPR1. Mathematical modeling 
and subsequent experiments demonstrated that NPR1 targets 
both morning and evening genes of the circadian clock. This 
balanced network architecture ensures the maintenance of 
period and reinforcement of the circadian clock amplitude by 
simultaneous regulation of differently phased components. 
 

Keywords — Circadian Clock, Redox Rhythm, Immunity, 
Arabidopsis. 

I. INTRODUCTION 
ECENT  studies have shown that many organisms, 
including Arabidopsis, have a circadian redox rhythm 

driven by the organism’s metabolic activities [1,2]. It has 
been hypothesized that the redox rhythm in plants is linked 
to the circadian clock, but the mechanism of this link 
remains largely unknown. Our experimental work shows 
that the master immune regulator NPR1 of Arabidopsis is a 
sensor of the plant’s redox state and regulates transcription 
of core circadian clock gene TOC1 through TGA 
transcription factors. Strikingly, acute perturbation in the 
redox status triggered by the immune hormone salicylic acid 
(SA) leads to the reinforcement rather than perturbation of 
oscillations in TOC1 expression in an NPR1-dependent 
manner. Mutation of NPR1 resulted in lower TOC1 
expression with the same period of oscillations. Because the 
levels of TOC1 are known to regulate the period of the 
circadian clock [3], our results suggest that NPR1 couples to 
other clock genes, in addition to the evening-phased TOC1. 

II. QUANTITATIVE MODEL OF PLANT CIRCADIAN CLOCK 
To systematically search for other possible clock 

components that are regulated by redox rhythms, we 
explored the effect of adding NPR1 regulation to a 
mathematical model of the plant circadian clock that 
includes most of the known components of the Arabidopsis 
circadian clock [4]. 
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A. Fitting procedure 
Based on our data, we made the assumption that NPR1 is 

a transcriptional activator of other clock genes. We 
systematically coupled NPR1 to TOC1 and two other 
circadian clock genes, X and Y. For each X, Y pair, we used 
nonlinear least squares fitting to find NPR1 parameters that 
best fit our TOC1p:LUC time-series. We repeated this 
procedure for all X, Y pairwise combinations of the 
circadian clock genes. 

B. Results 
Our modeling showed that NPR1 must also activate the 

expression of the morning-phased PRR7 and LHY genes. We 
experimentally confirmed these new regulatory links using 
qPCR of LHY and PRR7 transcripts in npr1 mutants and 
under SA-induction. We show how a balanced network 
architecture converts a redox perturbation into reinforcement 
of the circadian clock with no change in period. 

III. BIOLOGICAL SIGNIFICANCE 
We further showed that TOC1 is a repressor of plant 

immunity. Because morning phased LHY positively 
regulates plant immunity [5], we hypothesized that the 
reinforced circadian clock helps gate plant immunity to be 
more responsive to induction in the morning and less 
responsive at night to avoid diverting scarce resources from 
plant growth at night. Our microarray analysis revealed that, 
indeed, plants have a greater immune response in the 
morning upon SA induction, and suffer a larger penalty on 
growth at night upon SA induction. Last, we showed that the 
expression of catalase CAT3 (CATALASE3) is also 
upregulated by SA. This may help the circadian clock 
restore a circadian redox rhythm after pathogen challenge 
and SA induction. 
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Short Abstract — Cell migration is important for 
development, wound healing and cancer invasion. It is a 
complex process that involves multi-scale interactions 
between cells and the extracellular matrix (ECM). Empirical 
evidence of cell migration showed that the cell substrate 
interaction through focal adhesion is a key mechanism to 
regulate cell migration plasticity. How the cell integrates the 
biomechanical properties of microenvironment with 
cytoskeleton remodeling to initiate polarity, adhesion and 
regulate migration modes is still not clear. Increasing 
experimental evidence suggests that migration behaviors 
differ and transit over physical parameters, including 
substrate rigidity, topography, and cell property. We built a 
3-D cell model with cell motility signaling pathway and 
explicit cell membrane, cytoskeleton, nucleus. We simulated 
cell migration in 1-D and 2-D substrates with varied 
distribution and intensity. The model provides a flexible 
platform for investigating cell migration plasticity with 
complex microenvironments through biomechanical cell-
substrate interactions. 
Keywords — 3D cell migration, amoeboid, mesenchymal, 

cancer invasion, signal pathway. 

I. INTRODUCTION  
ELL migration is a fundamental process that regulates 
numerous physiological functions of biological system 

[1]. Migrating cells exhibit distinct motility modes and can 
switch between mesenchymal and various amoeboid 
motilities [2]. The formation of integrin-mediated adhesion 
breaks the cell symmetry, followed by signal transduction 
and generations of interruptions of lamellipodial extension 
[3]. Contraction is the main part of the motility process 
during which the cells explore micro-environment, together 
with activated cell motility signal pathway, regulate actin and 
actomyosin spatial intensity and membrane deformation 
including lamellipodia, filopodia, stable and unstable blebs 
[2]. To characterize how the adhesion site dimensionality 
and adhesion intensity regulates cell migration plasticity, we 
developed a computational model of 3D cell migration in 
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micro-patterned substrate, which reproduces the 
experimental measurements and provides new insights into 
the cell migration plasticity. 

II. RESULTS  
We model cell migration using a subcellular element 

model [4], which represent a cell as interacting membrane 
elements together with a deformable cell nucleus through 
cytoskeletal dynamics. The intracellular reaction-diffusion 
dynamics of F-actin and actomyosin determine the protrusion 
vs. contractile forces on each membrane element. The cell 
deforms and moves as a result of force calculation of every 
membrane element.   

 
The key features of the model are 1) the substrate and 

integrin distribution regulate focal adhesion formation and 
adhesion strength, 2) the cell morphological adaption and 
integrin transportation are solved using 3-D moving 
boundary diffusion-reaction method, 3) the duration for the 
cell and substrate binding depends on the number of focal 
adhesion [5]. 

From In vitro experiments of single cell migration in 3D 
collagen, we quantify the cell protrusion number and 
velocity. With our 3-D cell migration model, we simulate the 
detailed morphological evolution and molecule diffusion-
reaction and investigate the cell migration plasticity as a 
function of binding set width and adhesion intensity. In 
particular, we focus on studying the resulting cell 
deformation and migration directionality, cell diffusion 
coefficient.  The results resemble those observed in 3D cell 
traction experiments as well as 3D cell migration assays. 
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� 
Short Abstract — Cancer is recognized as a phenotypically 

heterogeneous disease, however the underlying causes of this 
heterogeneity are not well understood. Genomic instability in 
cancer has generally cited as the mechanism by which tumors 
acquire a phenotypically diverse profile, however recent results 
suggest the existence of epigenetically mediated heterogeneity as 
well. We hypothesized that epigenetic heterogeneity in cancer is 
supported by transcription factor regulatory networks and 
adopt the view that stable cell phenotypes can be described as 
attractors of this system. We test this hypothesis by building a 
Boolean network model of transcriptional regulation in small 
cell lung cancer, and conclude that experimentally observed 
heterogeneity is captured by the model. 
 

Keywords — Cancer heterogeneity, epigenetic landscape, 
attractors, transcription factor dynamics, small cell lung cancer 

I. INTRODUCTION 
NDERSTANDING the origins and roles of inter- and intra-
tumor heterogeneity remains a significant challenge 

facing cancer researchers. Molecular and genetic subtyping 
has introduced the promise of personalized therapies, 
however success has been limited in practice by a lack of well 
classified subtypes and the emergence of treatment resistant 
tumors. Both genetic and epigenetic intra-tumor 
heterogeneity has been implicated in the emergence of 
resistance in multiple tumor types [1,2], and overcoming this 
will be critical to the future development of more effective 
therapies. 

A popular framework in theoretical systems biology 
suggests that a cell’s phenotype may be understood as an 
attractor of the dynamical gene regulatory process [3-5]. This 
view reflects Waddington’s epigenetic landscape in which 
undifferentiated cells roll “downhill” as they adopt distinct 
and differentiated identities. In this work, we test the 
hypothesis that heterogeneous cell states in small cell lung 
cancer (SCLC) can be explained as attractors of a 
transcription factor (TF) regulatory network. 
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II. METHODS AND RESULTS 
Using 53 SCLC cell lines from the Cancer Cell Line 

Encyclopedia we applied weighted gene co-expression 
network analysis (WGCNA) [6] to identify clusters of co-
regulated genes. Two clusters were found whose expression 
patterns were significantly anti-correlated, and determined to 
be enriched for neuroendocrine/epithelial (NE) and 
mesenchymal (ML) phenotypes, respectively. 

To derive a set of TFs which regulate the expression of 
these genes we cross-referenced results from ARACNE [7] 
with TF-DNA binding databases [8]. The resulting TF 
network was simulated as a Boolean network to identify 
stable attractors. These theoretically predicted attractors 
were found to correlate significantly with the observed 
expression profiles for both the NE and ML phenotypes. 
Western blots verify the differential expression of key 
transcription factors, and single cell flow cytometry reveals 
the heterogeneous presence of both cell types across multiple 
cell lines. 

III. CONCLUSION 
We have derived a transcription factor regulatory network 

which is capable of capturing observed phenotypic 
heterogeneity in SCLC. This work provides a foundation for 
future studies exploring the controllability of heterogeneity in 
cancer. 
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Understanding chromosome tertiary organization and its role in control of gene expression represents one of the 
most fundamental open biological challenges. Chromatin structure and gene expression are intimately related 
because the complex nature and dynamics of protein-bound DNA folding in the living cell regulates gene 
activity at a large range of spatial and temporal scales. Recent advances in experimental studies of chromatin 
using nucleosome structure determination, ultra-structural techniques, single-force extension studies, and 
analysis of chromosomal interactions have revealed important chromatin characteristics under various internal 
and external conditions. Modeling studies, anchored to high-resolution nucleosome models, have explored many 
related questions systematically. In this talk, I will describe recent findings regarding chromatin structure and 
function using a combination of coarse-grained modeling and large-scale all-atom molecular dynamics 
simulations of chromatin fibers. In particular, I will describe how such multiscale modeling can successfully 
address questions regarding the effects of epigenetic chemical modifications and the structure of condensed 
chromosomes in the metaphase cell cycle. 
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Short Abstract — It is generally assumed that antibiotics 
can promote horizontal gene transfer (HGT). Due to a 
variety of confounding factors that complicate the 
interpretation of previous studies, however, how 
antibiotics modulate HGT remains poorly understood. In 
particular, it is unclear whether antibiotics directly 
regulate the efficiency of HGT, serve as a selection force 
to modulate the population dynamics after HGT has 
occurred, or both. Here we address this question by 
quantifying conjugation dynamics in the presence and 
absence of antibiotic-mediated selection. Surprisingly, we 
find that antibiotics from all major classes, when dosed 
at sub-lethal concentrations, do not significantly affect 
the conjugation efficiency. Instead, our modeling and 
experimental results demonstrate that conjugation 
dynamics are dictated by antibiotic-mediated selection. 
In contrast to conventional wisdom, we further show that 
antibiotics do not always promote conjugation but 
instead cause diverse dynamics, depending on how the 
growth rates of parental strains are influenced by the 
antibiotics. Our findings may explain the apparently 
paradoxical observation that HGT appears to be 
happening to a lesser extent than expected.  

 
Keywords — Horizontal gene transfer, antibiotic 
resistance, synthetic biology 

I. INTRODUCTION 
 

ORIZONTAL gene transfer (HGT) has given rise to the 
rapid, widespread dissemination of antibiotic resistance 
genes within and among bacterial species [1,2]. It has 

been speculated that antibiotics can promote HGT based on 
the observed increase in resistance following antibiotic 
treatment [3-5]. However, these theories are confounded by 
the inability to distinguish antibiotic selection dynamics 
from antibiotic-induced resistance exchange [6,7]. Thus, 
whether, and to what extent antibiotics specifically modulate 
conjugation efficiency is still unknown.  
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II. RESULTS 
To determine whether antibiotics modulate conjugation 

efficiency, we first decoupled bacterial growth from HGT to 
quantify the rate of conjugation for increasing concentrations 
of 10 antibiotics. We show there is no statistically significant 
effect on the conjugation efficiency up to the highest 
concentration tested for each antibiotic. We then built a 
simple mathematical model describing HGT to investigate 
how antibiotic selection influences population dynamics of 
conjugants with a fixed rate of conjugation. We identified 
four main growth scenarios that demonstrate signature 
dynamics of the relative amount of transconjugants present. 
In particular, the relative growth rates of the donor and 
recipient are primarily responsible for the observed increase 
in transconjugants, and depending on the selection 
environment, can generate a diverse range of conjugation 
dynamics. Surprisingly, our results demonstrate that higher 
concentrations of antibiotics do not always promote 
conjugation.  

We tested these predictions using E. coli engineered to 
undergo HGT in a microfluidic device. We show that 
experimental results validate modeling predictions, 
suggesting that antibiotic selection dynamics alone are an 
accurate predictor of conjugation dynamics.  

III. CONCLUSION 
 

The results from this study demonstrate that antibiotic 
influence on conjugation efficiency is negligible, but instead 
selection dynamics are the dominant contributor to observed 
population dynamics following conjugation. Counter-
intuitively, higher concentrations of antibiotics do not 
necessarily promote conjugation. These findings help 
elucidate the apparently paradoxical observation that HGT 
appears to be happening to a lesser extent than expected.  
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Short Abstract — The microRNA miR-34a regulates the 

decision of colon cancer stem cells to undergo either symmetric 
or asymmetric division. However, how does miR-34a manage to 
achieve this seemingly complex task reliably? Here we report 
that miR-34a employs several mechanisms for robust 
spatiotemporal regulation. First, miR-34a forms an incoherent 
feedforward loop with a canonical cell fate determinant to 
enhance bimodality and adaptivity. Second, this spatial 
microRNA switch is enforced by an epigenetic mechanism. 
Third, miR-34a selectively form bimodal switches with cell fate 
decision genes. Collectively, microRNA-mediated cell fate 
decisions involve multiple layers of regulatory strategies in a 
context-dependent manner for decision-making. 
 

Keywords — microRNA, cancer stem cell, asymmetric 
division, feedforward loop, robustness. 

I. PURPOSE 
any stem cells can perform asymmetric division to 
accomplish self-renewal and differentiation 

simultaneously [1,2]. There have also been reports that 
cancer stem cells of various cancer types undergo both 
symmetric and asymmetric division [3-5]. Altering the ratio 
between symmetric and asymmetric division can change the 
balance between self-renewal and differentiation, which 
impact tumor growth. 

Asymmetric cell division usually relies on imbalance of 
cell fate determinant proteins in the two cellular 
compartments to break symmetry, resulting in daughter cells 
with distinct cell fates. Recently, emerging evidence 
suggests that asymmetric distribution of microRNAs can 
also give rise to asymmetric cell fates [6,7]. For example, we 
have reported that miR-34a directly targets Notch to form a 
cell fate determination switch in colon cancer stem cells 
(CCSCs) [6]. These CCSCs then form xenograft tumors with 
the heterogeneous histopathology observed in human cancer 
[8].  

However, this raises the question as to whether microRNA 
and protein cell fate determinants act independently or 
coordinate with each other to determine cell fate. The 
relationship between miR-34a and Numb is intriguing, 
because both target Notch in CCSCs. 
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II. RESULTS 
Here we show that miR-34a directly suppresses the 

canonical cell fate determinant protein Numb in early-stage 
colon cancer stem cell (CCSC), although both target Notch 
to promote differentiation. Computational modeling and 
quantitative analysis revealed that this incoherent 
feedforward loop (IFFL) synergizes the two cell fate 
determinants to produce a sharper and more robust switch. 
This switch enforces strict bifurcation of cell fates and 
generates a well-separated bimodal distribution in the 
population. Perturbation to the IFFL leads to a new 
population of cells with more plastic and ambiguous identity 
between stem and differentiated cells. The IFFL is also 
active in normal intestinal stem cells (ISCs). Knockout of 
miR-34 in ISCs does not generate any phenotype in mice, 
but causes excessive proliferation of ISCs in organoids to 
form CCSC-like spheres upon TNF-a treatment.  

III. CONCLUSION 
Collectively, our data indicate that microRNA and protein 

cell fate determinants form regulatory motif to enhance 
robustness of cell fate decision, and they provide a safeguard 
mechanism against stem cell proliferation under stress 
conditions. This mechanism is still active in early-stage 
tumors but eventually subverted by progression of cancer. 
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n this talk I will discuss how fission yeast cells control their size1. It has previously been proposed that fission 
yeast implements a “sizer” mechanism, where cells actively monitor their size and divide upon reaching a 

critical size. However, which measure of size is monitored and how has been unknown. Here, we propose a 
theory that explains how size control is implemented via an effective measurement of the plasma membrane 
surface area through the cortical dynamics of the protein Cdr2. Predictions from this theory are then successfully 
tested in the lab. I will also briefly point out that a similar control mechanism may be implemented in a 
completely different problem, namely equal spacing of low copy number plasmids in bacteria2.  
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Antigen stimulation of the T cell receptor (TCR) in a naïve T 

cell triggers a complex network of signaling pathways that 
determine whether the cell becomes a tolerogenic T regulatory 
(Treg) or immunogenic T helper (TH) cell. We have recently 
discovered a potential positive feedback loop involving Akt-
mediated transcriptional downregulation of PTEN, a lipid 
phosphatase that opposes activation of Akt. To explore the 
effects of this feedback we developed a model of signaling 
downstream of the TCR, with a focus on the regulation of 
PTEN and Akt. This model recapitulates dose-dependent 
dynamics of PTEN and Akt activity and predicts a dose- and 
time-dependent threshold for TCR stimulation to drive the 
sustained Akt activity required for the differentiation and 
proliferation of TH cells. The model also shows that sub-
threshold signals lead to transient Akt activation, potentially 
leading to a Treg phenotype. 
 
Keywords — T cell differentiation, rule-based modeling, 

bistability, parameter estimation, PTEN 

I. BACKGROUND 
HE proper differentiation of naïve CD4+ T cells into 
Treg and TH populations is critical to immune function. 

Maintenance of TH populations is needed to fight infection, 
while Treg populations are necessary to prevent autoimmune 
disorders. It has been shown that Treg induction can prevent 
the onset of type 1 diabetes in mice [1].  

TCR signaling is an important regulator of differentiation 
outcome. Akt activation downstream of the TCR has been 
shown to correlate with TH development [2,3]. One key 
regulator of Akt is the phosphatase PTEN, which inhibits 
Akt activity through upstream dephosphorylation of PIP3 
[4], a phospholipid that recruits numerous signaling proteins 
to the plasma membrane. Regulation of PTEN involves both 
post-translational modifications [5] and a recently-identified 
transcriptional control circuit involving the transcription 
factor Foxo1, which is inactivated through phosphorylation 
by Akt, forming a positive feedback loop for Akt activation 
[6]. Mathematical modeling allows us to predict TCR-
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dependent regulation of PTEN activity and its effects on 
CD4+ T cell differentiation.  

II. RESULTS 

A. A detailed model of Akt activation dynamics 
recapitulates experiments results and reveals bistability 
We have developed a rule-based model of Akt activation 

downstream of the TCR and calibrated it using Bayesian 
parameter estimation [7] augmented by parallel tempering 
[8]. The resulting parameterization reveals bistability in the 
system, with high-dose antigen stimulation leading to a 
sustained drop in PTEN levels, and a corresponding increase 
in Akt activity, which lead to TH cell differentiation. We 
predict a bistable switch in the system, resulting in two stable 
states with high and low levels of PTEN respectively. The 
threshold of the switch is controlled by the strength and 
duration of TCR activation.  

B. A second signal activating PI3K is necessary for full 
commitment and sustained PTEN suppression 
Activation of PI3K through CD28 is required for 

commitment to the TH phenotype following antigen removal. 
Commitment requires maintenance of high levels of Akt 
activity and suppression of PTEN. Varying levels of CD28 
can change the level of antigen stimulation required to cross 
the threshold for TH differentiation.  

III. CONCLUSION 
Using a combination of mathematical modeling and 

experiments in primary cells, we have identified PTEN 
opposition of Akt as a critical circuit in the differentiation of 
naïve CD4+ T Cells. TCR stimulation-dependent regulation 
of PTEN leads to a bistable switch influencing the 
differentiation commitment of these cells. We have also 
made predictions on the duration of antigen stimulation 
needed to induce commitment to an Akt-high state, which we 
are currently in the process of testing experimentally. 
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Short Abstract —Under normal growth conditions a three-

component (Sln1-Ypd1-Ssk1) phosphorelay represses high-
osmolarity glycerol (HOG) pathway activity in the yeast 
Saccharomyces cerevisiae. This inhibition is essential for cellular 
fitness in normal osmolarity.  We established that the 
phosphorelay is robust and maintains inhibition of the HOG 
pathway even after significant changes in the levels of its three 
components. A biochemically realistic mathematical model of 
the phosphorelay suggested that robustness is due to buffering 
by a large excess pool of Ypd1. We confirmed this result 
experimentally.  Buffering by an intermediate component in 
excess represents a novel mechanism through which a 
phosphorelay can achieve robustness. 
 

Keywords — robustness, HOG pathway, osmotic stress, 
histidine kinase, mathematical modeling, invariants. 

I. OVERVIEW 
ESPITE its importance during periods of increased 
osmolarity, unintended activation of the high-osmolarity 
glycerol (HOG) pathway during growth in normal 

osmolarity conditions is severely deleterious to the budding 
yeast Saccharomyces cerevisiae [1]. The Sln1-Ypd1-Ssk1 
three-component phosphorelay is responsible for maintaining 
inactivation of the HOG pathway.  Under normal osmolarity 
the phosphorelay is active and maintains Ssk1 in its 
phosphorylated form.  In response to osmotic shock, the 
phosphorelay is inactivated, and Ssk1 is rapidly 
dephosphorylated.  Unphosphorylated Ssk1 then activates 
downstream HOG pathway components. It is thus the 
essential controller of HOG pathway activity.   
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We undertook a comprehensive characterization of the 
sensitivity of HOG pathway activation to changes in the 
expression levels of the phosphorelay proteins Sln1, Ypd1, 
and Ssk1. We systematically under- and overexpressed the 
three proteins using an artificial induction system and found 
that phosphorelay activity is robust to changes in the 
concentrations of its components.  We developed a detailed, 
biochemically realistic mathematical model of the HOG 
pathway three-component phosphorelay to elucidate the 
mechanism underlying this robustness. Our model 
incorporates extensive structural and mechanistic 
information about the phosphorelay and considers nearly all 
possible interactions between the three relay proteins. We 
used mass-action kinetics and algebraic calculations to 
characterize the steady-state behavior of the model. Steady-
state algebraic models are a useful alternative to existing 
computational models of the HOG pathway for 
understanding robust behavior. Algebraic manipulations can 
be done without ever assigning special values to the 
parameters (i.e., the rate constants in the reaction network), 
many of which are difficult or impossible to measure 
experimentally [2].  

Our steady-state analysis predicted that relative levels of 
dephosphorylated Ssk1 depend solely on Ypd1 levels and 
that robustness is achieved by maintaining Ypd1 in large 
excess. We experimentally tested this prediction by 
perturbing protein expression levels so as to deplete this 
buffering pool of Ypd1. All such perturbations compromised 
the ability of the phosphorelay to inhibit the HOG pathway, 
leading to hyperactivation in normal osmolarity conditions. 
The presence of a large buffering pool of an intermediate 
phosphorelay component is a previously underappreciated 
mechanism for robustness and suggests a possible advantage 
of a three-component relay over a two-component system. 
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�Short Abstract — Invasive cancer cells actively interact with the 
surrounding extracellular matrix fibers. Properly examining the 
invasive cancer cell behavior with ECM is necessary to more 
comprehensively understand cancer. We developed in vitro model to 
more quantitatively test the cancer cell behavior in ECM 
environments, using glioblastoma cultured in Matrigel and human 
non-small cell lung cancer cells cultured in collagen. We analyzed cell 
and fiber-bound bead motility as well as fiber alignment for various 
invasion conditions modifying key players along the signaling 
pathway: cdc42, Rho, FAK, LKB1. Active invasion conditions 
showed strong fiber pulling into the tumor and fiber realignment. 
 

I. INTRODUCTION 
NE main difficulty to treat cancer disease is due to invasion, 
in which cancer cells spread from their primary sites. In vitro 

tumor spheroid studies and transgenic mice studies have shown 
that invasive cancer cells actively remodel the surrounding ECM, 
and ECM alignment significantly influences cancer cell invasion 
[1]. Instead of focusing on cancer cells, we analyze the cells and 
ECM simultaneously, focusing on their interactions.   

II. RESULTS 
 To examine both cancer cell invasion and ECM dynamics 
together, we first cultured glioblastoma spheroids in Matrigel 
seeded with fluorescent beads, and tracked both cell and bead 
motions. Using the persistent random walk model [2], we analyzed 
cell and bead motility for different mechanotransduction signals: 
active cdc42, inactive cdc42, Rho inhibitor, and FAK inhibitor.    

 
Figure 1: Glioblastoma spheroids in Matrigel. (A) Control and four 
different test cases (cdc42 inactive, cdc42 active, Rho inhibitor, FAK 
inhibitor) at 0 and 15 hours. Persistent time (B) and diffusion coefficient 
(C) for cell and bead motility data of four different test cases using a 
persistent random walk model. 
 

In our experiments, Matrigel fiber-bound beads were pulled into 
the tumor spheroid before cancer cells actively invaded out. Active 
cdc42 cells (Fig.1) showed aggressive cell invasion and strong 
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fiber pulling movement, while FAK inhibitor case showed neither 
cell migration nor fiber activity. Inactive cdc42 and Rho inhibitor 
cases showed more interesting cell-ECM traction in the absence 
of cell migration, and the rescue of migration in time. 
 To better visualize the ECM structural change as a result of 
cancer invasion, we cultured human non-small cell lung cancer 
(NSCLC) spheroids in collagen, and analyzed collagen fiber 
alignment for both LKB1+ and LKB1- spheroids. Using CT-FIRE 
(curvelet transform fiber extraction) [3] and an orientational order 
parameter [4], we developed a novel method to analyze fiber local 
alignment. LKB1- cells invade, resulting in increased fiber 
alignment. LKB+ cells do not invade, resulting in slightly 
decreased local alignment.  

 
Figure 2: Human non-small cell lung cancer spheroids (H1299) in 
collagen gel. Control case (pLKO.1, LKB1+) and shRNA knocked down 
LKB1 case (shLKB1, LKB1-). (A) Confocal microscopy image at 0 and 
21 hours. (B) Fiber alignment contour plot for the collagen image of 
shLKB1 at 21 hours. (C) Normalized fiber alignment histogram.  

III. CONCLUSION 
 Glioblastoma cell and Matrigel-bound bead motility showed 
that invasive cells (active cdc42) “pull” the ECM into the tumor, 
as suggested by the strong correlation between cell and bead 
motility. Inhibiting different cell molecular signals altered both 
cell and bead motility. Inhibiting FAK showed almost block the 
cell and bead movement, while inactive cdc42 and Rho1 inhibitor 
showed moderate motility, which suggest that cell has multiple 
redundant signaling pathway via these signals. LKB1 inhibits 
FAK, and thus LKB1+ NSCLC did not show collagen fiber 
realignment, while LKB- NSCLC increased the fiber alignment. 
Our in vitro models provide alternative view on cancer invasion 
and help to better understand metastatic cancer in various ECM 
conditions.   
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Short Abstract — Each mammalian olfactory sensory neuron 
expresses only one out of thousands of olfactory receptor alleles 
and the molecular mechanism remains as one of the biggest 
puzzles in neurobiology. We constructed a mathematical model 
and identified a three-layer regulation mechanism that robustly 
generates single-allele expression:  zonal separation, epigenetic 
activation and subsequent allele competition for a limited 
number of enhancers. Model analyses conclude that the 
regulatory system has been evolutionarily optimized to 
minimize multiple allele activation and alleles trapped in 
incomplete epigenetic activation states. The identified design 
principles demonstrate the importance of molecular 
cooperativity in selecting and maintaining monoallelic olfactory 
receptor expression. 

I. INTRODUCTION  
 lfaction is essential for the proliferation and survival 

of an organism. One of the most intriguing puzzles in 
neurobiology that remains elusive after several decades of 
intensive investigations is:  how is a single allele selected for 
activation from a large number of possible OR genes and 
maintained throughout the lifespan of the neuron? Proposals 
on the selection mechanism can be divided into two 
categories: individual-allele centered selection, and 
enhancer-regulated selection. Each of the two proposed 
mechanisms has experimental supports and complications. 
The individual-allele epigenetic competition model reveals a 
natural feedback mechanism that expression of the winning 
allele causes endoplasmic reticulum stress and expression of 
Adcy3 enzyme, which then down-regulates LSD1, leading to 
an epigenetic trap that stabilizes the OR choice [1]. Multiple 
enhancers bind to the active OR alleles, but not the silenced 
ones, and form a dense interaction network [2]. The present 
work aims to reconcile the above two models and provides a 
mechanistic explanation on single-allele OR expression. 

II. MODEL AND RESULTS  
We formulated a mathematical model for the OR 

activation problem. First, zonal segregation reduces the 
number of OR alleles competing for single allele expression 
from thousands to hundreds within a zone. We therefore 
modeled a cell with 100 alleles to recapitulate the selection 

process from within a single zone of olfactory epithelium. 
Each OR allele consists of a linear array of 41 nucleosomes, 

and each nucleosome can bear repressive H3K9, no, or 
active H3K4 methylations [3]. Transition between these 
states is governed by enzyme concentration dependent rates. 

We first examined the model under conditions prior to and 
after OSN differentiation. We found that maintaining high 
levels of methyltransferases and low level of demethylases 
forces an allele to be kinetically trapped at one of the two 
possible epigenetic states throughout the life time of an 
OSN. 

Second, we found that elevation of bifunctional 
demethylase level leads to a barrier-crossing like dynamics 
and most of the OSNs with one allele epigenetically 
activated while a small fraction has two and rarely 3 alleles 
epigenetically activated. A prominent feature of this barrier-
crossing-like dynamics is that throughout the process the 
probability of having an allele with hybrid pattern of 
epigenetic marks is low, and most alleles only fluctuate 
around the H3K9me3 dominated state. 

Third, we found that the epigenetic conversion 
mechanism is insufficient to explain the experimental results 
on inhibiting methyltransferases/demethylases unless we 
added another layer with cooperative enhancer competition. 
We predict a loss of diversity of OR expression when the 
level of H3K9 methyltransferases is reduced, which is 
consistent with what observed experimentally [4].  

III. DISCUSSION & CONCLUSION 
Our theoretical studies suggest that single allele activation 

may be achieved through a series of selection processes 
functioning synergistically. A subset of the alleles is selected 
by the zonal segregation. Then they are randomly chosen to 
be epigenetically activated though elevation of bifunctional 
LSD1. Most of the cells only have one epigenetically active 
and thus transcriptional active allele. If more than one allele 
are epigenetically activated, they compete for the enhancers 
to be transcriptionally active, resulting in only one 
epigenetically and transcriptional active allele. If the 
activated allele is not pseudo gene, it triggers the feedback to 
prevent further epigenetic state change.  
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Short Abstract — Endogenous genome targeting and editing 

in an efficient and specific manner are technological challenges, 
particularly in development and translational settings, with 
significant foreseeable impacts. To address these challenges, 
quantitative modeling genomic recombination potentials of 
synthetic donor DNA and triplex-forming molecules from 
sequence content and structural conformation perspectives are 
developed.  These designed sequence-specific and structure-
reshaping molecules are explored for their non-covalent 
intramolecular self and intermolecular genomic interactions.  
Findings indicate contraints and nuances for the design of the 
donor DNA molecule particular to a genomic editing site and, 
analogously, of the triplex-forming molecule particular to a 
genomic targeting site. 
 

Keywords — recombinagenic donor DNA, mutagenic triplex-
forming molecule, genome engineering, precision medicine 

I. PURPOSE 
YNTHETIC oligo- and peptide- nucleic acid mutagenic 

molecules have been more predictably designed and 
externally delivered into the intracellular milieu.  These 
deployed technologies interact with, and influence, the 
cytoplasmic and nuclear molecular machinery in order to 
regulate potentials involved in genomic targeting and 
editing.  By regulating these potentials, silenced yet 
functional genes can be reactivated, as well as exquisitely 
controlled by external and environmental stimuli, thus 
modulating the cellular regulatory hematopoiesis system [1]. 

It is demonstrated that synthetic nucleic acid 
nanostructures composed of various nucleobase and 
backbone modifications can regulate the genomic 
recombination rate, the sequence-specific restriction of a 
locus, and the endogenous repair pathways.  The formation 
of a triplex nanostructure (Fig. 1), by exogenously 
introduced PNA molecules with the duplex chromosomal 
and episomal DNA, is shown to elevate the cell’s targeted 
recombination potential [2].  

 Recombinagenic donor DNA molecules co-opt these 
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elevated recombination or initiated restriction potentials to 
form competing nanostructures that act as homology-
dependent templates, sans edits to be introduced, thus 
potentiating repair [3].  Safety and efficacy of these 
nanostructures is achieved by leveraging the performance 
profile of the cell's own endogenous recombination, 
restriction, and repair machineries in concert with these 
sequence-specific and localizing-in-tandem molecules.  
Progenitor cells drugged with designed molecules, and 
primed with chemical cell modulators, safely and effectively 
redesign the genome, which are then propagated to cellular 
progeny.   

These molecular technologies are developed to remediate 
the underlying genomic causes of monogenic human 
diseases such as hemaglobinopathies, engineer living genetic 
codes, improve crop characteristics, and defend against 
outbreaks, through quantitative modeling and elucidation of 
cellular genomic recombination, and thus has well-
positioned technology profiles for healthcare, biotechnology, 
agrotechnology, and national security. 
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Short Abstract — The morphological change of Caulobacter 

crescentus from swarmer to stalked cell is a result of elaborate 
regulations. The two histidine kinase PleC and CckA controls 
the physiology development and the cell cycle development. 
Here we present a stochastic model that reveals the states of the 
histidine kinase at different cell stage. With the simulation 
result, we believe the kinase form of PleC in the swarmer pole 
is essential for the cell cycle development.  
 

Keywords — Cauoubacter cell cycle, histidine kinase, 
stochastic simulation.  

I. INTRODUCTION 
he asymmetric division of Caulobacter requires 
elaborate regulations that control the chromosome 

segregation, polar differentiation and regulator localization 
[1]. Experiments have identified CtrA as one of the master 
transcription regulators in the Caulobacter cell cycle [2].  In 
swarmer cells the CtrA response regulator binds to the 
chromosome origin of replication and inhibits the initiation 
of chromosome replication. During the swarmer-to-stalk 
transition the active CtrA~p, gets dephosphorylated and 
degraded, and the cell initiates the chromosome replication.  

In the physiology level, the flagella pole development in 
Caulobacter is controlled by the response regulator DivK, 
with the histidine kinase DivJ and PleC [3]. The freely 
diffusing DivK is phosphorylated by DivJ kinase, localized 
at the stalked pole and dephosphorylated by PleC 
phosphatase at the flagella pole [4]. After cytokinesis, the 
activities of PleC and DivJ are physically separates. As a 
consequence, DivK~p level drops dramatically in the 
swarmer cell, and permits flagella development. In addition, 
DivK~p is as an allosteric regulator that turns the PleC 
phosphatase into the kinase form, which phosphorylates 
DivK in return. 

Furthermore, the DivK~p pole indirectly inactivates the 
CtrA through a non-canonical histidine kinase DivL [4]. In 
the swarmer to stalk cell transition, the DivK~p binds to 
DivL and inhibits CckA kinase activity, which in turn 
inactivates CtrA. In this abstract we present our stochastic 
simulation on the reaction-diffusion model for the DivJ-
DivK-PleC and DivL-CckA-CtrA regulation network. 
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II. MATHEMATICAL MODEL 
Our stochastic model is built based on the bistable switch 

model [5] in coordinate with the gene localization and 
mRNA. To demonstrate the spatiotemporal localization of 
regulator species, we deliberately enforce the localization of 
the regulatory species as model events. In the swarmer cell, 
PleC is localized to the old pole. At 30min, swarmer-to-stalk 
transition begins and DivJ is forced to the old pole. At 
50min, PleC is cleared from the old pole and reappeared in 
the new pole at 90min. At 120min, cell is divided into two 
pre-division cells. Figure 1 shows the spatiotemporal 
population evolution of PleC kinase and CtrAp in the 
stochastic simulation. Our model reveals that PleC in the 
new pole stays in the kinase form and sequesters DivKp 
from binding to DivL. Hence, in the swarmer pole, CtrA is 
phosphorylated and active. 

 
Figure 1: The spatiotemporal population of PleC kinase 
(left) and CtrAp (right), the plotted population is calculated 
from the average of 500 stochastic runs.  

III. CONCLUSION 
We developed a stochastic model for the regulatory 

network in the Caulobacter cell cycle. Our model favors the 
explanation that PleC in the swarmer pole stays in the kinase 
form and sequesters DivKp from binding to DivL. Hence, 
CtrA in the swarmer pole is active and inhibits the initiation 
of chromosome replication. 
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A theory of the primary visual cortex,
its zero-parameter quantitative prediction,

and its experimental tests
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A monkeys brain, a good model of human brain, devotes about half of its area to visual processing,
and the primary visual cortex, also called V1, is the largest brain area devoted to vision. There has been a
great amount of experimental data on the neurobiology of V1, including those by Hubel and Wiesel who
won Nobel prize in 1981. However, the role of V1 for the perceptual and cognitive function of vision was
unclear for many years. I will introduce a recent theory of V1 proposing that V1 serves to guide visual
attention using external visual inputs so that the brain can devote its resources to process a tiny fraction
of visual inputs in the attentional spotlight. This theory can be described by a simple equation, which
combined with physiology of V1 can easily derive another simple equation relating several measurable
quantities about visual behavior without free parameters. This prediction is experimentally confirmed. In
addition, surprising insights about our brain are revealed by an “impossible” qualitative prediction of this
theory, and its experimental confirmation.
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Short Abstract — Quorum-sensing (QS) enables bacteria to 

communicate and plays a critical role in controlling bacterial 
virulence. However, effects of promiscuous QS crosstalk 
remain unexplored. Here we systematically studied the 
crosstalk between LuxR/LuxI and LasR/LasI systems and 
found that QS crosstalk can be dissected into signal crosstalk 
and promoter crosstalk. Investigations using synthetic positive 
feedback circuits revealed that signal crosstalk decreases 
circuit’s bistable potential. Promoter crosstalk, however, 
reproducibly generates complex trimodal responses resulting 
from noise-induced state transitions and host-circuit 
interactions. A mathematical model that integrates 
nonlinearity, stochasticity, and host-circuit interactions was 
developed, and its predictions of conditions for trimodality 
were verified experimentally. 
 

Keywords — Quorum-sensing, synthetic circuits, noise, host-
circuit interactions. 
 

uorum-sensing (QS) is a ubiquitous mechanism in 
nature, and its regulator-autoinducer pairs, such as 

LuxR/LuxI and LasR/LasI, have been used in synthetic 
biology for a wide range of applications [1]–[3]. However, 
evolutionary pressures from limited resources in a 
competitive environment promote promiscuous bacterial 
communication, which takes the form of either different 
genera of bacteria producing the same types of autoinducers 
or non-specific regulator-autoinducer binding [4]. As a 
result, QS regulator-autoinducer pairs are not orthogonal, 
and there is crosstalk between them. Dissecting the crosstalk 
is critical for unraveling the underlying principles of 
bacterial decision-making and survival strategies for both 
natural and synthetic systems. 

In this work [5], we used synthetic biology approaches to 
dissect QS crosstalk between LuxR/I and LasR/I. By 
applying engineering principles to construct modular gene 
networks, we were able to characterize and categorize QS 
crosstalk into signal crosstalk, where LuxR binds with the 
non-naturally paired C12 to activate pLux, and promoter 
crosstalk, where LasR binds with C12 to activate non-
naturally paired pLux. 

When signal crosstalk is constructed and tested in the 
context of positive feedback, our results showed a significant 
shrinkage of the bistable region. On the other hand, promoter 
crosstalk caused complex trimodal responses when 
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embedded within a positive feedback circuit. This can only 
be explained when network bistability, gene expression 
stochasticity, and genetic mutations are all taken into 
consideration. We computationally predicted and 
experimentally verified that the C12-LasR-pLux positive 
feedback circuit could drive the formation of three 
subpopulations from an isogenic initial culture: one 
population expressing high GFP expression, the second 
showing basal GFP expression, and the third population with 
no GFP expression. The high and low GFP states are the 
result of positive feedback enabled bistability and gene 
expression stochasticity-induced random state transitions. 

The third non-GFP population is the result of genetic 
mutation from IS10 insertion. From an engineer’s 
perspective, the mutation stands in contrast to previously 
reported host-circuit interactions, which are primarily related 
to resource limitation and resulting growth defects [6]. Here 
we were able to illustrate that both the components used and 
the topology of the network constructed could contribute to 
resource independent host-circuit interactions. This concept 
of combining nonlinear dynamics and host-circuit 
interactions to enrich population diversity expands our 
understanding of mechanisms contributing to cell-cell 
variability, and suggests new directions in engineering gene 
networks to utilize hybrid factors. 

Taken together, our studies not only showcase living 
cells’ amazing complexity and the difficulty in the refining 
of engineered biological systems, but they also reveal an 
overlooked mechanism by which multimodality arises from 
the combination of an engineered gene circuit and host-
circuit interactions.  
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Machines that Assemble Signaling Pathways 
by Reading the Literature:  Progress in 

DARPA's Big Mechanism Program 
 
 

 
Paul Cohen 

 
ARPA’S BIG Mechanism program is developing technology to help humans build mechanistic models 
of very complicated systems.  The test case for the program is Ras signaling, as Ras is implicated in 

roughly 30% of cancers and is the focus of the NCI's recent Ras Initiative.   The idea of Big Mechanism is 
that computers will read journal articles and extract fragments of systems -- such as the Ras pathway -- and 
will assemble these fragments into executable models of the systems.  A range of issues arise, from the 
challenges of machine reading, to the ways humans hedge their conclusions, to the diversity of model 
organisms and tissue types that are represented in articles, to the lack of essential information such as rate 
constants, to the difficulty of assembling results into models.  And yet, a year into the Big Mechanism 
program, machines are reading large numbers of articles and the technologies for assembling models show 
promise. 
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long-standing problem in eukaryotic cell biology is to understand how the genetic information is organized 
and folded to fit into the interphase nucleus. The organization of the genome is non-random and was 

shown to be important for the correct genome function. For example, the nuclear envelope plays a critical role in 
gene regulation and interactions between genes and the nuclear periphery can lead to gene repression. However, 
several genes, including the GAL gene locus in budding yeast, are recruited to the nuclear periphery upon 
activation. We have asked how the association of the single gene locus with the nuclear envelope influences the 
surrounding chromosome architecture. Using modeling and light microscopy assays we follow the movement of 
an entire chromosome in yeast demonstrating that peripheral recruitment of the GAL locus upon carbon source 
change is not an isolated event but part of a large scale rearrangement that shifts many chromosomal regions 
closer to the nuclear envelope. This process is likely due to the presence of independent anchoring points along 
the chromosome and depends on the activity of histone modifying enzymes. 
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Short Abstract — Cells use surface receptors to estimate the 

concentration of external ligands. Limits on the accuracy of 
such estimations have been well studied for cases of single 
ligand-receptor species. However, cell surface contains many 
species of receptors that measure the concentration of several 
external ligands, and non-cognate ligands can bind to 
receptors, resulting in the phenomenon of cross-talk. We show 
that the cross-talk does not interfere substantially with 
determination of ligand concentrations if one is allowed to use 
the entire temporal sequence of receptor binding-unbinding 
instead of only the receptor’s average occupancy. In fact, 
concentrations of two different chemical ligands can be 
measured with just one receptor with an accuracy approaching 
the limit set by basic statistical considerations. We argue that a 
high-accuracy approximation to such inference of multiple 
chemical concentrations can be done using the kinetic 
proofreading mechanism that is abundant in real cells. 

Keywords — ligand concentration estimation, maximum-
likelihood, kinetic proofreading. 

I. MOTIVATION 
ELLS estimate the concentration of external ligands by 
capturing the ligand molecules with cell-surface 

receptors. Limit on the accuracy of such estimation has been 
a subject of interest since the seminal work of Berg and 
Purcell [1], with several substantial improvements found in 
the recent years [2-5]. All these estimates assume one ligand 
species coupled to a single receptor species. However, 
realistically, there are many species of ligands present in the 
vicinity of a cell. Similarly, the cell surface contains several 
types of receptors. In principle, each ligand can bind to each 
receptor, albeit with different affinities. Does this cross-talk 
affect the accuracy of estimation of ligand concentrations by 
the cell? Is it always detrimental, or can it be used to 
improve the estimation? 

II. MODEL 
We answer these questions in the context of a simplified 

model of a single receptor estimating concentration of two 
chemical ligands (cognate and non-cognate) (Fig. A). The 
on-rates for both ligands are assumed to be diffusion-limited 
and hence are nearly the same. However, the cognate ligand 
has a smaller off-rate and hence stays bound to the receptor 
for longer periods of time, generally. Writing down the 
master equation for the system allows us to calculate the 
probability of each particular sequence of binding-unbinding 
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events for the receptor, which we then use for estimation of 
ligand concentrations.  

 

III. RESULTS AND CONCLUSIONS 
We observe that the time series of binding-unbinding 

events carries information about both ligand concentrations, 
where the number of long binding events carries information 
about cognate ligand, and short binding events can be used 
to estimate the concentration of the non-cognate ones. We 
write down the maximum-likelihood (ML) solution [6] for 
this estimation, and an approximate solution that assumes 
that all long binding duration events come from cognate 
receptors. This results in a simplified estimation that can be 
implemented by cells using the kinetic-proofreading 
mechanism, which is an abundant motif in protein signaling. 
We use analytical and stochastic simulation methods to 
investigate the bias and the variance of the approximate 
estimator as a function of the cutoff time above which all 
binding events are considered cognate. The minimum of the 
bias-variance tradeoff curve is very close to the perfect 
estimation (see Fig. B). This shows that the cross-talk allows 
to estimate concentrations of two ligands simultaneously and 
efficiently by one type of receptors. Multiple ligand 
concentrations can be estimated similarly by setting up 
multiple kinetic proofreading cascades. Finally we argue that 
cross-talk can be beneficial in concentration estimation 
problems allowing to extend the dynamic range of the 
system by measuring concentration of a ligand on a non-
cognate receptor when the cognate one is saturated.  
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Short Abstract — The tumor suppressor p53 is among a 

growing list of transcription factors that show complex pulsatile 
dynamics in response to stimuli. While p53 pulses have been 
shown to impact cell fate decisions, the mechanisms by which 
this regulation occurs remain poorly understood. Here, we 
describe our recent computational and experimental efforts in 
which we identify specific functions of p53 dynamics in the 
regulation of its numerous target genes. Our findings point to 
general principles that will likely be important for 
understanding a variety of pulsatile systems.  
 

Keywords — dynamical systems, pulsatile transcription 
factors, p53, live-cell imaging, single-cell transcriptional 
profiling 

I. PURPOSE 

ELLS use complex signaling pathways to detect 
environmental stimuli and execute appropriate 

responses. As methods for quantifying intracellular signaling 
have improved, several signaling pathways have been found 
to transmit information using signals that pulse in time [1, 2].  
The transcription factor p53 is a key stress-response 
regulator that exhibits pulsatile dynamics [3, 4]. In response 
to DNA double-strand breaks, p53 levels in the nucleus 
increase in pulses with a fixed amplitude, duration, and 
period; the mean number of pulses increases with DNA 
damage [3].  

p53 regulates the expression of over 100 target genes 
involved in a range of cellular stress responses including 
apoptosis, cell cycle arrest, senescence, DNA repair, and 
changes in metabolism [5]. p53 pulsing directly impacts p53 
function: altering p53 dynamics by pharmacologically 
inhibiting p53 degradation changes patterns of target gene 
expression and cell fate [6]. While p53 pulsing serves an 
important signaling function, it is less clear what it 
accomplishes mechanistically.  

Here we will describe our recent efforts to determine the 
impact of p53 pulsing on the dynamics and coordination of 
target gene expression.  

II. RESULTS 
We used a combination of experimental approaches, both 
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at the population level and at the single-cell level, informed 
by computational and mathematical modeling efforts, to 
identify functional consequences of p53 dynamics on target 
gene expression. 

A. p53 pulses diversify target gene dynamics 
Using quantitative PCR, we measured the expression of 

the majority of p53 target genes in response to DNA damage. 
From these measurements, we determined several distinct 
classes of target gene dynamics, including pulsatile, rising, 
and step-like dynamics. Using mathematical modeling, we 
identified mRNA half-life as an important parameter in 
determining expression dynamics.   

B. Subnetwork architecture in the p53 network 
Using single-cell transcriptional profiling at key time 

points following damage, we identified specific subnetworks 
of co-regulated p53 target genes. The majority of target 
genes composing the major subnetwork were genes with 
pulsatile expression dynamics. 

C. Tools to control p53 dynamics 
We used pharmacological and novel synthetic biological 

approaches to control the dynamics and localization of p53 
in individual single cells. Using these tools, we are 
identifying the roles of specific characteristics (amplitude, 
duration, and period) of p53 dynamics on the activation of 
p53 target genes. 

III. CONCLUSION 
Our results give new insight into the function of a growing 

number of pulsatile signaling pathways and may inform 
chemotherapeutic strategies based on manipulation of p53 
dynamics.   
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Short Abstract — Type VI secretion (T6S) is a cell-to-cell 

injection system that can be used as a weapon and is present in 
~ 25% of sequenced Gram-negative bacteria. To examine the 
ecological role of T6S, we competed self-immune T6S+ cells and 
T6S-sensitive cells in simulated range expansions. As killing 
takes place only at the interface between sensitive and T6S+ 
strains, while growth takes place everywhere, sufficiently large 
domains of sensitive cells can achieve net growth in the face of 
attack. We validated these findings through in vivo competition 
experiments between T6S+ Vibrio cholerae and T6S-sensitive 
Escherichia coli. We found that E. coli can survive and even 
dominate so long as they have an adequate opportunity to form 
microcolonies. Finally, in simulated competitions between two 
equivalent T6S+ strains, the more numerous strain has an 
advantage that increases with the T6S attack rate.  
 

Keywords — Type VI secretion, microbial competition, 
evolutionary dynamics, simulation, agent-based modeling 

I. INTRODUCTION 
icrobes employ a staggering range of extracellular 

tools to engineer their immediate environment [1]. 
Very often that environment is defined by the multitude of 
other cells in close proximity. The Type VI secretion system 
(T6SS) is a mechanism for direct cell-to-cell manipulation of 
these neighbors through the translocation of effector proteins 
[2]. By far the most commonly observed function of T6S is 
attack [4]. Specialized T6SSs can directly damage both 
prokaryotic and eukaryotic target cells through the 
translocation of toxic proteins directly across the membrane. 
T6SSs are present in approximately 25% of the Gram-
negative genomes studied by Boyer and colleagues [3]. 
Antibacterial T6SSs appear to be found with cognate 
immunity proteins in every case [4]. Given this tactical 
advantage, one might expect T6SS to be even more 
widespread. Why is T6S not universal? 

II. METHODS AND RESULTS 
To address the question of T6S's utility, we focused on the 

case of cell-to-cell killing between bacteria. We explored 
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this scenario through the use of individual-based models 
(IBMs).! We first developed an IBM that competes self-
immune T6S+ and sensitive individuals in a range 
expansion, analogous to a surface colony (2D) or a biofilm 
(3D). We find that cell growth from the inside of an 
established domain can offset cell death at the interface 
between a T6S-sensitive strain and a self-immune T6S 
attacker. Consequently, given a sufficiently large domain, 
T6S-sensitive strains can survive T6S attack. The sensitive 
strain does not require a growth advantage to survive. Given 
even a small growth advantage, the T6S-sensitive strain can 
outcompete a self-immune T6S+ competitor. 

We validated these findings through in vivo competition 
experiments between T6S+ V. cholerae and T6S-sensitive E. 
coli (Fig. 1). In these 2D plate assays, E. coli can form 
persistent microcolonies that survive, provided the initial 
local density of V. cholerae is not too high. Along similar 
lines, simulated competitions between self-immune T6S+ 
strains reveal that the initially more numerous strain benefits 
most from higher attack rates. 
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Fig. 1  Domain size predicts T6S-sensitive survival. Comparisons of 
experimental to simulation outcomes. (a) Left, overnight growth on x-gal 
media from an inoculum consisting of V. cholerae  str. 2740-80 (LacZ-) and 
E. coli  MG1655 (LacZ+), starting from equal amounts of OD600  = 2x10-4  
culture from each species. Right, simulated range expansion from 729 T6S+ 
individuals and an equal number of sensitive individuals. (b) 9-fold dilution 
of simulated and experimental conditions, showing increased survival of 
sensitive E. coli. (c) Final ratio of sensitive E. coli to T6S+ V. cholerae as a 
function of initial inoculum concentration. 
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e have developed a computational discovery platform for identifying and analyzing novel biochemical 
pathways to target chemicals.  Automated network generation that defines and implements the chemistry 

of what we have coined “generalized enzyme functions” based on knowledge compiled in existing biochemical 
databases is employed.  The output is a set of compounds and the pathways connecting them, both known and 
novel.  To identify the most promising of the thousands of different pathways generated, we link the automated 
network generation algorithms with pathway evaluation tools. The simplest screening metrics to rank pathways 
are pathway length and number of known reactions. More sophisticated screening tools include thermodynamic 
feasibility and potential of known enzymes for carrying out novel reactions. Our method for automated 
generation of pathways creates novel compounds and pathways that have not been reported in biochemical or 
chemical databases.  Thus, our method goes beyond a survey of existing compounds and reactions and provides 
an alternative to the conventional approaches practiced to develop novel biochemical processes.  This 
presentation will focus on the components of this computational discovery platform and its application. 
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To ensure a fast and reliable immune response upon 

infection, B-cells rapidly mutate the sequence of their 
antibodies to improve their binding affinity to invading 
pathogens. However, little is known quantitatively about the 
precise relationship between the antibody sequence and its 
binding properties. To study this question, we developed a 
high-throughput method combining experiments with 
advanced statistical analysis to measure antibody affinity with 
high precision. We used this method to measure the effects of a 
wide variety of mutations in complementary determining 
regions (CDR) 1 and 3 of the antibody heavy chain (H). We find 
that the CDR1H domain tends to have fewer severe mutations 
than CDR3H, but has a higher tendency to affect antibody 
expression for non-severe mutations. 
Keywords — yeast display, protein affinity landscape, 

immunology, antibody, statistical analysis. 

I. INTRODUCTION 
 successful immune response is based on the 
recognition of antigens by binding them to antibodies. 
Antibody binding affinity is largely determined by 6 

domains called complementarity determining regions 
(CDR). Mutating these CDRs affect antibody stability and 
affinity. Since measuring antibody stability and affinity is a 
labor intensive and expensive process it is not know how 
they quantitatively depend on the CDR region sequences. To 
overcome these limitations, we developed a method to 
quantitatively measure the landscape of functional antibody 
properties directly from their sequences. 

Our method combines a novel high throughput sequencing 
approach with advanced statistical analysis to quantitatively 
map out the binding landscape. It combines a sequencing 
based method for simultaneously measuring functional 
protein-protein interactions in a large sample, called Sort-seq 
[1], with yeast display [2]. Sort-seq uses FACS armed with a 
statistical analysis to en masse sort cells based on their 
binding affinity and expression. Yeast display has the 
advantage that it allows for disentangling protein expression 
and affinity. Yeast display expression levels also correlate 
highly with protein thermostability. 

II. METHODS AND RESULTS 
We designed yeast plasmid libraries of CDR1H and 
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CDR3H mutants for the fluorescein binding 4-4-20 scFv 
antibody using microarray oligonucleotides. Each CDR 
library consisted of 1950 codon mutations including 
synonymous mutation controls. We FACS separated the 
mutants and counted the frequencies of mutants in each bin. 
Using statistical techniques and experimental validation, we 
mapped mutant frequencies to affinity and expression 
measurements. 

Because affinity measurement is tightly related to both  
antigen and antibody expression, we show that explicitly 
deconvolving expression from affinity is essential for 
accurately measuring affinity. This deconvolution, along 
with the set of synonymous mutations in our library, allow 
us to precisely measure antibody properties with an 
estimated (50:1) signal to noise ratio.  

Our initial results clearly show different effects of 
mutations in CDR1H and CDR3H. CDR3H mutants are 
more likely to destroy antibody affinity. CDR1H mutants 
affect expression independently of affinity, while CDR3H 
mutations tend to affect expression only if affinity was 
abolished.  
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a) Schematic for sort-seq yeast display experiment. 
Weblogos are generated from the effects of single amino 
acid mutations of the 4-4-20 antibody on b) CDR1H and 
c) CDR3H affinity to fluorescein. 

III. CONCLUSION 
By designing libraries and measuring both affinity and 

expression, we can precisely and accurately simultaneously 
measure the biophysical properties of thousands of 
antibodies. This work gives us a basis for studying the 
effects of mutations on immunological recognition. 
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Short Abstract — Living systems have evolved different 

natural oscillations, such as the cell division cycle, metabolic 
rhythms and circadian clocks. These oscillators play important 
biological roles in the survival and the function of cells. These 
different oscillations often co-exist in the same cell with variable 
periods, yet are expected to affect and synchronize with each 
other even with weak coupling. Here we developed a synthetic 
oscillator in budding yeast using negative feedback loop based 
on protein sequestration, a key mechanism of natural 
oscillators. We show that our synthetic oscillator is autonomous 
but strongly coupled to the cell cycle in proliferating cells. 
 

Keywords — Synthetic oscillator, budding yeast, protein 
sequestration, cell cycle coupling and mixed feedback loop. 

I. INTRODUCTION 
iving systems have different oscillations such as the cell 
division cycle, metabolic rhythms and circadian clocks 

[1,2]. Organisms have evolved several genetic oscillators, 
many of which use protein sequestration as a key mechanism 
to generate negative feedback. For example, a common 
architecture is the mixed feedback loop (MFL) [3], which is 
a two-gene circuit that consists of a constitutive activator and 
an inhibitor driven by activator homo-dimer binding. The 
negative feedback occurs when the activator produces high 
levels of inhibitor that eventually sequester the activator into 
an inactive hetero-dimer complex. To better understand the 
design principles of sequestration-based oscillators, we have 
built a synthetic MFL circuit in budding yeast. 
 

Strikingly, our synthetic oscillator was strongly locked to 
the budding yeast cell cycle. We verified that the synthetic 
oscillator was autonomous by blocking the yeast cell cycle 
with nocodazole. The blocked MFL circuit exhibited 
autonomous oscillatory dynamics with a period similar to 
wild-type cell cycle. We could also modulate the MFL 
oscillator period by changing the inhibitor degradation rate 
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via a tunable degron [4]. However, the autonomous period in 
blocked cells did not change much relative to the cell cycle 
period, which explained why the MFL continued to exhibit 
1:1 locking with cell cycle in non-blocked cells over a range 
of degradation rates. These results are different from those 
with bacterial synthetic oscillators [5,6], which did not 
couple to the underlying cell cycle. We are currently testing 
whether this arises from fundamental differences in cell cycle 
biology and/or synthetic oscillator design. 

II. CONCLUSION & DISCUSSION 
We have constructed a genetic oscillator in budding yeast 

that uses the mechanism and the topology frequently found 
in natural oscillators, i.e. mixed feedback loop (MFL) based 
on the protein sequestration. Our synthetic oscillator was 
capable of exhibiting autonomous oscillations with varying 
periods via a tunable degron of the inhibitor in cells with a 
blocked cell cycle. However, the MFL would always couple 
to the cell division cycle in proliferating cells.  

 
Our work shows that yeast cell cycle can have a strong 

coupling with endogenous oscillators. That, in turn, raises 
questions as to whether cell cycle coupling is a universal 
feature across all eukaryote organisms and whether the cell 
cycle can impact the evolution of other natural oscillators 
and vice versa.  
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Escherichia coli cells growing in a constant environment 

vary considerably in growth rates, generation times and 
division sizes. In spite of fluctuations, cells have to complete one 
round of replication in each cycle in order to retain its 
chromosome and it is unclear how this is accomplished. Using 
fluorescence microscopy to localize the replisome we find that 
initiation of replication occurs at a fixed origin to volume ratio 
independently of the time from division. In addition, a model of 
the bacterial cell cycle, where division occurs at a constant time 
after replication initiation, reproduces the variations in timing 
and sizes at division.  

I. BACKGROUND 
or E. coli cells the time between two consecutive 
division events can, during fast growth, be substantially 

shorter than the time required to replicate the genome[1]. This 
is achieved by having parallel ongoing replication processes, 
which were initiated during the cell cycle of an individuals’ 
mother or even grandmother[2]. In the classical description, 
initiation of DNA replication occurs at constant ratio of cell 
volume to number of origins independent of growth 
conditions[3]; a notion, which recently has been both 
questioned[4] and affirmed[5]. Isogenic E. coli cells living 
under constant growth conditions will vary considerably in 
their growth rates, cell cycle times and division sizes[6-7]. In 
spite of these fluctuations, a cell has to initiate and terminate 
one round of replication during each cycle in order to 
maintain its chromosome content. It has recently been 
suggested that, on average, adding a constant volume 
following cell division regulates the cell size at division[8-9]. 
It is, however, still unclear how chromosome replication is 
connected to cell division and how cells uphold one 
initiation and termination per generation given that 
Eukaryote-like cell cycle checkpoints are incompatible with 
overlapping rounds of replication. 

II. EXPERIMENTAL METHODS 
E. coli cells grow exponentially in a constant environment 

using a microfluidic device. Individual cells in the device 
can be localized and tracked over multiple generations using 
fully automated analysis methods. In addition, using single-
molecule widefield fluorescence microscopy, we can detect 
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and localize individual replisomes (DnaQ-Ypet) within 
individual cells.   

III. RESULTS 
We find that when the intracellular replisome localizations 

are aligned based on cell volume, the distribution of 
replisome localization for all cells is better defined than the 
corresponding distribution for cells aligned by time after 
division. This suggests that initiation of replication is size- 
rather than time-dependent. For two different growth rates 
we find a striking similarity in the ratio of number of origins 
to volume at initiation of replication.  Based on these 
observations we construct and test a model where initiation 
of replication occurs at a constant ratio of number of origins 
per cell volume and that cell division occurs after a constant 
time-delay following initiation of replication. The model is 
parameterized based on our experimentally observed data. 
Using our observation of the variation in growth rates we 
can predict the variance in cell size at division, generation 
times and the correlation between these two parameters. 

IV. CONCLUSIONS 
We find that initiation of DNA replication is based on the 
ratio of origin numbers to cell volume rather than time after 
cell division and that the cell-to-cell variability in growth-
rate accurately accounts for the variability in generation 
times, cell sizes and the correlations between the two. 
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A systems-driven experimental approach 
reveals the complex regulatory distribution of 
p53 by circadian factors 
 

Jae Kyoung Kim1,2, Tetsuya Gotoh3, Jingjing Liu3, John Tyson4, Carla V. Finkielstein3 

Unlike single-cell organisms with self-contained 
timekeeping systems, multicellular organisms 
partition their oscillators among different cell types 
and depend on more complex molecular networks to 
sense signals and coordinate effective responses. We 
found that the core circadian clock protein Period 2 
(Per2) directly interacts with the checkpoint 
regulatory component p53, promoting its 
stabilization and controlling p53 transcriptional 
activity. Remarkably, circadian phases of Per2 and 
p53 are anti-phase in the cytoplasm and in-phase in 
the nucleus, posing new questions about the extent to 
which Per2 association modulates p53 distribution. 
Therefore, we focused our efforts on investigating 
what simulated conditions better relate to the 
experimental data using mathematical models. 
Specifically, the model predicted that the phase of 
the Per2:p53 interaction strongly depends on the 
binding mechanisms between Per2 and p53 
mediated by ubiquitin, as determined by evolving 
the interaction types between Per2 and p53 in the 
model during the fitting process. As a result, the 
ubiquitilation state of p53 impacts Per2 binding and 
subcellular distribution. All predictions were 
confirmed experimentally. 
Keywords – circadian rhythms, p53, Period 2 (Per2), 

reverse engineering technique, protein shuttling.  

I. INTRODUCTION 
KEY ASPECT of cell homeostasis in multicellular 
systems involves synchronizing cells to changes in 

environmental conditions, which results in coordinated 
responses that influence cell proliferation and death. 
Our previous findings indicate that the circadian sensor 
factor Per2 directly acts at the p53 node of the 
checkpoint response influencing various levels of 
regulation that impact cellular metabolism and 
bioenergetics ultimately supporting growth and 
proliferation. In this study, we unveil the 
time-dependent regulatory mechanisms that modulate 
p53’s oscillatory behavior, stability, and cellular 
distribution through its association to Per2 using, 
initially, mathematical models. Predictions were 
validated and expanded by experimental data.  

II. RESULTS 
Our recent study finds that Per2 forms a trimeric 

complex with p53 and its negative oncogenic regulator 
Mdm2 [1]. In unstressed cells, this association leads to 
increased p53 stability through blocking 
Mdm2-dependent ubiquitination and transcription of 
p53 target genes. Despite these findings, when levels of 
these proteins were monitored in total extracts, 
circadian phases of p53 and Per2 were anti-phase. 
Subcellular fractionation provided a more 
comprehensive picture of their distribution and revealed 
that p53 and Per2 were anti-phase in the cytoplasm but 
in-phase in the nuclear fraction. To investigate the 
mechanisms underlying these unexpected phase 
relationships, we initially used mathematical modeling, 
where the interaction types between p53 and Per2 
stochastically evolved during the parameter fitting 
process. Using this approach and timecourse data, we 
inferred that i) the half-life of p53 in the nucleus should 
be greater than that of the cytosolic-localized protein 
and that ii) p53 nuclear entry should be mediated by 
Per2. These predictions were confirmed experimentally. 
Overall, our data supports a model in which 
time-dependent phase shift accumulation of Per2 and 
p53 proteins results from a delay in post-translational 
modification events that take place in separate cellular 
compartments. 

III. CONCLUSION 
Our ongoing hypothesis is that Per2 helps to maintain 
basal levels of p53 in unstressed cells to “prime” the 
signaling pathway to rapidly respond to a stress 
condition (i.e., metabolic, genotoxic). Our new data 
expand the current model to include regulation of their 
interaction by post-translational mechanisms and 
cellular compartmentalization as evidenced by 
modeling, and was proven experimentally. In fact, 
while previous studies have focused on using oscillating 
timecourse data to infer the presence of interactions 
among components of biochemical networks [2], our 
mathematical approach allows the use of timecourse 
data to further predict additional signature-types needed 
for molecular interactions to occur in specific cellular 
compartments. 

REFERENCES 
[1] Gotoh, T, et al. "The circadian factor Period 2 modulates p53 

stability and transcriptional activity in unstressed cells.” Mol. 
Biol. Cell 25.19 (2014): 3081-3093. 

[2] Pigolotti, S, et al. "Oscillation patterns in negative feedback 
loops." Proceedings of the National Academy of Sciences 104.16 
(2007): 6533-6537. 

A 

Acknowledgements: This work was funded by NSF 
DMS-0931642 to the Mathematical Biosciences Institute (J.K.K.) 
and NSF CAREER Award to C.V.F. (MCB-0844491) 
1Department of Mathematical Sciences, Korea Advanced Institute 
of Science and Technology, Daejeon 305-701, Korea 

2Mathematical Biosciences Institute, The Ohio State University, 
Columbus, OH 43210  
3 Integrated Cellular Responses Laboratory, Virginia Tech, 
Blacksburg, VA, 24061, USA. E-mail: finkielc@vt.edu and  
4 Computational Cell Biology Laboratory, Virginia Tech 



� 
Short Abstract — Gene networks are commonly studied using 

the classical paradigm of fixed network topology. In contrast, 
we create and investigate a new class of reconfigurable gene 
networks that can be switched between different topology 
without genetic changes. We show that a feedforward motif can 
be reconfigured to produce three distinct expression patterns. 
Furthermore, we demonstrate the motif’s capacity to control 
the ratio between three proteins with only two inducers. Our 
work will impact the understanding of dynamical genetic 
networks and create a new class of synthetic systems for 
biotechnological applications. 
 

Keywords — reconfigurable, network motifs, synthetic gene 
circuits 

I. INTRODUCTION 
ECONFIGURABILITY refers to the ability of natural 
systems to dynamically change their properties, 

including spatial distribution of cells, cellular structures, and 
organization of cellular networks. While cells achieve such 
reconfigurability with relative ease, synthetic biological 
systems are primarily created and studied using the classical 
paradigm of engineered systems, in which circuit 
components are connected through static biochemical wiring 
[1]. However, natural gene networks are fundamentally 
reconfigurable and could potentially give rise to versatile, 
emergent dynamics. Can we take advantage of 
reconfiguration mechanisms of natural cells to create a new 
class of reconfigurable synthetic systems? What are the 
tradeoffs between versatility and fidelity of reconfigurable 
gene networks?  

II. RESULTS AND DISCUSSION 

A. Motif Search and Mathematical Modeling of A 
Reconfigurable Network Motif 
To start, we used a library of three node networks with 

interactions represented by Michaelis-Menten kinetics to 
identify network motifs [2] capable of producing multiple 
dynamics given a fixed range of inducer concentrations. We 
found the most robust reconfigurable architectures, and 
derived the analytical solution of one motif composed of a 
feedforward loop with competing positive and negative 
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regulations at one of the nodes. The analytical solutions 
guide our subsequent experimental perturbations, as well as 
interpretation of experimental results. 

B. Experimental Validation and Perturbations of the 
Reconfigurable Motif 
To assemble the motif, we first characterized dynamics of 

each individual component, incorporating their respective 
kinetic parameters into our model. Next, based on the 
mathematical model, we assembled a reconfigurable circuit 
and quantified its dynamics using both population and 
single-cell assays. We demonstrated that the circuit is 
capable of reconfiguring its topology to produce three 
distinct dynamics: linear, band-pass, and inverter. We further 
perturbed the circuit by changing promoter strengths, copy 
number of genes, and levels of catabolite repression. 
Through the perturbations, we showed that network 
perturbations control the range of circuit reconfigurability.  

C. Exploiting Reconfigurability of the Motif to Control 
Concentration Ratios of Proteins 
The mathematical model predicts an intriguing, novel 

feature of the reconfigurable circuit, which controls the ratio 
between three proteins using only two inducers. We first 
showcased the ratio-control mechanism of the reconfigurable 
circuit using fluorescent reporters, then enzymes of a 
metabolic pathway to illustrate the modularity of the system. 

III. CONCLUSION 
We present a generic mechanism that can reconfigure 

dynamic behavior of a feedforward loop in response to an 
inducer. This motif can be applied to study reconfiguration 
of natural gene networks, and could shed light on 
mechanisms of cellular decision making. Our results 
represent a fundamental shift in how biological networks are 
understood, moving from a fixed-topology to a flexible-
topology paradigm. 
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Circadian rhythms exist in all kingdoms of life. 
Computational models of circadian clocks incorporate 
molecular and behavioral period measurements of 
phenotypes of clock mutations. Stochastic models of 
clocks exist to understand the role of noise, yet none 
attempt to explain experimental variances in period. We 
develop an improved method for detecting rhythmicity in 
genome-wide time series, which we apply to a rich RNA-
Seq dataset in Drosophila. We identify novel rhythmic 
genes and test knockouts to identify circadian 
phenotypes. We use these results to explore the effects of 
stochasticity on predicting period variance and compare 
our simulation to prior results.  

Background 
Circadian rhythms are endogenous rhythms with 
approximately 24-hour periods. In Drosophila, a series of 
transcriptional feedback loops creates the rhythm-generating 
core clock. Mutations in the core clock can lead to changes 
in the period of oscillations and strength of rhythmicity, 
which can be measured by an activity profile (actogram) of 
organismal behavior over time.  

Many methods exist for detecting rhythms in time series 
data. When data are noisy, sparse, and contain many false 
positives, as genome-wide time series data does, 
successfully detecting rhythms becomes more difficult. One 
leading method is JTK_CYCLE [1], which uses non-
parametric correlations with reference waveforms to detect 
rhythmicity. This method is limited by an overly 
conservative multiple hypothesis test correction and by only 
using symmetric reference waveforms.  

Many models for the core circadian clock exist that 
attempt to replicate measured mean protein, transcript, and 
behavioral dynamics in wild type and mutant phenotypes. 
Most of these models are deterministic [2-4]. However, 
measurements produce distributions of these different 
dynamics, which can only be simulated via stochastic 
models. Stochastic models of differing complexity do exist 
[5,6], but no known detailed stochastic models attempt to 
match the variance observed in the behavioral period. 

Results 
We develop an improved method for detecting rhythmicity 
in circadian genome-wide data by using asymmetric 
reference waveforms to identify asymmetric rhythmic time 
series and using Monte Carlo simulations to empirically 
correct the p-values for multiple hypothesis testing [7]. We 
show that this gives greater sensitivity and specificity for 
rhythm detection in comparison to six other methods, 
including the original JTK_CYCLE method.  

We apply our method to Drosophila melanogaster RNA-
Seq data to identify novel cycling genes. We test knockouts 
of newly identified circadian genes for changes in circadian 
behavior. We compare these phenotypes to our stochastic 
models of the core clock network, with particular attention 
to the variance in period as well as the mean value. 
Reflecting a previously unappreciated asymmetry in period 
variance in actogram experiments, we find that the period 
distribution in our simulations tends to skew below the mean 
value in the deterministic models. We find that care must be 
taken to accurately assign the period of oscillation in a 
stochastic simulation while taking into account circadian 
arrhythmia, which affects a sizeable fraction of core clock 
mutants.  

To inform our understanding of the role of noise in our 
models, we add noise selectively to each species to observe 
how it propagates through the whole clock. We compare 
these results to clock mutants as well as mutants of the 
newly identified circadian genes to verify our predictions of 
the mechanism by which these genes affect the core clock. 

Conclusion 
We conclude that empirically correcting for multiple 
hypothesis testing and searching for asymmetric waveforms 
provides improved rhythm detection over other methods. We 
find that using stochastic simulations to explicitly model the 
distribution of the period in organismal circadian activity 
provides a useful means of understanding the effects of 
circadian mutants on the core clock. Future work includes 
applying our methods to better understand the temperature-
independence (temperature compensation) of circadian 
rhythms and phenotypic mutants.  
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Short Abstract — Oscillations are prevalent in biological 

systems. The vertebrate segmentation clock governs the 
rhythmic segmental patterning of the vertebral column during 
embryonic development. The period of the segmentation clock 
dictates the number and sizes of vertebrae. Stochastic gene 
expression imposes a great challenge to precise embryonic 
development. To address this issue, we counted single RNA 
transcripts and determined, for the first time, the amplitude 
and variability of clock gene expression in an intact tissue. In 
contrast to previously published computational models, our 
results unraveled low amplitudes and high variability in 
oscillatory gene expression, and suggested the presence of sharp 
transcriptional bursts. 
 

Keywords — Vertebrate Segmentation Clock, Cell-To-Cell 
Signaling, Ultradian Oscillations, Stochastic Gene Expression, 
Single Molecule Microscopy, Time-Delayed Feedback Loops. 

I. BACKGROUND 
HE embryonic development relies on precise 
spatiotemporal patterning. Rhythmic segmentation of 

the precursors of vertebral column, the somites, during 
development is one of the most intriguing examples of 
spatiotemporal patterning [1-3]. Periodic segmentation of 
somites is controlled by the oscillatory expression of 
Hes/Her gene family, which is called the vertebrate 
segmentation clock. Several groups including ours have 
demonstrated that disrupting oscillations results in vertebral 
defects [1-2]. The segmentation clock ticks rapidly with a 
period of 30 minutes in zebrafish. Upon completion of each 
oscillation cycle, a cohort of 200 cells collectively generate a 
new segment in zebrafish. The rapidity of oscillations in 
each cell and the entrainment of oscillations at the tissue 
augment the challenges in achieving precision in this 
fascinating developmental patterning. To elucidate the 
underlying mechanism of precision of the vertebrate 
segmentation clock, we combined quantitative 
experimentation with computational analysis. 

II. RESULTS 
Despite the unavoidable gene expression fluctuations, 

embryos display robust outcomes. Stochastic fluctuations in 
gene expression must be buffered under wild-type 
conditions. The amplitude of oscillations should be tightly 
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controlled but there is no knowledge about the amplitude of 
oscillations and its variability in any vertebrate species. To 
fill this critical gap in knowledge, we quantified RNA 
molecules transcribed by two master duplicated 
segmentation clock genes (her1 and her7). Previously 
published computational simulations reported high 
amplitudes and low fluctuations in oscillatory gene 
expression. In contrast, our results unraveled low amplitudes 
and high variability in oscillatory gene expression, and 
suggested their transcription to occur in sharp bursts. Our 
results further demonstrate that the intrinsic (or extrinsic) 
factors dominate gene expression noise at low (or high) 
expression levels. We propose that two extrinsic factors 
underlie random and sharp transcriptional bursts: 1) 
polymerase pausing at the proximal promoters of clock 
genes, and 2) fluctuations in the levels of transcriptional 
activators of the clock genes. We further hypothesize that 
stochastic fluctuations in gene expression must be buffered 
under wild-type conditions by mechanisms of redundancy, 
cross-regulatory feedback loops and local and long-distance 
cell-to-cell communication. 

III. CONCLUSION 
Oscillations of Hes/Her proteins control the temporal 

switch from proliferation to differentiation in various tissues 
[4]. Their gain-of-function correlates with cancer, while 
inhibition restores differentiation. Elucidating the underlying 
mechanism of precision in their oscillations is significant for 
understanding and potentially preventing vertebral 
malformations, for enhancing stem cell proliferation and 
developing therapies against cancer, and for advancing 
predictive modeling of cellular regulatory systems.  
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Clocks and Biopixels to Stealth 

Delivery 
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Intracellular variability is a major obstacle to the fidelity required for a genetic circuit to execute a series 
of “pre-programmed” instructions. Over the past five years we have explored how determinism can 
arise from the synchronization of a large number of cells; in other words, synchronize genetic circuits 
between individual cells and view the colony as the primary design element. This approach led to three 
studies describing (i) how quorum sensing can be used to couple clocks between cells 
(http://biodynamics.ucsd.edu/Intercellular.mov), (ii) how redox signaling can synergistically 
combine with quorum sensing to couple colonies at centimeter length scales 
(http://biodynamics.ucsd.edu/Intercolony.mov), and 
(iii) how intra- and inter-cellular genetic circuits can be rapidly coupled and used to  encode  
information  (http://biodynamics.ucsd.edu/Multiplexing.mp4). We are currently using our 
understanding of these processes to engineer bacteria for the safe production and delivery of anti-
tumor toxins. The long-held monolithic view of bacteria as pathogens has given way to an 
appreciation of the widespread prevalence of functional microbes within the human body. Given 
this vast milieu, it is perhaps inevitable that certain bacteria would evolve to preferentially grow 
within tumors and thus provide a natural platform for the development of engineered therapies. 
We have engineered a clinically tested bacterium to lyse at a threshold population density and 
release a genetically en-coded anti-tumor therapeutic. Upon lysis, a small number of surviving 
bacteria reseed the population, thus leading to pulsatile lysis and delivery cycles with a stealth in 
vivo footprint. We have demonstrated the therapeutic potential of the bacteria in a syngeneic 
colorectal mouse model of cancer using luciferase to monitor the delivery dynamics. This work 
represents our early progress in transversing the scales of Synthetic Biology from the level of 
mathematically designed circuitry to therapeutically relevant animal models. 



  
The cell cycle is the process by which a growing cell 

replicates its genome and partitions the two copies of each 
chromosome to two daughter cells. Many of the  molecular 
details of the budding yeast G1-S transition (START) have 
recently been elucidated, leading us to expand a previous yeast 
cell cycle model [1] to include this new information. We tested 
the accuracy of the new model by performing simulations of 
various mutants not described in the literature, generating 
these new mutants, and comparing simulated to observed 
phenotypes. This approach allowed us to modify the new model 
to fit nearly all experimental data. 
 

Keywords — Cell Cycle, Deterministic Model, Cell Size, 
Mutant Phenotype, Saccharomyces cerevisiae. 

I. INTRODUCTION 
The eukaryotic cell division cycle is regulated by 

cyclin-dependent protein kinases (CDKs) that phosphorylate 
many cellular proteins controlling DNA replication, 
chromosome segregation, and cell division. In the budding 
yeast, Saccharomyces cerevisiae, the sole CDK is Cdc28. 
Cdc28 activity and substrate specificity is governed by its 
obligatory binding partners, cyclins Cln1-3 and Clb1-6 [2]. 
The transitions between each stage of the cell cycle – G1, S, 
G2 and M – are controlled by bistable and irreversible 
biochemical switches involving positive feedback 
mechanisms [3]. In the case of G1-S transition, the mass of 
the cell must reach a critical threshold to ensure cell size 
homeostasis [4]. 

The molecular mechanisms involved in the G1-S 
transition – also known as START in yeast – have been 
well-characterized. In early G1, the only available cyclin is 
Cln3 and its synthesis is proportional to cell mass [5]. 
Moreover, CLN3 mRNA and protein are sequestered at the 
endoplasmic reticulum (ER) by Whi3 and released into the 
nucleus to activate two transcription factors, SBF and MBF 
[6]. Activation of SBF occurs by phosphorylation of Whi5 - 
a stoichiometric repressor of SBF - by Cln3-Cdc28 [7]. SBF 
and MBF induce transcription of the partially redundant 
cyclin pairs, Cln1/Cln2 and Clb5/Clb6, respectively. Cln1/2-
Cdc28 induces budding, transcription of S-phase genes and 
inactivates a stoichiometric inhibitor of Clb5/Clb6-Cdc28 
called Sic1 [8]. Clb5/6-Cdc28 then activates numerous DNA 
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replication proteins and the transcription of genes involved 
in replication. 

The switch behavior of G1-S occurs because of the 
positive feedback from Cln1/2-Cdc28 to fully inhibit Whi5 
and activate Swi6 [9]. 

II. RESULTS AND CONCLUSIONS 
 We have formulated a budding yeast START model 

incorporating most of the new experimental data since Chen 
et al. (2004). The START model recapitulates the 
phenotypes of 214/228 yeast cell cycle mutants (among 
them, 137/145 START mutants and 77/83 FINISH – M-G1 - 
mutants) described in the literature. 

We generated and determined the viability and cell size 
phenotypes of 15 new cell cycle mutants not described in the 
literature, and compared the observed phenotypes to the 
phenotypes predicted by the START model. 

The START model correctly predicted the cell size 
phenotypes of 10 new mutants. The new model also 
correctly predicted the viability of 2 mutants that were 
previously described as inviable. For 4 new mutants, the 
differences in the predicted versus observed cell sizes could 
be resolved by adjusting model parameters. Changes in 
model assumptions and architecture were required for the 
model to correctly predict the viability of other mutants. The 
current budding yeast START model now simulates the 
phenotypes of 149/153 START mutants and 80/84 FINISH 
mutants. 

REFERENCES 
[1] Chen, K.C., et al., Integrative analysis of cell cycle control in budding 

yeast. Mol Biol Cell, 2004. 15(8): p. 3841-62. 
[2] Futcher, A.B., Saccharomyces cerevisiae cell cycle: cdc28 and the G1 

cyclins. Semin Cell Biol, 1991. 2(4): p. 205-12. 
[3] Verdugo, A., et al., Molecular mechanisms creating bistable switches 

at cell cycle transitions. Open Biol, 2013. 3(3): p. 120179. 
[4] Rupes, I., Checking cell size in yeast. Trends Genet, 2002. 18(9): p. 

479-85. 
[5] Ferrezuelo, F., et al., The critical size is set at a single-cell level by 

growth rate to attain homeostasis and adaptation. Nat Commun, 
2012. 3: p. 1012 

[6] Gari, E., et al., Whi3 binds the mRNA of the G1 cyclin CLN3 to 
modulate cell fate in budding yeast. Genes Dev, 2001. 15(21): p. 
2803-8. 

[7] de Bruin, R.A., et al., Cln3 activates G1-specific transcription via 
phosphorylation of the SBF bound repressor Whi5. Cell, 2004. 117(7): 
p. 887-98. 

[8] Yang, X., et al., Design principles of the yeast G1/S switch. PLoS 
Biol, 2013. 11(10): p. e1001673. 

[9] Skotheim, J.M., et al., Positive feedback of G1 cyclins ensures 
coherent cell cycle entry. Nature, 2008. 454(7202): p. 291-6.

Testing Predictions of a New Model for the 
Budding Yeast START Transition Using Novel 

Cell Cycle Mutants 
Neil R. Adames1, Kathy C. Chen2, P. Logan Schuck1, John J. Tyson1,2, Jean Peccoud1,3 



  
Short Abstract — Nanoscale compartmentalization of the 

plasma membrane caused by the actin meshwork or 
membrane microdomains has been speculated to play 
an important role for the assembly and stability of 
signaling complexes. Here we present results from a 
recent experimental and computational study 
quantifying the role of membrane compartmentalization 
in regulating the stability and the dynamics of type I 
interferon receptor complexes. Re-association of 
individual receptor dimers is promoted in a highly 
specific manner, ensuring maintenance of signaling 
complexes beyond their molecular lifetime. 
 

Keywords — Receptor dynamics, plasma membrane 
compartmentalization, spatial-stochastic model. 

I. INTRODUCTION 
ransport and communication across the plasma 
membrane frequently involves the association of 

transmembrane proteins into dimeric or oligomeric 
complexes. Two-dimensional association and dissociation 
rate constants determine the interaction dynamics within 
these complexes. Nano-scale confinement of the interaction 
partners by the actin meshwork and micro-domains in the 
plasma membrane has been speculated to play an important 
role for the dynamics of such protein complexes [1-6]. We 
recently combined experimental and computational methods 
to quantify the effects of plasma membrane 
compartmentalization on the assembly dynamics of type I 
interferon receptor complexes [7]. Such complexes are 
relatively long-lived, which makes them ideally suited to 
study compartmentalization effects.  

II. RESULTS 
A detailed computer model of the membrane compartmenta-
lization was developed, which was built entirely on 
experimentally obtained parameters. Simulation results of 
receptor dynamics were compared with those obtained from 
single molecule fluorescence microscopy experiments 
employing dual-color quantum-dot (QD) labeling of receptor 
subunits. The integration of model building and experiments 
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let to the discovery that a two-tiered compartmentalization 
was involved in regulating receptor stability. 
 

High-resolution spatial stochastic simulations of receptor 
hop diffusion in our model membrane further confirmed that 
confinement enables rapid re-association of dissociated 
signaling complexes in time frames similar to those of QD 
experiments. Our computer simulations also reproduced key 
control experiments. 

III. CONCLUSIONS 
Receptor dimers in the plasma membrane are stabilized 

beyond the molecular ligand-receptor interactions. Our 
spatial-stochastic model of a two-tiered MSK faithfully 
reproduces diffusion and interaction properties in the plasma 
membrane. The hierarchical organization was found to be 
critical for explaining the experimentally observed signaling 
complex stability. Moreover, our spatial-stochastic model 
enabled us to identify a crucial role of the association rate 
constant in complex stabilization. We found that efficient 
stabilization is achieved only beyond a threshold, which 
corresponds to typical ‘on-rates’ of protein complexes. Thus, 
specificity towards stabilization of protein complexes with 
high ‘on-rates’ is ensured.  

 
In summary, our findings reveal the important role of 

plasma membrane compartmentalization for the assembly 
and stability of the signaling complex.  
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Exposure to high temperatures has an adverse effect on 

cellular processes and results in activation of the cellular heat 
shock response (HSR), a highly conserved program of inducible 
genes to maintain protein homeostasis. Quantitative studies of 
the HSR in singe cell organisms have been instrumental to our 
understanding of the principles of control and adaptation, and 
exemplify the utility of tools from control theory, dynamical 
systems, and formal models in molecular systems biology. HSR 
in multicellular organisms, however, adds another layer of 
complexity: while different cells may be exposed to different 
environmental cues and different stability requirements, 
organismic adaptation requires coordination and corporation 
among cells and tissues. Here we use time-resolved longitudinal 
imaging of HSR in C. elegans to study its dynamics and 
coordination. By applying precise spatiotemporal perturbation 
we show that somatic cells integrate local sensation with 
systemic signals to control the time and level of response. We 
describe a robust dynamical pattern of activation and 
deactivation, and implicate sensory neurons in initiating these 
dynamics. A distributed modeling approach assigns distinct 
functionalities to the presumed coupling modes in driving 
specialized but coordinated response. 
 

Keywords — Stress response. Spatiotemporal perturbations. 
Microfluidics. Time-lapse imaging. 
 

HE heat-shock response is a highly conserved molecular 
response to environmental conditions that disrupt 

protein homeostasis  [1,2]. Its major role is to prevent 
protein misfolding and aggregation, both under normal 
conditions and under stress. In a multi-cellular organism, 
this is a major challenge, as the proteome of different cells 
can be markedly different  [3]. Heat-shock response (HSR) 
therefore provides an opportunity to address a fundamental 
question about signals and regulation in a multi-cellular 
organism: How does a regulatory network control a 
coordinated response while at the same time allowing for 
different levels of activation which meet the specific needs 
of individual cells? 

The control of HSR at the cellular level is highly similar 
across organisms, from bacteria to human. Multiple control 
loops link temperature and load of misfolded proteins with 
activation of HSR and synthesis of protein chaperones that 
stabilize the proteome. The impacts of these regulatory 
modules on the robustness of the HSR and on its dynamics 
have been studied theoretically in multiple organisms, 
including bacteria  [4], fungi  [5] and mammalian cells  [6], 
using tools e.g. from control theory and dynamical systems.  
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Recent results demonstrate that in C. elegans activation of 
HSR is not cell-autonomous, and involves both local 
interactions and systemic activation  [7,8]. Here we study the 
activation of the insulin/IGF-1 pathway in C. elegans as part 
of HSR  [9,10]. Upon activation, the central regulator of this 
pathway, the FOXO transcription factor DAF-16, is 
translocated to cell nuclei. A functional DAF-16::GFP 
fusion allows us to track this HSR in real time at the single 
cell level. This is done in a custom microfluidic device  [11], 
which permits durable longitudinal imaging of up to 64 
worms at a time as well as precise control of the 
spatiotemporal temperature profile.  

By measuring the dynamics of response to spatiotemporal 
perturbations we show that information on the overall 
temperature load across the organism is integrated and 
transmitted systemically. This signal is necessary but not 
sufficient for cellular activation of HSR, which required in 
addition local sensation of heat stress. We find a robust 
dynamical pattern of activation and deactivation of HSR, 
and implicate sensory neurons in initiating these dynamics. 
Together, the integration of systemic and local signals 
balances between the need for coordination and for fine-
tuning the response to the needs of individual cells.  

Building on established models of single-cell HSR, we 
investigate the impact of multiple layers of couplings among 
cells. We characterize the multi-cellular HSR as a network-
of-networks, where cellular HSR networks are coupled at 
different hierarchical levels to form the organismic network. 
Our results suggest that different forms of coupling serve 
different functional role, from synchronization and 
coordination to local fine-tuning. These results can be used 
to interpret our recent data, delineating the activation pattern 
of heat-shock proteins.  
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NE  often hears that human vision is “sensitive to single photons,” when in fact the faintest flash of light 
that can reliably be reported by human subjects is closer to 100 photons. Nevertheless, there is a sense in 

which the familiar claim is true. Experiments conducted long after the seminal work of Hecht, Shlaer, and 
Pirenne now admit a more precise, and in some ways even more remarkable, conclusion to be drawn about our 
visual apparatus.  
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Short Abstract — Lipid A is a highly conserved component of 

lipopolysaccharide, itself a major component of the Gram-
negative bacterial outer membrane.  We modeled the nine 
enzyme-catalyzed steps its biosynthesis in E. coli, focusing 
particularly on biosynthesis regulation, which occurs through 
regulated degradation of the LpxC and WaaA enzymes.  The 
model agrees with many experimental findings, including the 
lipid A production rate and the behaviors of several LpxA 
mutants.  Flux control is dominated by LpxC if pathway 
regulation is ignored, but by LpxK if regulation is present.  
These results suggest that LpxK may be a useful drug target. 

I. INTRODUCTION 
IPOPOLYSACCHARIDE (LPS) is a glycolipid that 
forms the major component of the outer leaflet of the 

outer membrane of most Gram-negative bacteria, covering 
about 75% of the E. coli cell surface area. LPS helps 
stabilize these membranes, protects them from chemical 
attack, and promotes cell adhesion to surfaces. It elicits a 
strong immune response in humans and other animals [1]. 
 LPS comprises lipid A, core oligosaccharide, and O-
antigen, of which the lipid A component is of particular 
interest because it is essential for cell viability and highly 
conserved. These also make its biosynthetic pathway an 
attractive target for new antibiotics. The lipid A biosynthesis 
pathway has been investigated thoroughly through several 
decades of experimentation [1] but has received remarkably 
little quantitative analysis. 

II. RESULTS AND DISCUSSION 
E. coli lipid A biosynthesis proceeds through nine enzyme 

catalyzed steps (black arrows in Figure 1). These are well 
established from careful experimentation, largely by the 
Raetz group [1]. Lipid A synthesis is regulated (red arrows 
in Figure 1), at least in part, through controlled degradation 
of LpxC and WaaA, both performed by FtsH. We assume 
that FtsH reversibly converts between an inactive state, an 
active state for degrading LpxC, and a different active state 
for degrading WaaA [2]. Regulation that directs FtsH to 
degrade LpxC appears to arise from the lipid A disaccharide 
concentration, based on published experimental results and 
on our own experiments in which we overexpressed LpxK, 
finding that this increased LpxC levels [2]. Regulation that 
directs WaaA degradation appears to arise from mature lipid 
A, before it has been transported to the outer membrane. 
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Figure 1. Model of E. coli lipid A biosynthesis pathway. 
 
This model agrees with observed lipid A production rates, 

the behaviors of LpxA mutants, and correlations between 
LpxC half-lives and cell generation times. It predicts that 
LpxD can replace LpxA and that there may be metabolic 
channeling between LpxH and LpxB. It also showed that 
LpxC is only rate-limiting if pathway regulation is ignored, 
but that LpxK has the most control if not. Although LpxC 
has been pursued most often as a drug target, this suggests 
that LpxK may be a better target. 
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Short Abstract — Expression of the estrogen receptor α 

(ERα) is the most significant predictor of breast cancer severity 
and survival. ERα is overexpressed in the majority of breast 
tumors, and acts as a transcriptional regulator by cyclically 
binding to promoter regions and controlling both mitogenic 
and anti-metastatic pathways. microRNAs and alternative 
polyadenylation also play a role in the ERα regulatory network, 
further enriching the potential dynamics by introducing post-
transcriptional regulation. Using a network modeling 
approach, we are examining the dynamics of coding and non-
coding genes in the MCF7 estrogen response by integrating 
mRNA, microRNA, and 3’UTR expression profiles. 
 

Keywords — Estrogen response, microRNA, alternative 
polyadenylation 

I. BACKGROUND 
ESPITE advances in screening and treatment, breast 
cancer remains a leading cause of cancer and mortality 
in women worldwide [1]. The estrogen receptor plays a 

key role in breast cancer both as a biomarker of cancer 
severity, and as a therapeutic target to reduce tumor mass 
[1]. However, recent studies have demonstrated that estrogen 
signaling also protects tumors against metastatic 
transformation, suggesting that current therapeutics (ERα 
antagonists) have the potential to lead to tumor 
transformation [2].  

ERα binds to estrogen and transcriptionally regulates 
expression of its targets [1]. In addition to ERα-responsive 
genes, several ERα-stimulated microRNAs (miRNAs) have 
been identified that post-transcriptionally regulate both ERα 
and its targets [1]. Also, alternative polyadenlyation (APA) 
alters the length of the 3’ untranslated region (UTR) of 
mRNAs; thus gaining or eliminating miRNA target sites. 
While studies have shown that APA differs across cell types 
and tissues [3], it has not yet been globally investigated in 
response to a stimulus. It is known that ERα interacts with 
numerous co-factors to regulate transcription, and stimulates 
expression of several 3’-end processing proteins [4]. 
Therefore, we hypothesize that miRNA networks exert 
temporal control of ERα signaling, thereby regulating the 
timing and extent of specific cellular responses to estrogen.  

 
Acknowledgements: This work was funded by NIH grants R00-

DK091318-02 and R00-GM102372 awarded to PS and JP respectively.  
1jtbaran@email.unc.edu   2purvisj@email.unc.edu   
3praveen_sethupathy@med.unc.edu  
Curriculum in Bioinformatics and Computational Biology, Department of 
Genetics & Lineberger Comprehensive Cancer Center, University of North 
Carolina at Chapel Hill, NC, USA  

II. METHODS 
To identify both coding and non-coding components in 

ERα regulatory networks, we examine a time course of 
RNA-seq and small RNA-seq data from MCF7 cells 
exposed to 10mM estradiol. Analysis of RNA-seq data using 
the DaPars algorithm [5] combined with 3’-end sequencing 
[3] allows us to infer APA sites and 3’-UTR usage. Together 
these data allow us to construct a regulatory map detailing 
the genes and miRNAs that play a role in estrogen signaling. 
By studying this map we can: (1) identify temporally 
regulated genes, miRNAs, and 3’-UTRs; (2) predict miRNA 
master regulators of ERα-stimulated pathways; and (3) 
identify candidate therapeutic targets that will interfere with 
the ERα’s mitogenic pathways without eliminating its anti-
metastatic functions. 

III. CONCLUSIONS 
Numerous genes and miRNAs respond to estrogen-

stimulation, and detailed analysis of ERα occupancy at 
known targets has shown that the receptor cyclically binds to 
promoters and initiates bursts of transcriptional activity. 
ERα-targets such as TFF1 and miRNA-21 both cycle 
following estrogen stimulation. Genome-wide profiling of 
both coding and non-coding transcripts will provide an 
unprecedented systems-level understanding of the temporal 
contribution of miRNAs to the estrogen response in breast 
cancer cells. Finally, these data will provide a dynamic map 
of predicted novel regulators of the estrogen response that 
will guide future therapeutic strategies for breast cancer.  
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� 
Bacteria-phage interaction networks provide an important 

window into the functioning and ecology of microbiomes. Here 
we utilize the CRISPR locus to build and analyze the structure 
of such networks. We find that a CRISPR-derived network in 
Human Microbiome Project data is both nested and modular, 
and a network constructed from the CRISPRdb database is 
modular.  
 

Prokaryotes and their phage predators are abundant in 
many environments and can strongly impact their 
environments. Importantly, recent evidence links bacteria in 
the human microbiome to such phenomena as obesity1, 
cancer2, and immune disorders3. Phages influence their hosts 
in turn, producing population-level effects such as gene 
transfer4 and mediation of pathogenic bacteria outbreaks5, an 
effect exploited in phage therapy6. The interpretation of 
phage-bacteria interaction networks has wide-ranging 
implications for understanding the role of microbiomes in 
their environments.  

Recently discovered prokaryotic adaptive immune system 
CRISPR-Cas7–10 provides another window into bacteria-
phage networks. Bacteria and archaea that possess a 
CRISPR-Cas system can develop a memory of past phage 
infections by incorporating small samples of phage DNA, 
called spacers, into a specific CRISPR locus. Many spacers 
can be stored in a CRISPR locus: up to 587 spacers have 
been documented in Haliangium ochraceum, but most 
CRISPR loci contain fewer than 50 spacers. Unlike previous 
which largely consisted of direct experiments with cultured 
bacteria and phages (Ref [11] compiles 38 such studies). This 
method, while yielding detailed and accurate results, is time-
consuming to the point of being unfeasible for large 
networks. As well, only a small fraction of the 
microorganisms in natural environments can be cultured in a 
laboratory at all12, meaning that a significant portion of 
microbial ecosystems remains inaccessible by this technique.   

In this work, we propose and demonstrate both large-scale 
and small-scale phage-bacteria interaction networks 
constructed using the information contained in the CRISPR 
locus. Many species of bacteria and archaea possess the 
CRISPR system: according to the database CRISPRdb13, 
84% of archaeal genomes analyzed (126/150) and 45% of 
bacterial genomes analyzed (1176/2612) possess at least one 
CRISPR region. To the extent that CRISPR-Cas is utilized in 
a bacterial strain, the CRISPR locus provides a detailed 
snapshot of phage interaction history, which can be used to 
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construct an interaction map. Displaying bacteria-phage 
relationships in this way facilitates comparison to previous 
experimental infection studies and opens the door to 
ecological analysis of microbiomes using existing network 
analysis metrics such as modularity (how well a network can 
be divided into subgroups) and nestedness (to what extent 
the interaction ranges of members are subsets of other 
interaction ranges)11,14–16. 

We construct CRISPR-based networks by aligning 
spacers using BLAST to a compilation of virus and phage 
databases and recording high-scoring matches. The results 
are subjected to the same analysis metrics for nestedness and 
modularity as the traditional experimental infection matrices. 
The CRISPR networks constructed here exhibit modularity 
on large scales, consistent with previous work11. Clustering 
between sub-groups of bacteria and phage is potentially 
indicative of ecologically distinct groups of interacting 
bacteria and phages.  

CRISPR-based networks require much less experimental 
effort to construct than experimental infection studies. 
Additionally, CRISPR data can be extracted from 
metagenomic data with existing approaches13,17–19 and used 
to build networks that more accurately capture interactions 
between bacteria and phages that cannot be lab-cultured. We 
explore this approach with samples from the Human 
Microbiome Project20 using Crass17 to extract candidate 
repeats and spacers.  

Our analysis shows that a bacteria-phage interaction 
network in Human Microbiome Project data is nested and 
modular to a greater degree than two null model datasets, 
one with random interactions sampled from a Gaussian 
distribution, and one with the same number of interactions 
shuffled into random positions. We also find modularity in a 
large network constructed using CRISPR locus data from the 
database CRISPRdb13. This work shows promise as a 
method of investigating bacteria-phage interaction networks.  
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� 
The yeast metabolic cycle is a synchronous rhythm observed 

in Saccharomyces cerevisiae grown under slow-growth aerobic 
chemostat conditions.  It is known to couple to the cell division 
cycle, despite both cycles having different frequencies.  Multiple 
interpretations have been proposed for the nature and purpose 
of this coupling.  By quantitatively measuring the metabolic and 
cell cycle oscillations of multiple strains, we demonstrate strain-
specific coupling between metabolic shifts and DNA replication. 
These data support a model in which metabolic shifts couple to 
cell cycle Start and the ratio of time spent in different metabolic 
cycle phases is proportional to the growth rate. 
 

Keywords — Saccharomyces cerevisiae, yeast metabolic cycle, 
cell cycle, coupled oscillations, systems biology 

I. INTRODUCTION 
The yeast metabolic cycle has been observed since 1969 

[1] and consists of a synchronous oscillation in which yeasts 
growing aerobically alternate between building storage 
carbohydrates during a low-oxygen-consumption phase 
(LOC) and their rapid consumption in a high-oxygen-
consumption phase (HOC), with large oscillations in the 
transcriptome content [2,3].  The cell division cycle couples 
to this oscillation despite having a different period from the 
yeast metabolic cycle.  Specifically, a subpopulation of cells 
passes through cell cycle Start once per metabolic cycle [4].  
The nature of this coupling has been a matter of debate in the 
scientific literature with DNA replication observed in both 
HOC and LOC depending on the strain examined and growth 
conditions used [4]. Understanding the nature of and reasons 
for this coupling stands to shed light on the nature of coupled 
oscillations in biological systems. 

II. METHODS & RESULTS 

A.  Metabolic Cycle Analysis 
Previous research on the yeast metabolic cycle was 

performed in different strains under different chemostat 
conditions.  We wished to determine which behaviors were 
invariant across strains and which showed strain-specific 
variation.  We selected two previous lab strains, as well as 
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two wild isolates, to measure and analyze yeast metabolic 
cycle and cell division cycle events. These strains were 
grown under identical conditions at a set of varied growth 
rates.  We measured yeast metabolic cycles via quantitative 
measurements of dissolved oxygen concentration.   

We found that the HOC phase length changed little with 
decreasing growth rate, whereas LOC phase length extends 
asymptotically as the growth rate slows.  This quantitative 
relationship was invariant across all strains, although the 
period and dissolved oxygen profile of the metabolic cycle 
differed between strains. Closer examination revealed that 
the fraction of time spent in HOC has a positive relationship 
with growth rate, projecting to ~100% at the growth rate 
associated with the switch from respiration to fermentation. 

B. Cell Cycle Analysis 
The cell division cycle was analyzed across strains and 

growth rates by sampling and fixing cells at 10-minute 
intervals over the course of several yeast metabolic cycles. 
We stained for DNA content with SYTOX Green to identify 
populations of cells in G1 (before DNA replication) and 
S/G2 (after replication) at each time-point.  We found DNA 
replication could occur in LOC or HOC depending on the 
strain and growth rate.  Each strain, however, has a 
characteristic delay between entry into HOC phase and 
initiation of DNA replication. This delay changes very little 
with differences in HOC length or growth rate. 

III. CONCLUSIONS 
All tested yeast strains exhibited a metabolic cycle, which 

primarily varies with growth via changes in the length of 
LOC and exhibits a pulse of DNA replication once per cycle.  
This pulse comes after a strain-specific delay following HOC 
entry and can occur in either LOC or HOC. 
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Short Abstract — The asymmetric location of proteins is 

crucial to the Caulobacter cell cycle. The landmark protein 
PopZ determines the location of the key cell cycle regulators 
and tethers the replicated chromosome. Experiments 
demonstrate a self-assembly mechanism for the PopZ 
polarization. Here, we proposed a two-dimensional model 
based on Turing mechanism to explain PopZ bipolarization. 
We explore the parameter set and cell shapes that generate 
patterns with polar activator. Both deterministic and stochastic 
simulations capture the observed variations in cell length and 
time when PopZ becomes bipolar. 
 

Keywords — Cauoubacter cell cycle, PopZ polarization, 
Turing pattern.  

I. INTRODUCTION 
xperiments on the bacterium Caulobacter crescentus 
reveal that the bacterial cytoplasm is elaborately 

organized on space and evolves during the cell cycle [1]. 
The localizations of proteins determine the cell shape, 
chromosome segregation event and differentiation [1]. In 
Caulobacter crescentus, the protein PopZ was identified as a 
potential landmark protein [2]. PopZ locates at the old pole 
of the swarmer cell and begins to accumulate at the new pole 
when the gene segregation is initiated in the stalked cell.  

While the dynamic localization pattern of PopZ is clearly 
observed, the mechanism behind PopZ localization is still 
being revised and debated. This abstract demonstrates our 
two-dimensional model to explain the reaction mechanism 
behind the PopZ localization and illustrates the 
spatiotemporal properties of the cell cycle.  

II. MATHEMATICAL MODEL 
Experiments show that overexpression of PopZ can lead 

to cell division defects [3]. PopZ is able to maintain its 
population level by forming polymers under a self-
organization mechanism. The PopZ polymerization is 
responsible for the PopZ polarization [3]. In order to explain 
the mechanism behind the polarization, we proposed a 
Turing pattern mechanism in coordination with the 
chromosome segregation [4]. Our model can reproduce the 
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bipolarization behavior of PopZ in two-dimensional cell 
shapes, as well as the stochastic variation on the bipolar 
time. Figure 1 shows the deterministic PopZ distribution at 
the end of cell cycle. Figure 2 is a snapshot of an animation 
that shows the stochastic results during the cell cycle. 

 
 
Figure 1: The distribution of PopZ with rectangular cell 

shape (left) and triangle-end shape (right). 
 

 
 
Figure 2: A snapshot of an animation that showing the 

stochastic results during the cell cycle. PopZ Polymer (red), 
Monomer (dark green), Gene (light green), mRNA (blue)  

III. CONCLUSION 
We propose a two-dimensional model for the PopZ 

localization based on Turing pattern. Under this mechanism, 
PopZ drives its own spatiotemporal distribution by a self-
assembly process. Furthermore, the statistics shows the 
variant of the timing for chromosome segregation as well as 
the timing for the PopZ becomes bipolar. 
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Short Abstract — How often, when and where should a 

phenomenon of interest be observed to receive reliable results? 
Generally, experimentalists face the dilemma between accuracy 
and costs of an experiment. Each experiment has its own 
specific challenges. However, optimization methods form the 
basic computational tool to address eminent questions of 
optimal experimental design. We will present a general 
optimization framework for dynamical systems and will 
illustrate its performance on some key biological models and 
discuss its relevance to a glucose model for diabetes treatment. 
 

Keywords — Optimal experimental design, optimization, 
dynamical systems, glucose metabolism. 

I. BACKGROUND 
PTIMAL experimental design is a growing topic that 
spans books [1,2] and review papers [3,4]. In particular, 

optimal experimental designs for biological and medical 
experiments have grown in importance [5,6,7]. The major 
idea behind experimental design is to minimize a utility 
function that reduces the errors or uncertainty in the 
recovered model parameters. For example, in the A-optimal 
design the mean square error is minimized, while in the D-
design the ellipsoid of uncertainty is reduced. Although 
adequate for linear problems, these designs based on Fisher 
information can be grossly inaccurate for nonlinear problems 
[1,2]. 

II. NEW OPTIMAL EXPERIMENTAL DESIGN FRAMEWORK 
Most biological models are based on nonlinear systems of 

ordinary differential equations. Due to this end, we rather 
than basing the design criteria on linearization, tackle the 
full nonlinear problem head-on. The optimal design problem 
naturally lead to bi-level optimization problems where the 
nonlinear parameter estimation serves as the inner 
optimization problem, i.e., 
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Here, E is the expected value over the true parameter pt, 

popt is the recovered parameter given design w, where d are 
observations and m the projection of the state solution y of 
the differential equation onto the obervations d, see [7]. We 
developed method to solve this challenging bi-level 
optimization efficiently. 

III. RESULTS 
We will illustrate our optimal experimental design 
framework on basic biological systems such as logistic 
growth and Lotka-Volterra systems. Moreover, we present 
new optimal experimental designs for the intravenous 
glucose tolerance based on the Minimal Model. Our 
theoretical investigations also provided surprising results: 
For some experiments it can be advantageous to rather 
measure twice at the same time than at different time points. 

IV. CONCLUSION 

We developed a robust experimental design framework for 
problems that evolve from biological applications. The 
design problem lead to a bi-level stochastic optimization 
problem where the underlying problem is the nonlinear 
regression model used to evaluate the parameters. The 
flexibility of our framework to various types of biological 
models and design objectives makes it a powerful tool for 
designing biological experiments. 
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Abstract — T cells play a central role in mobilising the 

adaptive immune system. They perform this function by using 
their T cell antigen receptor (TCR) to detect antigen, in the 
form of short peptides bound to MHC (pMHC). Binding of 
pMHC to the TCR results in TCR phosphorylation, which 
ultimately determines whether T cells become activated. The 
phosphorylation of the TCR is regulated by the tyrosine kinases 
Lck and ZAP and by the tyrosine phosphatases CD45 and  
SHP-1 but precisely how these molecules regulate TCR 
phosphorylation remains an open and important problem. In 
this work, we develop a mechanistic model based on known 
interactions in the literature. We find that the TCR can produce 
inhibitory signalling. This has implications for the rational 
design of therapies for pathologies including HIV and cancer. 
 

Keywords — TCR, SHP-1, ZAP70, ITAM phosphorylation, 
(tandem) SH2 domain, Protein Tyrosine Kinase (PTK), Protein 
Tyrosine Phosphatase (PTP), Phosphotyrosine (pY). 

I. INTRODUCTION 
HE TCR is a multi-protein complex comprising CD3 
dimers δε, εγ and ζζ, alongside the ligand-interacting αβ 

heterodimer. The TCR contains 20 phosphorylatable tyrosine 
which reside as pairs within Immuno-receptor Tyrosine-
based Activation Motifs (ITAMs). ITAM phosphorylation is 
reciprocally regulated by membrane-tethered Src-family 
kinases (SFKs) Lck and Fyn, and by membrane-integral 
phosphatases CD45 and CD148. TCR-pMHC ligation leads 
to an increase in TCR phosphorylation.  

 Subsequently, fully (doubly) phosphorylated ITAMs 
constitute binding sites for the tandem SH2 domains (tSH2) 
of cytosolic zeta-chain associated protein kinase (ZAP70). 
ZAP70 is activated both allosterically upon TCR-binding, 
(as its tSH2 are forced to disengage from auto-inhibitory 
interaction at the PTK domain), and via trans-
autophosphorylation [1]. Docked, activated ZAP70 
phosphorylates transmembrane Linker of Activated T-cells 
(LAT). LAT nucleates a signalosome of SH2-containing 
components of diverse intracellular signaling cascades; 
downstream effects of which, include changes in gene 
expression, proliferation and cytokine secretion. 

SH2-contaning Phosphatase-1 (Shp-1) is an inhibitory T-
cell phosphatase, with ZAP70-mimetic domain structure N-
SH2-SH2-PTP-C. The precise mechanism of inhibitory Shp-
1 signaling is unknown. There exists empirical evidence for 
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Shp1-mediated induction of TCR dephosphorylation which 
depends, at least in part, on SH2 domains [2]; Binding of 
pY-containing ligand by N-SH2 releases its auto-inhibitory, 
intra-molecular association with PTP, activating Shp-1 by 
allostery [3]. Motivated by structural data, we hypothesize a 
model in which (singly or doubly) phosphorylated ITAMs 
may constitute SHP-1 binding sites.  
How ZAP70 and SHP-1 might compete for binding to, and 
exacting their opposing regulatory effects on, the TCR thus 
depends on their relative binding affinities and on the 
balance between singly and doubly phosphorylated ITAMs 
(I1 and I2 respectively).  

II. RESULTS / HYPOTHESES 
We are interested in addressing the following questions: 

Do inhibitory effectors bind activatory ITAMs? 
We identify hypothetical parameter space for which I1 
dominates over I2, and TCR is predominantly SHP-1 bound. 

Why is there multiplicity and pairing of ITAMs? 
The extent of ITAM multiplicity correlates with increasing 
potency, sensitivity and magnitude of response. ZAP70 
engagement at paired ITAMs, coupled with its capacity for 
trans-autophosphorylation augments its activity in a manner 
which would be restricted on isolated ITAM equivalents [2]. 

Why do ITAM binding effectors, such as ZAP70, have 
tyrosines that regulate their activities? 
Mathematical modelling indicates that without trans-auto-
phosphorylation-based regulation, ZAP70 causes unwanted 
constitutive basal ITAM phosphorylation. 

III. DISCUSSION 
The progress of downstream intracellular signaling events 

associated with T cell activation and ZAP70/SHP-1 
regulation of T-cell sensitivity depend on the phosphor-state 
of the TCR. 
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Short Abstract — Cell signaling events usually occur in the 

absence of the detailed balance condition and continuously 
dissipate energy. Consequently, when energy supply is limited, 
specific chemical modification steps might not occur due to the 
lack of energy to support those reactions. How does the absence 
of such modification steps, that are intrinsically stochastic in 
nature, affect single cell signaling kinetics? I address this 
question in the context of a kinetic proofreading scheme used in 
a simple model of early time T cell signaling. I show using exact 
analytical calculations and numerical simulations that 
restricting energy dissipation leads to poorer discrimination in 
single cells for weak and low affinity ligands. Furthermore, 
restricting energy dissipation produced substantially larger 
intrinsic cell-to-cell variations of proteins with qualitatively 
different glass-like signaling kinetics in single cells marked by 
ergodicity breaking, dynamic facilitation, and, non-exponential 
waiting time distribution. 
 

Keywords — Entropy Production, Kinetic Proofreading, 
Dynamic Facilitation, Energy Dissipation. 

I. INTRODUCTION 
iving systems function in noisy environments and yet are 
capable of generating surprisingly precise responses. 
These responses are observed in scales ranging from the 

molecular to single cells to cell populations. A common 
feature of such high precision responses is involvement of 
non-equilibrium processes that requires constant supply of 
energy to execute the responses. How does the limitation in 
the available energy resources affect these responses? We 
address this question here in the context of a widely 
accepted kinetic proofreading mechanism describing ligand 
discrimination in single cells.  
 
The concept of kinetic proofreading was proposed by 
Hopfield[1] and Ninio[2] in the 1970s to explain low error-
rates in protein translation. This concept was applied to 
explain the remarkably sensitive antigen discrimination 
property of immune cells[3] which are able to distinguish 
between ligands, close enough to produce complexes of half-
lives that differ only by few seconds. A key element in a 
kinetic proofreading scheme is the presence of a biochemical 
step that resets any activated state of the receptor to the 
original state. While this step increases sensitivity of the 
response it also requires a constant supply of energy that is 
dissipated away to sustain a non-vanishing probability 
current in the system.  Usually intercellular sources or 
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nutrients absorbed from the microenvironment provide 
sources for generating ATP, e.g., metabolism of glucose in T 
cells or tumor cells.  
 
The dissipation of energy in systems functioning outside 
equilibrium can be quantified by the rate of entropy 
production in the system[4]. The relation between entropy 
production and sensitivity of responses has been recently 
investigated in populations of cells[5]. However, the 
discrimination is executed by individual cells where the 
involved biochemical processes is subject to stochastic 
fluctuations arising from the intrinsic random nature of 
biochemical reactions and cell-to-cell variations of protein 
abundances. Therefore, the amount of energy dissipated as 
the cells execute the discrimination program will vary from 
cell-to-cell and the results obtained by averaging over cell 
populations are not guaranteed to generalize at the level of 
single cells.  
 

II. RESULTS AND CONCLUSION 
I addressed the above issue by calculating energy dissipation 
in single cells and study the role of limiting dissipation by 
imposing boundary conditions in the Master Equation or by 
simulating the stochastic kinetics using a continuous time 
Monte Carlo simulation. I specifically investigated two 
cases: (1) a constant pool of energy is available, (2) energy 
is produced at a rate lower than the required energy. 
Limiting dissipation in the kinetic proofreading program 
changed the kinetics of the response qualitatively marked by 
slow kinetics, substantially large cell-to-cell variations, and, 
more importantly, by the presence of dynamic facilitation [6] 
and ergodicity breaking in single cell kinetics. Emergence of 
the last property points to a fundamental disconnect between 
the activation kinetics in single cells and the cell population 
averages. The results are likely to generalize in a large 
variety of systems working in non-equilibrium. 
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Short Abstract — Recently, a transcription repressor, CSP-

1, was identified as a component of the circadian clock in 
Neurospora crassa functioning in a negative feedback loop on 
a circadian transcription factor WC-1. This feedback 
mechanism is suggested to maintain the circadian period in a 
wide range of glucose concentrations, which is referred to as 
glucose compensation. Here, we studied a mathematical 
model of the Neurospora circadian clock incorporating the 
above WC-1/CSP-1 feedback loop, and investigated molecular 
mechanisms of glucose and temperature compensation. Our 
model shows that glucose compensation is achieved by 
balancing the activation rates of csp-1 and wc-1.  
 

Keywords — Neurospora, Circadian clock, Glucose 
compensation, Temperature compensation. 

 

Autonomous circadian oscillations arise from 
transcriptional-translational feedback loops of core clock 
components. The period of a circadian oscillator is 
relatively insensitive to changes in physiological 
temperature and nutrients (e.g., glucose), which is referred 
to as temperature and nutrient compensation, respectively. 
Recently, a transcription repressor, CSP-1, was identified 
as a component of the circadian system in Neurospora 
crassa. The transcription of csp-1 is under the circadian 
regulation [1]. Intriguingly, CSP-1 represses the circadian 
transcription factor, WC-1, forming a negative feedback 
loop that can influence the core oscillator [2]. This 
feedback mechanism is suggested to maintain the circadian 
period in a wide range of glucose concentrations. In this 
work, we modified the existing mathematical model of the 
Neurospora circadian clock [3] incorporating the above 
WC-1/CSP-1 feedback loop, and investigated molecular 
mechanisms of glucose and temperature compensation.  
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Our model shows that glucose compensation exists 
within a narrow range of parameter space where the 
activation rates of csp-1 and wc-1 are balanced with each 
other, and that temperature compensation can be achieved 
by an intricate balance of synthesis and degradation of 
FRQ and WC-1. More importantly, we experimentally 
validated loss of glucose compensation in the wc-1ov 
mutant, and maintenance of the abundance of nuclear FRQ 
as a function of temperature as predicted in the model.  

Furthermore, our stochastic simulations demonstrate that 
the CSP-1-dependent negative feedback loop functions in 
glucose compensation, but does not enhance the overall 
robustness of oscillations against molecular noise. Our 
work highlights predictive modeling of circadian clock 
machinery and experimental validations employing 
Neurospora and brings a deeper understanding of 
molecular mechanisms of glucose and temperature 
compensation. 
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Short Abstract — Understanding the roles of insulin-like 

growth factor 1 (IGF1) and insulin signaling in breast cancer is 
still a major challenge. To tackle this problem, an iterative 
experimentation-computation workflow is employed using a 
screen of time-series protein expression profiles. The 
computation step included utilization of different linear models, 
where directed networks of time translation are constructed 
and analyzed to find novel temporal differences between IGF1 
and insulin stimulation conditions.  Promising results have been 
obtained pointing out links between intercellular trafficking 
with Akt signaling, and lipid biogenesis with MAPK cascade. 
The results confirmed that these inferred interactions are 
acquired differentially downstream of IGF1 and insulin, in 
vitro. 
 

Keywords — Insulin-like growth factor I (IGF1), insulin, 
signaling, time-translation, mathematical modeling, IGF1R, 
InsR 

I. INTRODUCTION 
HE downstream effects of both insulin-like growth 
factor I (IGF1) and insulin are different in normal and 

disease states. Under normal conditions, IGF1 is a 
proliferation and development factor whereas insulin has a 
major role of glucose homeostasis [1]. Multiple 
investigations have shown evidence of the similar functions 
of the two hormones in cancer progression, escape from 
apoptosis, and proliferation. There are also studies showing 
the association of raised blood levels of IGF1 to increased 
cancer risk [2]. The IGF1 receptors (IGF1R) and insulin 
receptors (InsR) have high sequence and structural 
similarities. The two receptors are heterotetrameric receptor 
tyrosine kinases with disulfide linked two alpha-beta dimers. 
Each ligand can bind to the other receptor with a lower 
affinity than the original agonist. There are studies on how 
ligand binding affects subsequent auto-phosphorylation of 
the intracellular kinase domains the receptors [3, 4].  

Hence, understanding system dynamics downstream of 
IGF1 and insulin, and finding possible pathway 
dysregulatory mechanisms are needed. Our approach selects 
a set of rationally ranked pathway protein candidates from 
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which perturbation experiments are carried out to check the 
validity of predictions.  

II. METHODS & RESULTS 
The data used in this study included 108 protein 

expression profiles, either in total or phosphorylated form, at 
different time points of stimulation with IGF1 or insulin in 
21 breast cancer cell lines.  

A. Time translation models 
The dataset is filtered and proteins with lowest variance 

values are excluded. Remaining 43 protein profiles are 
feature centered and normalized. 

Linear time-translation (Eqn. 1) matrices (matrix T) are 
constructed using three different methods; (1) covariance 
matrices, (2) inverse covariance matrices of maximum 
entropy, and (3) sparse regression matrices determined using 
lasso [5]. Each model is constructed using serum-free 
medium conditioned data as time zero (matrix X) and a time 
point of stimulation as the next time point (matrix Y).   

𝒀 = 𝑻 ∙ 𝑿           (Eqn. 1) 
The time-translation matrices obtained are different for 

each pair of time-translation and for each hormone 
stimulation condition.  

B. Analyses of time-translation models 
The different time-translation models for the same time 

point but with different hormone stimulation are compared 
using the highest magnitude interaction values and a list of 
ranked experimental candidates is generated. Top-ranked 
candidate experiments are currently under evaluation. 
Preliminary results confirmed differential effect of caveolin-
1 knock-down on Akt phosphorylation in IGF1 and insulin 
conditions in MDA-MB-231 cells.   

III. CONCLUSION 
The computationally scalable reverse-engineering models 

of cellular networks in a temporal setting introduced here 
provided us a framework to elucidate experimental targets of 
pharmacological importance in a cost effective way 
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Short Abstract — Gap junctions, formed from connexin 

hexamers, act as unique conduits for regulation cellular 
functions by mediating intercellular molecular transport. We 
observe connexin 43 (Cx43) to be largely distributed at the 
edges of embryonic stem cell colonies and more sparsely 
present at the colony interior. GAP-Fluorescence Recovery 
After Photobleaching (FRAP) was performed on cells with 
varying degrees of colony connectivity to characterize spatial 
features of inter-cellular communication. A preliminary 
computational agent-based model that incorporates gap 
junction communication as a function of differentiation 
produces spatial patterns being used to how direct intercellular 
molecular exchange may regulate differentiation and loss of 
pluripotency.  
 

Keywords — Gap junctions, connexins, embryonic stem cells, 
spatial differentiation. 

I. INTRODUCTION 
AP junctions are composed of two hexamers of 
connexins located in the plasma membrane of two 

neighboring cells, allowing diffusion of ions and small 
molecules below 1 kDa [1]. In cell colonies, the concurrent 
transfer through gap junctions creates an intercellular 
communication network for small molecules.  

Multiple cellular functions are associated with gap 
junctions and connexins, such as modulation of cell 
signaling [2]. Specifically, inhibition of gap junctions results 
in abrogation of spatial patterns during differentiation, 
suggesting gap junctions provide a novel mechanism of 
regulating spatial differentiation within cell populations [3]. 
 This work interrogates the intercellular network within 
ESC colonies and its effect on differentiation using 
convergent experimental and computational modeling 
techniques. Implementation of experimentally-determined 
bimodal transport rates associated with cell phenotypic state 
into an agent-based model of ESC colony growth and 
proliferation [4] allows us to examine propagation of spatial 
patterns within colonies.  

II. RESULTS 
Mouse ESC cells were fixed, permeabilized, stained with 

Cx43 antibody, counterstained with Hoechst to identify 
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mitotic cells, and analyzed by confocal microscopy. Cx43 
was noticeably expressed by colony edge cells, and 
displayed distinct membrane localization in cells undergoing 
mitosis.  

A. Intercellular Transport rates  
GAP-FRAP is the measurement of fluorescence recovery 

from the diffusion of calcein, a low molecular weight 
molecule, into a previously bleached cell from neighboring 
cells. We observed a bimodal distribution of transport rates 
within ESC colonies with positional dependence. Cells 
undergoing mitosis yielded lower calcein intensity at 
recovery, however the kinetics matched that of non-dividing 
cells. This finding suggests that the two transport rates 
reflect changes in gap junction permeability. 

B. Modeling Transport on Differentiation 
We hypothesize that dynamic connexin expression as a 

function of colony position will result in different kinetics. 
Separate transport rates were assigned to differentiated and 
undifferentiated cells for a generic low molecular-weight 
molecule. Differentiation was predominantly a function of 
concentration thresholds of the molecule. Using these rules, 
spatial patterns of the molecular distribution across the 
colonies formed and preceded differentiation. 

III. CONCLUSION 
Interrogation of intercellular molecular mobility as a 

dynamic characteristic in ESC colonies via computational 
modeling provides hypothetical mechanisms of network 
communication which yield collective behavior of 
differentiation patterning. Our preliminary experimental and 
computational results suggest that differentiated cells have 
faster intercellular transport kinetics, thereby allowing 
regulatory molecules to propagate spatial differentiation 
within ESC colonies.  
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Short Abstract — We analyze sets of transmission electron 

microscopy (TEM) micrographs of the distribution of VEGF 
receptors on cell membrane sheets. The images show these 
receptors tend to localize in small clusters. From a molecular 
perspective, the existence of these clusters has potentially far 
reaching implications given the role of VEGF signaling in a 
range of medical conditions.  

A simple hypothesis on the proximate mechanism of cluster 
formation is that the clusters form in specific domains in the 
cell membrane, the chemical and physical properties of these 
domains result in a locally increased density of receptors. We 
use this hypothesis to build and parameterize a mathematical 
model that should reproduce the distribution of cluster sizes 
across a moderately large sample of images.  

I.  BACKGROUND 
ignal transduction provides the logical inputs a cell 
needs in order to perform its role within the organism. 

The incoming information is processed and a complex bio-
molecular network formulates the response. For the vascular 
endothelial growth factor (VEGF), the initial step is the 
binding of VEGF (ligand) to its membrane bound receptors. 
The subsequent activation of receptors concludes signal 
initiation.  

Modern microscopic imaging and labeling techniques 
reveal certain receptor types tend to co-localize in clusters, 
ranging from a few to hundreds [1]; consequently, the 
distribution of membrane receptors on the cell surface is 
mostly heterogeneous [2]. Our data indicates that this is also 
the case for VEGF receptors. VEGF mediated signaling is 
involved in angiogenesis, important in normal development 
as well as in cancers [3].  

Our goal is to go beyond characterization and attempt to 
provide a predictive model for clustering. We rely on a 
simple working hypothesis that has emerged from detailed 
analysis of static as well as dynamic imaging data [5]. We 
assume that the clusters form through transient residency in 
membrane domains, with the potential for rapid exchange. 
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II. METHODS  
We study TEM images of PAE-KDR cells, porcine aortic 

endothelial cells that express VEGFR-2 (KDR) receptors. 
The receptors are labeled with gold nano-particles [4]. The 
distribution of the labeled receptors is not uniform. We 
identify receptor clusters through a hierarchic distance based 
algorithm with a globally optimized characteristic length, 
and then summarize the distribution of cluster sizes.  

We used the hypothesis of attractive micro-domains to 
build a mathematical model, which provides the probability 
distribution of cluster sizes. The model parameters are 
related to the typical size and density of the domains and the 
relative affinity of the receptors for them. These parameters 
are not directly measurable. The size of a cluster in an image 
depends on the number of receptors present in the imaged 
area, as well as on the labeling efficiency; both may vary 
substantially. Our approach relies on comparing the model 
prediction for the cluster size distribution in each image with 
the one derived experimentally. A Metropolis-Hastings 
algorithm is used to minimize the overall square distance 
between the model and experimental distributions.  

III. RESULTS AND OUTLOOK  
We have performed the cluster analysis for a moderately 

sized set of micrographs, and are working on implementing 
the global fitting algorithm. The global fit may validate or 
refute our simple hypothesis. In the first case, the resulting 
parameters will be useful in estimating the impact of this 
domain structure on signaling.  
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Short Abstract — Major transitions within the cell cycle are 

implemented with positive feedback loops in their regulatory 
pathways, which ensures that they occur quickly and are 
irreversible. Chromosome splitting in anaphase is abrupt and 
synchronous, and it seemed natural to assume that the 
regulation involves positive feedback. We now show in fission 
yeast that feedback happens, if at all, far upstream, but not at 
the level of the direct regulators. Hence, sister chromatid 
separation, being already irreversible by nature, may be one of 
the few major cell cycle transitions that can operate without 
positive feedback.  
 

Keywords — Cell cycle, mitosis, feedback regulation.  

I. INTRODUCTION 
HE sudden splitting of sister chromatids at anaphase is 
visually one of the most remarkable transitions in the 

cell cycle. Anaphase is initiated when the protease separase 
cleaves cohesin, a protein complex that holds sister 
chromatids together. Prior to anaphase, separase is inhibited 
by securin (Nasmyth et al., 2000). Securin degradation 
proceeds over 4 - 20 min, depending on the organism, but 
separation of all chromosomes is typically a magnitude 
faster.  

To explain  the sudden onset of sister chromatid 
separation, a switch-like increase in separase activity has 
been suggested (Hellmuth et al., 2014; Holt et al., 2008;  
Shindo et al., 2012; Yaakov et al., 2012). Positive feedback 
is one of the regulatory mechanisms that can induce such 
switch-like changes and operates at many cell cycle 
transitions (Ferrell, 2013; Kapuy et al., 2009). A candidate 
positive feedback loop for sister chromatid separation has 
been identified in budding yeast (Holt et al., 2008), but it 
remains unclear whether it is physiologically important and 
functionally conserved across eukaryotes.  

 To address this question, we characterized the kinetics of 
both sister chromatid separation and the underlying securin 
degradation in fission yeast cells. Combining our 
quantitative results with computational models suggests that 
synchronous sister chromatid separation occurs without 
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positive feedback regulation.  

II. FINDINGS 

A. Perturbation experiments do not support the presence 
of feedback regulation 
We find that synchronicity of sister chromatid separation 

strongly correlates with securin degradation kinetics. Our 
findings makes positive feedback downstream of separase 
release highly unlikely.  

B. Mechanisms for abrupt anaphase without feedback 
regulation  
Using computational modeling, we show that simple 

assumptions about securin-separase association or securin 
degradation are sufficient to explain rapid separase release. 
These mechanisms ensure a high synchronicity of sister 
chromatid separation, even without positive feedback. 

C. Chromosomes show a tendency to separate in a 
certain order 
Although there is no absolute order, there is a slight 

tendency of ordered separation. We show how this behavior 
can theoretically be explained.  

III. CONCLUSION 
Although positive feedback loops are ubiquitous in the 

cell cycle, such regulation may not be necessary for sister 
chromatid separation. Irreversibility is already ensured 
thermodynamically through loss of cohesion and the switch-
like increase in separase activity can be accomplished by 
mechanisms other than positive feedback.  
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Short Abstract — Intracellular heterogeneity exists to space, 

time, energy and force. These heterogeneity occurs by 
fluctuation of reactions which consists of small number of 
reaction species. At the same time, these elements are not 
independent each other, moreover affect each others. In this 
article, we focused the effect of organization mechanism of 
intracellular structures, which produce spatial heterogeneity 
and time dependency of molecular diffusion. By investigating 
spatial characteristics and the time dependent mean square 
displacement of mobile particles, we conclude that the history 
of the organization mechanisms of intracellular environment 
induces time-dependent behavior of mobile particles in the 
environment. 
 

Keywords — fractal dimension, spatial entropy, molecular 
crowding, anomalous diffusion 

I. INTRODUCTION 
NTRACELLULAR environment is crowded with 
macromolecules [1]. The molecular crowding brings about 

50 times higher viscosity to cytoplasm than water [2]. Such 
environment can result trapping the signaling molecules in 
cytoplasm. However, actual in vivo environment does not 
prevent molecular transferring from cell surface to nucleus. 
In order to realize such movement under the condition, 
heterogeneity of the intracellular environment is significant 
as once signaling molecules had been trapped, they can be 
released later.  This type of diffusion manner is named 
continuous time random walk [3]. By considering the 
process to produce this type of molecular behaviour, the 
distribution pattern of the cause of viscosity is effective. 
That means the rules or mechanisms, which decide the 
distribution of macromolecular structures in a cell may be 
dominant to control the fate of molecular behaviors in vivo. 

In this study, we investigated the organization 
mechanisms of structures of reaction space, which changes 
the final distribution pattern of structural obstacles. We 
classified the organization mechanisms into 
diffusion-limited or reaction-limited. We chose spatial 
parameters to investigate the characteristics of models and 
cell images and compared which organization mechanism is 
more plausible, and estimated the further affect of the 
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difference on mobile particle in the reaction spaces. 

II. RESULTS 
We constructed 3D volumes of intracellular environment 
based on transmission electron microscopy (TEM) images. 
We constructed additional 6 structural models of simply 
random model, diffusion limited aggregation model, 
cluster-cluster aggregation model (diffusion-limited models), 
modified DLA model, Eden model, and modified Eden 
model (reaction-limited models). We used these 3D volumes 
to compare the spatial characteristics to know which model 
could give better explanation of the self-organization 
mechanisms of intracellular structures.  

A. Parameters to describe the spatial characteristics 
We analysed 3D fractal dimension, spatial entropy, 

surface/volume ratio of free mobile space, the volume 
distribution of restricted volume, and the size of circling 
space. All these parameters indicated that reaction-limited 
models keep similar characteristics with TEM 3D image. 

B. Comparison of Mean Square Displacement of a free 
mobile particle in the 3D spaces 
We compared the anomalous characteristics of a mobile 

particle in the 6 simulation spaces. The anomalous diffusion 
constant of a particle in reaction-limited models showed the 
similar value with a particle in TEM 3D image.  

C. Confirmation of the components of structures and the 
actual diffusion manner with experiments 
We investigated the candidates of the cluster-like 

structures in 3D simulation spaces by immunocytochemistry. 
The protein-membrane complexes had the same range of 
their size with the clusters. Single particle tracking showed 
that the environment we prepared for the investigation also 
produced the same anomalous diffusion of a mobile particle. 

III. CONCLUSION 
Our results suggest that the heterogeneity to time of 

molecular diffusion depends on the organization 
mechanisms of environmental structures.  
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Short Abstract — Using microfluidic experiments, stochastic 

simulations, and analytical theory, we investigate how a 
synthetic oscillator in E. coli can be entrained via modulation of 
its protein degradation pathway.  The interaction occurs 
primarily through “queueing” of components for degradation, 
where proteins compete for the oscillator’s primary protease, 
ClpXP, which effectively acts as a queueing server with a finite 
bandwidth.  We find that periodically varying the production 
rate of an otherwise independent protein targeted to ClpXP can 
lead to entrainment, which we understand analytically using a 
degrade-and-fire formalism. 

 
 
Keywords — Entrainment, queueing theory, oscillators, 
synthetic biology, systems biology 

 

I. INTRODUCTION 
iological oscillators permeate our daily life, ranging 
from circadian rhythms, to cell cycles, to our very 
heartbeats.  Control over these systems is often done 

through entrainment [1], but detangling the mechanism of 
entrainment tends to be difficult in natural oscillators due to 
their complex web of interactions. 

A complementary strategy to understanding biological 
entrainment is the synthetic biology approach, where 
genetically encoded circuits are constructed using known 
parts with (mostly) known interactions.  Previously, 
investigators successfully leveraged a synthetic oscillator in 
E. coli as a model for transcriptional regulation-based 
entrainment [2].  In the following, we seek to extend this 
investigation to explore a particular form of post-
translational entrainment, where competition of components 
for proteolytic machinery leads to the coupling of 
environment to oscillator.  This entrainment mechanism may 
arise in a number of natural oscillators, since many natural 
oscillators include analogous proteolytic pathways as one of 
their essential components. 

II. A SYNTHETIC OSCILLATOR AND CLPXP QUEUEING 
Our model synthetic oscillator in E. coli functions based on 
two primary ingredients: delayed negative feedback and 
enzymatic degradation [3].  Focusing on the latter, the 
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oscillator depends on the cell's natural degradation pathways 
to remove proteins from the system quickly.  This 
degradation is due to the processive protease ClpXP 
targeting genetically encoded tags on oscillator proteins. 

Recent work has revealed that the finite bandwidth of 
ClpXP naturally leads to a queueing interpretation of protein 
degradation [4,5], whereby the protease acts as a server for 
proteins.  A consequence is that the protease exhibits 
classical queueing regimes, such as underloaded and 
overloaded regimes where competition for the protease is 
low and high, respectively [6].  These regimes can be 
experimentally realized using synthetic means [4]. 

III. QUEUEING ENTRAINMENT 
We utilize queueing to couple two sets of tagged proteins: 
the oscillator proteins and a protein controlled by an 
externally controlled inducer.  Competition for the protease 
is the primary source of the interaction between the two sets 
of proteins.  This coupling allows us to entrain the oscillator 
with a wide array of external signals with variable strengths 
and periods.  Entrainment is demonstrated experimentally 
using a microfluidic platform, which allows for tightly 
controlled and highly repeatable experiments.  The 
theoretical basis for entrainment stems from the ability for 
queueing coupling to either dilate or contract the oscillatory 
period, depending on oscillatory phase.  This conclusion is 
supported by both stochastic simulations and analytic 
arguments. 
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Previous study has suggested a two-loop model for the 

Drosophila circadian clock gene network which contains a 
negative feedback loop consists of PER-TIM dimer and 
CLK-CYC dimer and a regulation loop consists of VRI, PDP1 
and CLK-CYC dimer. CLK-CYC dimer which contains a 
DNA-binding domain can recognize the E-box within the 
promoter region of per, tim, vri and pdp1 gene. Once binding to 
the E-box, CLK-CYC will activate transcription of the genes. 
However, a novel core clock gene – Clockwork Orange (CWO) 
was identified in 2007 whose detailed function has not been 
clearly investigated. Here, I studied the CWO function using a 
mathematical model. 
 

Keywords — Circadian clock, Drosophila, Clockwork Orange 

I. INTRODUCTION 
IRCADIAN clock is an internal oscillatory mechanism 
whose period is around 24 hours and can be regulated by 

zeitgeber. Circadian clock is widely conserved in fungi, plants 
and animals and is helpful for organism to sense and adapt the 
rhythm signal like light and temperature surrounded. 
Drosophila melanogaster is an ideal model organism to study 
circadian clock. Previous study has suggested a two-loop 
model for the Drosophila circadian clock gene network which 
contains a negative feedback loop consists of PER-TIM dimer 
and CLK-CYC dimer and a regulation loop consists of VRI, 
PDP1 and CLK-CYC dimer. Particularly, VRI repress the 
transcription of clk while PDP1 promote the expression of clk 
[1].CLK-CYC dimer which contains a DNA-binding domain 
can recognize the E-box within the promoter region of per, tim, 
vri and pdp1 gene. Once binding to the E-box, CLK-CYC will 
activate transcription of the genes. PER and TIM will be 
phosphorylated by kinase DBT, CK2 and SGG in cytoplasm. 
Only by forming a dimer, can PER and TIM be stable or they 
will be degraded by further phosphorylation. When PER-TIM 
dimer accumulated to a degree in cytoplasm, they will 
translocate into nucleus and interact with CLK-CYC dimer to 
form a tetramer so that CLK-CYC dissociate with the E-box 
and repress transcription [2].  

There were three labs that identified a novel core clock 
gene – Clockwork Orange (CWO) nearly in the same time in 
2007 [3-5]. Applying microarray and Chip-Seq, they found 
that CWO will bind to the E-box competing with CLK-CYC 
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dimer so that repress transcription. However, the mRNA level 
of per, tim and vri is lower in CWO deficient mutant than in 
wild type which seems inconsistent to common sense. It may 
be caused by the system effect. Here, I studied the CWO 
function using a mathematical model. 

 

II. RESULTS 
The mathematical model consisted of 14 ordinary 

differential equations and was mainly based on assumptions 
listed below:  

i. All biochemical reactions take place in the whole cellular 
environment so that the translocation time of protein and 
nucleic acid can be ignored.  
ii. CLK-CYC binding to E-box activate transcription while 
CWO repress it.  
iii. The concentration of CYC is high enough to form 
dimer with CLK for it is constituted expression in cells. So 
CLK-CYC is regarded as unity in this model whose 
concentration is represented by CLK. 
iv. As there are kinases catalyzed the degradation of PER 
and TIM, the model ignored their spontaneous degradation. 
 
Compared with experimental data before, the model can 

finely simulate the fluctuation of per, tim, clk mRNA level 
under light/dark condition [6].  
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Short Abstract — The functioning of cellular regulatory 

networks is jointly governed by deterministic nonlinear system 
dynamics and stochastic fluctuations. They can counteract or 
amplify each other, and their effects are often difficult to 
separate, particularly, in the context of feedback regulation. We 
developed an approach to separate these contributions at 
molecular level. The parameter space of deterministic bistability 
was mapped and the nonlinearity due to protein homo-
dimerization that supports cellular memory was captured. 
Furthermore, we showed that with additional noise and 
deterministic transients characterized, the stochastic activity, 
the transition rates between the two states of the bimodal 
expression, can be well predicted. 
 

Keywords — Bistability, bimodality, cellular memory, 
positive feedback, stochastic transition, protein 
homodimerization, transcriptional regulation. 
 

ONLINEARITIES are essential to generate complex 
cellular behavior, such as bistability, pattern formation 

or oscillations. Modeling and control of nonlinear systems 
with the help of classical deterministic kinetics is valid when 
noise is absent. However, stochastic effects arise in cells due 
to the small number of molecules in single cells and due to 
the fluctuations in environmental stimuli and pathway 
components [1]. They can drive the system away from that 
predicted by classical kinetics [2]. 

 
When nonlinearities are incorporated into positive 

feedback loops the resulting autocatalytic circuit can 
maintain two stable activity states under identical conditions 
[3], a phenomenon termed bistability. Bistability can uphold 
alternative cellular differentiation states and store cellular 
memory of past stimuli. Noise induces transitions between 
the two states of the bistable system so that both states 
(phenotypes) are present in a cell population, termed 
bimodality, which is commonly considered to be a hallmark 
of bistability. However, noise can have deviant effects in the 
context of positive feedback loops. For instance, bimodality 
can arise in the absence of nonlinearities and even without 
feedback loops [4-5], which makes the distinction of 
deterministic and stochastic effects difficult. Since 
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deterministic nonlinearities and stochastic fluctuations have 
different origins it is important to disentangle their effects to 
analyze and control network functioning.  

 
Focusing on positive feedback circuits, we combined three 
concepts to devise a strategy to distinguish stochastic and 
deterministic effects. Firstly, opening of positive feedback 
loops reduces nonlinearity and consequently the deviant 
effects caused by noise, which permits a deterministic 
characterization. Secondly, a general mathematical theory 
states that opening of feedback loops yields input/output 
relations that map uniquely steady-state values of feedback 
expression states in a large class of systems [6]. Thirdly, the 
polymeric nature of biomolecules permits the creation of 
input/output pairs that are metrically equivalent, a strategy 
we termed feedback splitting. When these conditions are 
satisfied, deterministic mono- and bistability can be mapped.  
 

We created well-defined synthetic positive feedback loops 
that incorporate protein dimerization and/or cooperative 
binding in yeast cells. With feedback splitting, we confirm 
that homodimerization can support robust cell memory. With 
the help of equivalence relations, the nonlinear responses 
obtained by feedback splitting delimit areas of true steady-
state bistability from bimodality. Two distinct factors 
affecting stochastic transition between states were also 
identified: transient kinetics which predominately affect the 
transition in the parameter space outside of the bistable 
region and a fitted noise which determines the rates within. 
We showed that the kinetics of a feedback system over a 
two-dimensional parameter space can be well predicted with 
the model derived from feedback splitting. 
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Quantification of bacterial population dynamics and gene 

expression is critical for developing a mechanistic 
understanding of bacterial physiology and for evaluating and 
optimizing performance of engineered gene circuits. Such 
quantification is typically carried out in bulk cultures that 
are not scalable and require large quantities of reagents. 
Droplet-based microfluidics can potentially overcome such 
limitations. But it also suffers from difficulty in dynamically 
manipulating the chemical environment or in maintaining 
droplet stability for long-term experiments. We developed a 
microfluidic system that integrates droplet injection and 
trapping to overcome these limitations.  
 
Keywords — Quantitative biology, microfluidics, droplet 

injection and bacterial population dynamics. 

I. INTRODUCTION 
uantification of bacterial population dynamics and 
gene expression is critical for developing quantitative 

insights into gene regulation or bacterial physiology [1, 2]. 
Droplet-based microfluidics represents a promising 
alternative of bulk culture to overcome the limitations of 
large volume and high cost. However, it is also limited by 
manipulability of the chemical environment, and 
capability of long-term monitoring of population dynamics 
to acquire high temporal resolution. 

We developed a microfluidic system that is integrated 
with an electrode-free injection technique for dynamic 
manipulation of droplets, and a trapping device to allow 
long-term, stable maintenance and monitoring of 
individual droplets. As a demonstration of our platform, 
we used this system to characterize both natural bacteria 
and engineered bacteria in response to diverse 
environmental cues, such as cell density and antibiotics.  

II. RESULTS 

A. Droplet injection and long-term data acquisition 
In this work, we explored the electrode-free injection 

[3] to dynamically control the chemical environment of 
droplet. The custom device can used to monitor the 
population dynamics in individual droplets for at least 240 
hours. To demonstrate the capability of this microfluidic 
system, we used it to quantify different population 
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dynamics generated by either engineered or natural 
bacterial strains. 

B. Programmed population control by an ePop circuit 
When ePop cells were cultured in droplets, they 

generated population dynamics consistent with the circuit 
function. The population in each droplet started from a low 
density (1~5 cells per droplet), and reached its threshold 
density at approximately the 6th hour when the population 
crashed. The population then recovered at roughly the 20th 
hour. 

C. Inoculum effect (IE) in response to antibiotics 
IE refers to a population-dependent phenomenon in 

which bacteria at high initial densities are able to survive 
with intermediate antibiotic concentrations, while 
populations at low initial densities are eliminated. As our 
experiments in droplets, when streptomycin was 4µg/ml, 
the droplets with a high initial density survived, while 
those with a low initial density did not, which is the 
defining feature of IE.  
D. Programmed altruistic death (PAD) of engineered 
bacteria in droplets 
We then examined the dynamics of PAD of bacteria to test 
to capability of droplet injection technology. The survival 
and death of PAD cells are tunable by two chemicals, 
IPTG and 6-APA. When 6-APA was injected into the 
droplets containing PAD cells, the population without any 
induction of IPTG initiated growth for a short time 
window but stopped growing thereafter. In comparison, 
when the droplets were also injected with 1mM IPTG, the 
population in droplets grew to higher densities.  

III. CONCLUSION 
Our work demonstrated the feasibility of using liquid 

droplets to control and quantify dynamics of small 
bacterial populations, which has implications for the 
analysis of population dynamics of bacteria or other 
microbes in diverse contexts. 
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Short Abstract — integrating actual pathological slides, of 

pre-invasive cancer, with a mathematical model will allow for a 
better understanding of the potential tumor biological 
properties which lead to malignancy.  In our work we hope to 
use image analysis of DCIS to uncover areas of high 
proliferative cellular densities alongside other physical 
constraints and compare them alongside a cellular potts model 
via CompuCell3d. 
 

Keywords — DCIS, KI-67 quantification, Clinical 
parameterization 

I. INTRODUCTION 
uctal Carcinoma in Situ (DCIS) is a commonly 
computationally modeled cancer due to its potential to 
preclude invasive carcinoma [1].   In order to better 

understand possible cellular mechanisms which might 
explain this malignant transition we integrate a novel 2 part 
approach.  For the first part we an automated method to 
quantify histological slides (IHC) of DCIS, stained with the 
proliferative marker KI-67, to find regions of high density 
proliferation and other spatial qualities.  These images also 
allow us to identify basement membrane geometric structure, 
location of relevant blood vessels, and survival outcomes 
that are unique to the specific patient.  For the second half 
we stimulate DCIS growth using a Cellular Potts model, via 
Compucell3d [2], in order to correlate potential similarities 
between the clinical slide and mechanistic explanations via 
the in-situ experiments.  For our simulation we investigate if 
alterations in cell cycle length heterogeneity [3, 4] and 
cell/basement membrane compressibility/deformation [5], 
within patient specific glucose and oxygen 
microenvironments, can result in significant tumor structural 
alterations. 
  Although calibrations of DCIS models using patient 
specific IHC [6] and spatial analysis of tumor growth [7] 
have been done before our model is unique in that it 
combines membrane deformation, identification of spatial 
clinical patterns, and  spatial alignment of blood vessels.   

II. RESULTS 
The work is currently in the process of integration, so 

results are reported alongside the results that we aim for. 

A. KI-67 quantification  
KI-67 cell pixels were properly stratified by setting a 
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threshold of RGB values that 
was set at 2 standard 
deviations around the 
average of many KI-67 
positive cells.  The 
coordinates of these pixels 
were then ran through a 
kernel density estimator.   

B. Model fit 

 
Integrating CellDraw via CC3D we are able to outline the 

physical barriers that will be used within our model based on 
an actual biopsy slide (leftmost panel).  The mock simulation 
of the cell field (middle) shows the basement membrane 
(red), blood vessels (green), and tumor cells (blue) while the 
oxygen field (rightmost) shows the potential diffusion limits 
of oxygen via the blood vessels.  We aim to see what 
parameters can recreate the proliferative densities seen from 
part A, within the tumors physical constraints. 
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Short Abstract — The use of modeling to interpret data and 

predict dynamics has significantly contributed to advances in 
the understanding of cellular regulatory systems, but 
quantitative methods must continue to adapt to handle the 
increasing complexity of this understanding. To this end, we 
have developed a method to address many of the issues 
associated with traditional parameter estimation techniques for 
differential equations models of complex dynamical systems. By 
defining a “nearby” problem, our method improves 
significantly on the efficiency and robustness of traditional 
approaches while providing accurate parameter estimates. 
 

Keywords — Parameter estimation, Differential equations, 
Optimization. 

I. PROBLEM STATEMENT 

UANTITATIVE experimentation and predictive 
modeling have become significant tools for enhancing 

biological research. Particularly in the study of cellular 
regulatory systems, the use of modeling has helped to 
analyze collected data and focus future research [3]. With 
experimental methods continuing to improve, the related 
quantitative techniques must evolve to remain relevant. This 
means, for example, developing methods for broader ranges 
of problems and bigger data sets. 

In general, the problem statement for parameter 
estimation for differential equation models involves finding 
the model parameters that minimize some measurement of 
error between the solution of the initial value problem and 
the experimental data set, i.e., 

  
min

p   
m y( )− d

2

2
 subject to 

  
′y = f t, y, p( ) , 

  
y 0( ) = y0 , 

where d is the given data, t the time, and y the state solution 
of the initial value problem with parameters p. The function 
m projects the state solution onto the data d. 

Traditional methods such as single shooting methods are 
used for solving parameter estimation problems for 
biological systems. These methods require a sequential 
scheme for solving the initial value problem and have been 
shown to be inefficient and to lack robustness [7]. 
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II. ROBUST PARAMETER ESTIMATES 

To improve on the efficiency and robustness of single 
shooting methods, we build on previous alternatives [2,4,5]. 
We replace the state solution y with a spline approximation s 
uniquely defined by spline parameters q and relax the hard 
constraints to achieve the new problem statement 

  
min

p,q
m s q( )( )− d

2

2
+ λ ′s q( )− f t,s q( ), p( )

2

2
+α c p,s q( )( )

2

2
.    

This equation defines a “nearby” problem that can be solved 
using more robust numerical methods.  

We test our method on in silico data generated by 
generalized Lotka-Volterra equations. We then test our 
method on data from an intestinal microbiota experiment, 
and we compare our results to a published parameterized 
model [1,6]. In the first case, we recover both the parameters 
and data, and in the second, our method provides improved 
data recovery relative to the published results. 

III. CONCLUSION 

Our approach of defining a “nearby” problem eliminates 
the computational inefficiency and robustness-limiting step 
of numerically solving an initial value problem at every 
optimization step. In doing so, we have not sacrificed 
parameter or data recovery. This suggests our method 
improves on the capabilities of traditional parameter 
estimation methods and is a valuable tool, particularly for 
the increasingly complex parameter estimation problems like 
those found in cellular regulatory systems. 
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Short Abstract — In this study, we examined how food uptake 

is regulated in C. elegans. Combination of microfluidics and 
automated image analysis enabled longitudinal measurement of 
individual worms at high temporal resolution in precisely 
defined environment. We identified the bi-phasic nature of 
feeding regulation of the worms, where feeding behavior 
alternates between fast regular pumping and slow irregular 
pumping. The rate of food uptake is modulated in response to 
food availability by adjusting the duration of the two modes via 
the control mechanism as known as Pulse-Width Modulation, 
where the neurotransmitter serotonin plays essential role. 
 

Keywords — Pharyngeal Pumping, Regulation of food uptake, 
Serotonin, Pulse-Width Modulation 

I. BACKGROUND INFORMATION 
HE regulation of food uptake is a critical mechanism 

with major physiological impact [1-4]. To understand the 
mechanism of how food uptake is regulated, there has been 
interest in using feeding of C. elegans as a model system [5, 
6]. The nematode feeds on bacteria, and it is facilitated by the 
action of the pharynx, a neuromuscular pump that draws 
bacteria suspended in liquid into the mouth from the 
surrounding environment, and transports them to the intestine 
after concentrating and grinding [7, 8]. Pharyngeal pumping 
is therefore a primary indicator of food intake and consequent 
growth. 

Previous results suggest that pharyngeal pumping depends 
on feeding history and quality of food through a mechanism 
that involves the neurotransmitter serotonin (5-HT, 
5-hydroxytryptamine) [9-11]. Serotonin increases feeding 
rate of C. elegans [12] and has been suggested as a putative 
food signal that controls feeding of the animal [13].  
 

II. SUMMARY OF RESULTS 
Conventional feeding assays are performed on dense 

bacterial lawns which do not allow fine control of food 
concentration. Thus, to probe how food uptake is regulated in 
response to food availability, we employed a custom 
microfluidic device [14] that enabled us to precisely control 

 
Acknowledgements: This work was funded by NSF grant PHY-1205494. 
1Department of Physics and Center for Systems Biology, Harvard 

University, Cambridge, MA 02138. E-mail: klee04@fas.harvard.edu  
2Department of Physics and the James Franck Institute, The University of 

Chicago, Chicago, IL 60637 
3The Institute for Biophysical Dynamics, The University of Chicago, 

Chicago, IL 60637  

the concentration of available food and to monitor the 
dynamics of pharyngeal pumping at high resolution. At 
various food concentrations, we probed the time courses of 
pumping of individual worms, which revealed switching 
dynamics between two pumping modes. In one mode, worms 
pump regularly at maximum rate and, in the other mode, they 
pump sporadically. We show that the durations of the two 
modes are modulated in response to food concentrations, and 
the average feeding rate is determined by the fraction of time 
spent in the fast mode.  

Using strains that lacks serotonin biosynthesis or serotonin 
receptors, the essential role of the neurotransmitter serotonin 
in the regulation of feeding in the nematode was 
demonstrated. 

 

III. CONCLUSION 
With our data, we show that feeding of C. elegans is 

controlled by a serotonin-dependent Pulse-Width-Modulation 
mechanism, with a duty cycle that depends on the availability 
of food. 
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T cells are white blood cells that play an important role in 

immunity. While much progress has been made in discovering 
what molecules constitute the signaling network within the T 
cell, the functional relationship between these molecules 
remains unclear. We take the approach of generating a 
phenotypic model in order to understand this network, 
informed from a quantitative dataset generated by stimulating 
T cells expressing a high affinity therapeutic receptor with 
ligands that have a million-fold range in affinity. This modelling 
approach can explain the entire dataset, the majority of 
published data and help elucidate the signaling network. 
 

Phenotypic models, T-cell signaling, systems biology, signal 
transduction, immunology 

I. INTRODUCTION 
T cells are important immune cells that initiate and 

regulate the adaptive immune response to infections and 
cancer. Much progress has been made in molecular 
immunology to identify the molecules that form the signaling 
network inside the T cell [1]. However, this network is 
complicated and it is unclear how these molecules 
functionally interact with each other. Numerous experimental 
studies have shown that it is the binding parameters between 
T cell receptors and their ligands that determine the 
functional response of the T cell [2-5].  Knowledge of the 
relationship between stimulation strength and response can 
offer insight into the structure of the signaling network. 
Despite extensive study, there is still no mathematical model 
that can explain this relationship consistently with the 
published data [6]. We have taken the approach of 
developing a phenotypic model inferred by a quantitative 
dataset in order to elucidate this signaling network. 

II. RESULTS 
We present a phenotypic model of T cell activation that 

has been inferred from a quantitative dataset. The dataset has 
been generated by stimulating T cells expressing a 
therapeutic high affinity T cell receptor with ligands that 
span a million-fold range in affinity. The phenotypic model 
consists of kinetic proofreading with limited signaling [6] 
coupled to an incoherent feed-forward motif [7]. The model 
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is able to explain all key features of the dataset: ligand 
discrimination, an optimal ligand binding time and an 
inhibition in the response at high doses. It is also able to 
explain the majority of published data [2-5,8]. Furthermore, 
we can show how the model can inform where molecules lie 
in the signaling network. By comparing perturbations of the 
model with knock-down experiments, the role of a molecule 
within the signaling network can be found.  

 

III. CONCLUSION 
We have shown how the approach of generating a 

phenotypic model of T cell activation can yield a tractable 
model that can explain the experimental data and provide 
information on the structure of the underlying signaling 
network. It is an approach that can be applied to signaling 
networks more broadly. 
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The main causes and developing processes for the type II 

diabetes is still largely unknown. Yet obvious loss of β-cell in islet 
has been observed when diabetes happened. Both ER stress and 
apoptosis induced by it play important roles in β-cell loss. To 
answer how such apoptosis come into being, we have built a 
mathematical model to describe the molecule network from ER 
stress to cell death. Such model finds a way to illustrate the 
underline principle of single β-cell decision making facing with 
different inner environment. 
 
Keywords — β-cell, Apoptosis, ER stress, Type II Diabetes. 

I. INTRODUCTION 
he number of people living with, and dying from, diabetes 
across the world is shocking [1]. There are two major 

forms of diabetes, type I and type II. The latter type accounts 
for almost 90% of all cases of diabetes in adults worldwide [1]. 
As a chronic disease, the main causes and developing 
processes for the type II diabetes are of great complexity. 
Nevertheless obvious loss of β-cells in islets has been 
observed when diabetes happened [2].  It’s has also been 
observed that at the early stage of diabetes, the number of 
β-cell in each islet suffers a large amount of decrease as well 
as the number of islets in pancreas [2]. Thus, deciphering how 
β-cells lost during the happening of diabetes is not only of 
great interest in science but also potentially important in 
clinic. 
 The β-cell in islets play a role in secreting insulin, a 
hormone regulates storage of glycogen in the liver and 
accelerates oxidation of sugar in cells. The β-cell is under a 
great ‘pressure’ when the blood glucose is high and it has to 
secret a great load of insulin. A part of such pressure comes 
from the ER stress. ER stress raise from the situation that a cell 
translates too much protein at a time. This unfolded protein 
has to be folded and processed accurately and efficiently in 
endoplasmic reticulum (ER) [3]. As a ‘bottleneck’, usually 
there will be considerable unfolded protein accumulating 
inside endoplasmic reticulum which makes a chain of 
reactions to release such bottleneck. This situation is the so 
called ER stress and the following reactions are unfolded 
protein response (UPR). 
 UPR has been extensively studied by many groups [3][4]. 
However, the role UPR play in the β-cell’s death remains 
unknown. It is known that UPR can activate cell apoptosis [5]. 
But at what extend UPR will cause apoptosis almost surely is 
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still a problem. The ‘extend’ here refers to the time, intensity 
and even the action pattern of ER stress. We aim to answer the 
problem above thoroughly. 

II. SUMMARY OF RESULTS 
We have established an ODE model to simulate the process 

from the upstream ER-stress sensor to the whole downstream 
UPR system, including some proapoptosis gene such as 
CHOP. The input of this model is the amount of unfolded 
protein’s mRNA. This model includes two main feedback to 
repress the unfolded protein accumulating in endoplasmic 
reticulum and one of its feedback, will simultaneously induced 
CHOP. We simulated the ODE model, compared it with the 
experimental data came from our collaborators. It shows that 
our model fits their data qualitatively. And we furthered our 
research on this model into analytical part. Especially on what 
kind of input situation will the final expression level of CHOP 
lead the cell to apoptosis. Some improvement has been made 
on this part of job, and we’ll complete it in the future. 

It has been found that ER stress induced apoptosis is not 
only type of cell death [6]. This means that the model has to 
update, including more relative pathway. 

III. CONCLUSION 
We have established a feasible ODE model to describe the 

whole process from different kind of unfolded protein input to 
the final CHOP expression level. And we have made some 
analytical job on this model in order to give an explanation of 
this process and answer the question of why β-cell choose to 
die. 
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Short  Abstract  —  Integrating  individual  and  population
based  cell  data,  across  mulitple  experimental  methods  is
crucial in gaining new biological understanding. We present a
deep  learning  probabillity  model  that  can  handle  the
integration of different data types with predictive power. The
model  is  deployed  to  understand  resistance  in  a  screen
consisting  of  kinome-wide  RNAi  knockdowns  throughout
multiple cell lines and cancer therapies.

Keywords —  cell  morphology,  resistance,  high  content
screening, kinome, deep learning architectures, RNAi.

I.  INTRODUCTION

Today the life science community has several large data

producing methods at its disposal, such as next-generation

sequencing,  mass spectrometry and high  content  imaging.

We  can  use  these  techniques  to  probe  behavior  and

signalling  of cells  in  a  systematic  and  statistically robust

manner.  Furthermore  we  can  now  investigate  these  cell

dynamics  in  vastly  different  length  scales  ranging  from

genes to full organisms. However although these techniques

have  led  to  extremely  valuable  insights  they  are  often

difficult to combine numerically in a predictive probabilistic

model.  Here  we  present  a  new  method  to  handle  data

integration in combination with a large kinome wide screen

aimed at understanding resistance.

II.  DATA PRODUCTION

An Opera high content imaging system with cell:explorer

robotics (PerkinElmer) was used to conduct multiple kinome

wide RNAi knockdown screens. The full image data consists

of 2.41 million images distributed on 17 cell lines with 11 anti-

cancer therapies. The Opera microscope produces images each

containing several  hundreds of cells,  while  still  maintaining

sufficient  resolution  to  extract  cell-specific  morphological

information  (textures,  geometries,  size).  Cells  were  stained

with Hoechst 33342 (nucleus) and Rhodamine phalloidin (F-

actin).

Morphological  features  were  extracted  using  Acapella

image  analysis  software  (PerkinElmer).  This  produced  a

feature vector  containing thousands of entries  per  cell.  This

vector was stored in a database to facilitate easy access for the

subsequent modeling work.

III.  PURPOSE

It is already known that a connection exist between local

 1Linding Lab, Biotech Research & Innovation Center, UCPH, Denmark.
2Niels Bohr Institute, UCPH, Denmark.
This project is funded by the Danish Innovation Fund: 1311-00010B

signaling  networks  and  morphological  phenotypes (Bakal

et.  al.,  2007)[1].  However,   this  study  only  aimed  at

discovering  distinct  subgroups  of  morphologies  from  the

feature vectors. 

In  order  to  correlate  and  predict  relations  between

morphologies  and  various  prior  information  known  from

the experimental  design  (cell  line,  treatment,  RNAi) in  a

bidirectional  manner,  a  different  model  is  needed.  This

model should be capable of combining uncertanties  across

different  datatypes  including  both  population  and  cell

specfic information. 

We will therefore exploit the properties of deep learning

architectures  (Hinton  et.  al.,  2006)[2,3] to  model  the

probability distribution  of the  morphological  space across

multiple  conditions.  All  prior  information  as  well  as

additional data (e.g. cell count,  mRNA expression) can be

directly  included  as  input  to  the  model  through  binary

encoded vectors.

Figure 1. Schematic overview of the data integration in the deep architecture

model.

IV. CONCLUSION

By exploiting deep learning architectures we will model

the  morphological  feature  space  of  multiple  cell  lines

exposed  to  both  kinome-wide  RNAi  knockdown  and

different  treatment  conditions.  This  will  facilitate  the

systematic identification of the network rearrangements that

occur  after  kinase  knockdown,  exposure  to  anti-cancer

therapies and combinations thereof.
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Short  Abstract  —  In many mammalian tissues,  10% of all

transcripts  display  a  24-hour  rhythm  in  abundance.  These

abundane profiles are thought to be driven by the “circadian

clock”, a regulatory network of transcription factors. 

Recent studies have uncovered that these transcripts 

experience a widespread circadian post-transcriptional 

regulation. Using an ODE-model with time-dependent rates 

we have recently shown that the assumption of rhythmic half-

lives can explain the mismatch of measured peaks of pre-

mRNA and mRNA.  The model predicts that peak phases of ca.

30% of oscillatory mRNA in mouse liver and fly brain are 

determined by rhythmic degradation. An expansion to a PDE 

allows us to include a measure for the molecule's age, and thus

study oxidative protein damage or polyA-tail shortening.

Keywords — Circadian clock, rhythmic degradation, partial

differential equation, transcriptome

ANY behavioral, physiological, and biochemical 

activities show a circadian rhythm. This means 

they continue to oscillate under constant conditions with a 

period of about a day and are entrained to daily 

environmental cycles. On the cell level the circadian clock, 

a negative feedback loop in gene transcription and 

translation, influences several transcription factors [1]. 

Consequently, in many mammalian tissues 10% of all 

transcripts, and a possibly even higher percentage of all 

proteins, display a 24-hour rhythm [2,3].  

M

Recent high throughput studies elucidate the circadian

regulation on various levels of gene expression. Oscillating 

abundances can be found in nascent RNA, mature RNA and

protein concentrations.  The results have been enigmatic 

because transcript peak abundances do not always follow 

the peaks of gene-expression activity in time [4]. We posited

that circadian degradation of mRNAs and proteins plays a 

pivotal role in setting their peak times. To establish guiding 

principles, we derived a theoretical framework that fully 

describes the amplitudes and phases of biomolecules with 

circadian half-lives [5]. We were able to explain the 

circadian transcriptome and proteome studies with the same

unifying theory, including cases in which transcripts or 

proteins appeared before the onset of increased production 

rates. Furthermore, we estimate that 30% of the circadian 

transcripts in mouse liver and Drosophila heads are affected

by rhythmic posttranscriptional regulation.


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In a second approach we expand the view on a molecule's

life and include a measure of a molecule's age. We address 

the question in which cases there is an advantage of 

rhythmic instead of constant degradation of long-lived 

proteins when they accumulate oxidative damage. Secondly,

in a collaboration with Carla Green we use the same model 

to analyze sequencing data of poly(A) tails of mRNA in 

order to identify bottle necks in (rhythmic) mRNA 

degradation.
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Short  Abstract  —  T  CD4+  lymphocytes  differentiate  in

different cell types in response to the cytokines present in their

environment,  this  differentiation is not terminal,  as this  cells

are  plastic.  In  this  work we construct  a  minimal  regulatory

network  which  recuperates  the  attractors  corresponding  to

Th0,  Th1,  Th2,  Th17,  Tfh,  iTreg,  Th9  and  various  Foxp3-

independent T CD4+ cells. Using this network we studied the

effect  of  the  cytokines  in  the  environment  and  of  directed

perturbations in the differentiation and plasticity of this cells.

Finally,  we determined the key nodes of the network for the

differentiation and plasticity of T CD4+ lymphocytes.

Keywords — Regulatory boolean networks,  differentiation,

plasticity, T CD4+ lymphocytes

I.INTRODUCTION

he immune system is a  complex system of biological
processes  and  structures  that  protects  the  organism

against  a  variety of pathogens  with  specialized  responses
and is non-reactivity to itself maintaining  the homeostasis
of the  organism.  T CD4+ lymphocytes,  also known as  T
helper  (Th) cells,  play an important  role orchestrating  the
immune  responses  to  various  infectious  agents.  Naive  T
CD4+ lymphocytes (Th0) are activated when they recognize
an  antigen  presented  by an  antigen  presenting  cell  in  a
secondary  lymphoid  organ.  Depending  on  the  cytokine
milieu  and  costimulatory  signals  in  their  environment
CD4+ T lymphocytes differentiate into different cell types,
expressing  specific  transcription  factors,  membrane
molecules, and cytokines,  which affect the behavior of the
rest  of  the  immune  system[1,2].  This  cell  types  include:
Th1,  Th2,  Th17,  Tfh,,  iTreg,  Th3,  Tr1  and  Th9.  Once
differentiated,  T  CD4+  lymphocytes  can  change  their
expression profile, making this cells plastic[3].

T

The differentiation and plasticity of CD4+ T lymphocytes
depends on the complex molecular interactions between the
molecular  elements  of  the  network.  This  networks  have
been studied with systemic and formal  approaches mainly
using dynamic and autonomous regulatory network models
which  recuperate  the  differentiation  of  this  cells[4-6].
However, the effect of specific alterations in the elements of
the molecular network and the cytokines in the environment
in the differentiation  and  plasticity of this  cells is still  an
open question
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II. RESULTS

e  first  explored  models  considering  solely  the
interaction  between  master  transcription  factors  as

necessary and sufficient elements to explain immune system
differentiation.  Those models  turned  out  to  be false;  they
cannot explain  the origin  of all the expected T CD4+ cell
types or their plasticity. After several refinements, we ended
up with  a  minimal  model  including  transcription  factors,
signalling pathways and, intrinsic and extrinsic cytokines as
its  components.  This  latter  model  was  fully  capable  of
explaining  both the whole set of T CD4+ cell types (Th0,
Th1,  Th2,  Th17,  Tfh,  Th9,  iTreg  and  Foxp3-independent
regulatory T CD4+ cells) and their plasticity. 

W

The  analysis  of  this  minimal  regulatory  network  also
sheds light in the stability of the system’s attractors -which
correspond to different cell kinds- and the global plasticity
of the  differentiation  process.  We predict  a  cell  fate map
showing  which  perturbations  of  the  components  lead  to
transitions between subsets. This cell fate map changes in
different polarizing environments, displaying how extrinsic
signals alter the proportions and stability of the different T
CD4+  subsets.  Also,  we analyzed  the  components  of the
minimal  regulatory network in  the  global behavior  of the
system; in particular, the role of SOCS proteins , inhibitors
of the signaling  pathways, in  the integration  of molecular
signals  and  plasticity is  a  novel  discovery.  The  model  is
qualitatively congruent  with  the  literature  regarding  how
plasticity is affected by the micro-environment. 

III. CONCLUSIONS

he quantity and diversity of the interactions involved in

the differentiation of T CD4+ lymphocytes makes the

behavior of this cells extremely complex, complicating the

understanding and the clinic applications of the system, as

the  effects  are  not  always  direct.  Studying  the  molecular

network as  a  dynamic system lets us understand  how the

interactions  between  the  components  create  the  complex

behaviors that  let the immune system defend the organism

against  pathogens  and  maintain  homeostasis  and  self-

tolerance.  T  CD4+  lymphocytes  are  a  complex,  dynamic

system, and  modeling  the system from this  approach  will

give  us  insights  into  the  richness  of  the  system  and  its

interactions.

T
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Stress-Activated Protein Kinase (SAPK) pathways utilize 
specialized Mitogen-Activated Protein Kinases (MAPK) to 
protect cells against environmental stressors.  However 
dysregulated SAPK pathways are also found in several 
pathologies. In this work we apply a multi-disciplinary 
research strategy that combines mathematical modeling, 
model selection, biochemical and genetic experimentation in 
the S. cerevisiae (yeast) High-Osmolarity Glycerol (HOG) 
pathway to better understand how MAPKs coordinate 
responses to environmental stress. 

I. PURPOSE 
Mitogen-Activated Protein Kinases (MAPK) protect cells 

against ischemia[1], hyper-osmolarity, uv-irradiation[1], [2] 
and other stressors. However dysregulated MAPK pathways 
are also found in Alzheimer’s Disease[5], Amyotrophic 
Lateral Sclerosis[3] and cancer[4]. In this work we detail a 
multi-disciplinary research effort that combines 
mathematical modeling, biochemical and genetic 
experimentation in the S. cerevisiae (yeast) High-Osmolarity 
Glycerol (HOG) pathway to better understand how MAPKs 
coordinate responses to environmental stress. The HOG 
pathway is a prototypical Stress-Activated Protein Kinase 
pathway that transmits osmostress to the Hog1 MAPK via 
two distinct signaling branches (Sho1, Sln1). Hog1, which is 
homologous to the mammalian p38 and JNK kinases, 
translocates to the nucleus upon activation, where it induces 
activation of stress response genes. 

Using Phos-Tag polyacrylamide western blot analysis[5], we 
have shown that Hog1 activation is encoded via positive 
feedback and that deactivation is encoded via negative 
feedback[6]. We use mathematical modeling to identify the 
most likely feedback network that dynamically regulates Hog1 
in response to sustained hyper-osmotic stress. We have thus far 
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been successful in identifying models that agree with our 
preliminary experimental data. We now extend our modeling 
process to objectively rank the models using Approximate 
Bayesian Computation (ABC) techniques to perform model 
selection[7]. 

II. CONCLUSION 
Many signaling mechanisms discovered in yeast are  

conserved in human cells. Understanding how MAPKs are 
regulated during stress and how MAPK dysregulation 
contributes to pathology is critical for human health. 
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Short Abstract — Membrane nanotubes are membrane 

structures that contain actin and connect cells over long 
distances. To gain insight into membrane nanotubes, we use 
theory and computer simulations to study continuum models of 
semiflexible polymers confined within elastic membrane tubes. 
Monte Carlo simulations allow characterization of typical 
configurations of the polymer and membrane as a function of 
parameters such as polymer persistence length and membrane 
bending rigidity. In the regime of low membrane bending 
rigidity, we find the presence of a polymer within the 
membrane suppresses membrane shape fluctuations, which is 
reflected in a decrease in the specific heat of the membrane. 

I. INTRODUCTION 
EMBRANE nanotubes are long and slender tubes 
formed from the plasma membrane, and can vary in 

size, structure, and formation processes. It is speculated that 
cells use membrane nanotubes as a means of intercellular 
communication over long distances, and it has been shown 
that viruses can propagate from one cell to another by means 
of membrane nanotubes [1-3]. 

A number of theoretical and computational studies have 
investigated tubular extensions from cells [3-5]. However, 
the relatively recent discovery of membrane nanotubes 
provides an interesting model system that may provide a 
greater understanding of membrane-cytoskeleton 
interactions. We study membrane nanotubes using a 
theoretical framework based on continuum models. On the 
length scales relevant to membrane nanotubes, many key 
attributes of actin filaments and cell membranes can be 
captured by regarding them as semiflexible polymers and 
thin elastic sheets, respectively. We employ analytical theory 
and Monte Carlo computer simulation methods to explore 
properties of polymer-membrane systems. We simulate 
discretized representations of both polymers and membranes 
in which particles are connected by edges to represent the 
objects. For the flexible membranes, we consider 
triangulated surfaces in which the vertex connectivity is not 
fixed as a way to confer fluidity to the membrane. 
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II. RESULTS 
We begin by using analytical theory to calculate the 

energies of various polymer-membrane configurations. This 
provides a reference point for analyzing later results and 
suggests the favorability of certain polymer configurations. 
We then use Monte Carlo simulations to study the 
equilibrium properties of membranes in isolation. We 
consider effects of the membrane bending rigidity, and at 
small values, we observe a peak in the specific heat of the 
membrane, which is calculated based on energy fluctuations. 
Characterizing the membrane shapes sampled in simulations 
indicate that this peak is associated with a transition from a 
crumpled membrane to a locally flat membrane. 

We next consider the effect of a semiflexible polymer, 
representing a bundle of actin, within an elastic tube. We 
find that fluctuating tubes allow enclosed polymers to 
equilibrate more quickly when compared with polymers 
confined within rigid tubes, but that the presence of a 
polymer has small effect on properties of the membrane at 
typical cell parameters. At low bending rigidity, we find that 
the peak in the specific heat of the membrane can be 
suppressed by the polymer in a manner that depends on the 
length and persistence length of the polymer.  

III. CONCLUSION 
Membrane nanotubes provide a novel system from the 

perspective of studying membrane-cytoskeleton interactions, 
and our results suggest an interesting interplay between 
polymer and membrane properties. Further efforts are 
needed to understand the role of additional factors (e.g., 
actin-associated proteins) and their behavior in biological 
contexts. 
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 Abstract — The coordination of biological activities in daily
cycles  provides  an  important  advantage  for  the  fitness  of
several  organisms.  The  circadian  clock  in  cyanobacteria  S.

elongatus drives  daily  genome-wide  oscillations  in  mRNA
expression  levels,  controls  genome  compaction  and
supercoiling, and modulates cell division. The clock contains a
core oscillator consisting of the proteins KaiA, KaiB, and KaiC,
which  together  generate  circadian  oscillations  in  the  four
phosphorylation  states   of  KaiC.  This  clock  controls  the
circadian expression of the transcriptome via phosphorylation
of  a  single  protein,  RpaA.  In  this  project  we  address  how
reliably  temporal  information  can  be  transmitted  from  the
clock to downstream genes. We have developed a mathematical
model  that  describes  how  cells  can  infer  the  time  from  an
ensemble  of  oscillatory  genes.  Using  techniques  of  Statistical
Mechanics  and  Information  theory,  we  are  able  to  compute
how  many  time-states  cells  can  uniquely  distinguish.  This
enables  us  to  analytically  derive  the  error in  measuring  the
perception of time.

Keywords —  Circadian  Clocks,  Mutual  Information,
cyanobacteria, noise

PURPOSE

ircadian  clock  is  one  of  the  main  ways  to

keep  track  of  time  for  a  wide  range  of

biological organisms [1].  Generating  rhythms in

metabolic  and  behavioral  processes  helps  cells

distinguish between different moments in time [2]

and this  in turn optimizes the cells'  biochemical

functionality. Clocks are connected to the genome

and drive oscillations in the whole transcriptome

[3].  This  connection  is  generally  mediated  by  a

single linking protein that oscillates along with the

clock and triggers the expression of downstream

genes. The purpose of this work was to study the

dynamical  features  of  this  read  out  system that

lead to an accurate perception of time in cells. To

analyze this network we used information theory

and statistical analysis [4]. We defined some of the

relations occurring between oscillatory genes that

maximize  the  information  on  time.  Moreover,

using analytical tools we were able to derive the

error  relative  to  the  measure  of  time  for  each

C
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moment of the day [5]. 

CONCLUSION

n the study of the behaviour of genes that read

out the clock we found the optimal region in

the  parameter  space  that  optimizes  the

information and minimizes the error on time. It

turned out that  the key parameter  is  the phase

shift  between  the  oscillatory  genes.   The

insertion of cross correlation among the noises

[6] induces changes in the optimal phase shift.

Therefore,  having  cross  correlation  could  help

cells  infer  better  information  on  time.  Since

oscillations  in  both  time  and  space  are  very

common in biology, our analysis has a general

validity  and  can  be  equally  applied  to  all  the

systems  that  need to  infer  information  from

oscillatory signals.
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Short Abstract — Cell-to-cell gene-expression heterogeneity is 

a pervasive phenomenon, but its accurate quantification 
remains challenging as the level of many transcripts in single 
cells falls near/below the detection limit of even the most 
sensitive measurement technologies currently available. We  
present  a  combined  experimental  and computational  strategy  
for  inferring  cellular heterogeneity  parameters  through 
Bayesian  integration  of  simultaneously  obtained  expression  
profiles  from  single  and  random  pools  of  k  (e.g., 10)  cells. 
Simulations/experiments show our strategy combines the direct 
interpretability of single-cell data with enhanced sensitivity of 
pooled-cell measurements to enable quantitative comparison of 
cell-to-cell variations across cellular states or conditions using 
modern multiplexed technologies. 
 

Keywords — cell-to-cell heterogeneity, single-cell data 
analysis, k-cell data, Bayesian inference, stochastic gene 
expression, macrophage activation. 

I. INTRODUCTION 
UANTIFYING heterogeneity in gene expression across 
individual cells could help identify novel cell types in 

tissues and address fundamental questions such as how 
cellular fluctuations in gene expression propagate along the 
gene regulatory network. Despite rapid  technological  
advances,  accurate  measurement  of  single-cell  expression  
is  a  major  challenge, particularly because many mRNAs 
are expressed at levels close to or below the detection limit 
of current profiling technologies [1]. Indeed, typical single-
cell gene-expression  profiles  obtained  by quantitative  PCR  
(qPCR)  or  RNA-Seq  contain  a  substantial  number  of  
zero  or  non-detected measurements, which  are  unlikely  to  
be  entirely  attributable  to  cells  expressing  zero 
transcripts and instead may arise from technical factors such 
as missed capture/amplification of mRNA transcripts [1-2].  
Measuring  randomly  sampled  pools  of  a  small  number  
of  cells  (with  the  number  of  cells  per  pool denoted by k, 
such as k=10) offers more robust detection due to the 
increased amount of input mRNA and has been used to 
assess cell-to-cell heterogeneity within the sampled 
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population, such as to infer whether  expression  
distributions  are  bimodal [3]. However, information on 
single-cell variations using data from such k-cell pools is 
nonetheless indirect and the lack of measurements on 
individual cells would hinder applications such as novel cell 
type identification. 

II. RESULTS 
Here  we  present  a  strategy  for  quantifying  cellular  

heterogeneity  that  combines  simultaneous expression 
profiling of single and k-cell samples from a cell population 
with a newly developed statistical model  and  computational  
method for Bayesian inference of  heterogeneity  parameters. 
Our method (called  QVARKS)  quantifies  the  degree  as  
well  as  the  statistical  uncertainty  of  expression  variation 
across cells by integrating k- and single-cell data under 
explicit models of technical detection limits. Across  diverse  
simulation  scenarios representative of modern multiplexed 
technologies, we show that our approach allows robust  
inference  of  cellular  heterogeneity  parameters  of difficult-
to-detect transcripts even  when  technical  noise  or 
incomplete  single-cell  information  hinder  robust  inference  
from  either  data  alone.  

When applied to single/10-cell expression data generated 
from human macrophages in resting vs. inflammatory  
conditions, we show  our approach  is  able  to  effectively  
disentangle  condition-specific  biological  cell-to-cell  
variation  from detection limit induced technical noise. In 
addition, our analysis helped reveal several distinct modes of 
gene-specific  responses  upon  cellular  activation  involving  
significant  changes  in  the  fraction  of  “on” cells,  or  in  
the  average  expression  level  in  “on”  cells,  or  both.  

Thus QVARKS offers a promising way forward for 
statistically rigorous assessments of cellular heterogeneity, 
and can lead to compelling hypotheses on condition-
dependent regulation of gene expression and cellular 
heterogeneity as demonstrated for an important immune cell 
type here. 
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Short Abstract — Cells depend on proteases to prevent the 

harmful accumulation of extraneous proteins and their 
unstable constituents, though degradation resources such as 
proteases are often limited. We employ queueing theory, a 
mathematical formalism describing systems of servers and 
customers, in characterizing the behavior of a multi-protease, 
multi-protein system, explicitly assuming limited degradation 
resources. We find that despite strong enzymatic preference of 
substrates, a correlation resonance phenomenon previously 
observed in single enzyme systems is also observed in some 
regimes. This may play a key role in scalability of synthetic 
systems where orthogonality of degradation pathways is often 
not plausible. 

 
 
Keywords — synthetic biology, queueing theory, multi-
protease, coupled degradation, correlation resonance 

 

I. INTRODUCTION 
ueueing theory is a mathematical formalism first used 
to describe telecommunication networks where finite 
processing resources naturally lead to bottlenecks and 

waiting lines [1]. It typically employs both discrete and 
stochastic methods to effectively model the traffic of general 
server networks. This makes queueing theory a natural 
language for describing biochemical networks where 
resources are often limited, and where low copy number 
effects and natural noise play important roles in chemical 
processing. 

Queueing theory has successfully characterized several 
biological systems in the past, in particular for systems 
involving enzyme kinetics [2,3]. In systems where 
enzymatic processing resources are limited, queueing theory 
predicts several regimes that systems may occupy. These 
regimes depict drastically different behaviors, each of which 
is relevant in cellular processing. For instance, it has been 
shown that the buildup of sigma factors consequent of 
enzymatic overload increases the expression of 
housekeeping genes, which help the cell cope with an 
unforgiving environment. This overload occurs as stress in 
the environment such as nutritional starvation causes 
misfolded or partially constructed proteins to accumulate. 
Thus the cell uses a bottleneck in degradation processing to 
trigger a stress response within the cell, which aids in coping 
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with environmental stress. Such mechanisms would be 
essential in the construction of robust synthetic systems. 

II. MULTIENZYME, MULTISUBSTRATE KINETICS 
While many proteins, or protein constituents, exhibit strong 
enzymatic preference in the form of non-equal affinities for 
a host of enzymes found in cells, there are often multiple 
enzymes capable of degrading any one substrate. Queueing 
theory predicts that as resources such as enzymes become 
limited, substrates may more readily be degraded by other 
enzymes for which they have a relatively low affinity. 
Understanding how secondary degradation pathways affect a 
system experiencing a bottleneck in processing is likely 
essential in designing synthetic systems effectively. Many 
such systems would require components not to interact with 
one another to attain scalability. On the other hand, having a 
set of components that behaves in several fundamentally 
different ways based on some set of environmental controls 
could become a key design principle for efficient synthetic 
circuits. 

III. CONCLUSION 
It has been shown that the sharing of processing resources 

alone is sufficient to couple otherwise non-interacting 
subsystems operating within cells. Such coupling can 
drastically change the way a system evolves. For instance, in 
the context of a single enzyme that degrades two substrates, 
it has been shown that as the total rate of production of 
substrates approaches the degradation rate of the enzyme, 
coupling of substrate counts results in a phenomenon known 
as correlation resonance. Such coupling may also become an 
essential design principle for flexible, multi-functional 
circuits. As limitations on processing resources is a 
ubiquitous problem faced by organisms, a biological 
perspective rooted in queueing theory should have a wide 
range of applicability to different systems. 
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Short Abstract — The effects of downstream loads in 

regulatory networks represent an issue for design in synthetic 
biology. Currently, retroactivity effects role in natural 
regulatory networks remains far from understood. A first step 
towards the understanding of such role is the dissection of 
biological systems where retroactivity is involved. In this work, 
we deal with different mechanisms that a transcription factor 
may use to bind to DNA and the impact that such downstream 
loads may have depending of the used mechanism. 

Keywords — retroactivity, transcription regulation, 
transcription factor. 

I. INTRODUCTION 
etroactivity is a signal that arises when connecting new 
elements to a biological system [1]. In a transcriptional 

regulation circuit, retroactivity is caused by the association 
of a transcription factor (TF) to its cognate binding sites in 
the genome.  

The functional relevance of retroactivity still remains 
elusive, though multiple proposals regarding the potential 
functional roles of downstream loads have been posed as in 
[2] and [3], among others.  

TFs bind their downstream targets by different 
mechanisms [4], [5]. These mechanisms are the steps needed 
for the transcription factor-binding site complex to drive 
downstream transcription. Here, we analyze four main 
binding mechanisms: simple monomer binding, dimerization 
prior to binding, two monomers' sequential binding, and 
sequential cooperative binding along with dimerization prior 
to binding. Our aim is to evaluate the impact of retroactivity 
in the system's behavior given that the transcription factor is 
regulating downstream sites with a specific mechanism. 

II. RESULTS 
We analyze the change of three features due to 

interconnection: i) functional TF capable of binding 
downstream sites and ii) the total TF concentration, as this is 
easy to assess experimentally. We simulated our systems 
using ODE’s and rule based models. 
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A. Deterministic models 
The ODE’s based modeling was curated using rule based 

models [6] and simulated using odeint in Python. Our 
models include whole tentative systems in two versions: 
original systems and retroactivity induced systems. Each one 
is simulated considering for the conditions of weak and 
strong association rate. 

We assessed different degradation rates for each of the 
mechanism to analyze the extent at which they could be 
controlled. 

B. Stochastic models 
We simulated the stochastic versions of our systems using 

the Gillespie algorithm version included in BioNetGen to 
give further statistical support to the observed differences 
and gain insight in the noise role in this system. 

III. CONCLUSION 
Independently of the promoter strength, the sequential 

binding mechanism is conserved as the one with the most 
notorious difference between connected and disconnected 
cases, followed by sequential binding with dimerization.  
Regardless of the TF assessed (total or functional), the 
relation of connected vs. disconnected case seems to change 
in a way that is linearly dependent on the chosen degradation 
rate.  

The prevalent change in variability upon interconnection, 
seems to be indicative of a side effect caused by downstream 
connections that makes the systems responses much more 
punctual in terms of the available TF. We find this 
interesting as it could have a role in fine tuning 
transcriptional responses. 
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Short Abstract — Cells employ complex systems to sense 
environmental conditions and execute appropriate responses. 
In response to DNA double-strand breaks, p53, a tumor-
suppressing transcription factor, is expressed in a series of 
pulses. These pulses influence the fate of the cell, but their 
mechanism of action is unclear.  We show that p53 pulses give 
rise to different target gene expression profiles, which can be 
predicted by the genes’ mRNA decay rates, consistent with a 
mathematical model. Furthermore, we show that p53 
coordinates expression of certain target genes and that this 
coordination changes as the DNA damage response progresses. 
 

Keywords — p53, pulsing, dynamics, signal transduction, 
DNA damage response, gene expression 

I. INTRODUCTION 
s methods for observing and quantifying intracellular 
signaling improve, we can increasingly appreciate that 

cells transmit information in the dynamics (changes in time) 
of molecules involved in signaling [1]. In particular, several 
recently discovered signaling pathways contain components 
that pulse in time [2,3]. Pulsing is believed to serve different 
purposes in different contexts, including coordinating gene 
expression, keeping track of time, generating diverse 
patterns of gene expression or phosphorylation, and 
improving signal-to-noise ratios in information transmission. 
 The tumor suppressor protein p53 pulses as part of its 
response to DNA double-strand breaks [4]. Since p53 is a 
transcription factor, regulating over 100 genes [5], this 
pulsing potentially impacts numerous downstream 
processes, including apoptosis, cell cycle control, DNA 
repair, and metabolism. p53 pulsing is ultimately linked to 
cell fate, as suppressing pulsing pharmacologically while 
keeping p53 at a constant high level leads to changes in cell 
fate patterns [6]. The direct mechanistic consequences of 
p53 pulsing, however, are unknown. Here we investigated 
two hypotheses about what p53 pulsing accomplishes 
mechanistically. 

II. P53 PULSING DIVERSIFIES TARGET GENE DYNAMICS 
We had previously proposed that p53 pulsing could 

enable a wider range of target gene expression dynamics 
than would be possible if p53 were raised to a constant high 
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level [4]. To test this, we treated MCF-7 breast carcinoma 
cells with a drug to induce DNA double-strand breaks, then 
measured expression of 93 p53 target genes over a 10-h 
period. We found that target gene expression profiles 
clustered into distinct groups, including those which pulsed 
with p53 and those which simply rose in response to p53. 
Moreover, we found that a gene’s mRNA decay rate was a 
significant predictor of whether its expression would pulse 
or rise, consistent with a simple mathematical model of 
target gene activation by a transcription factor. These 
findings suggest that each target gene acts as a low-pass 
filter for p53 pulses, tuned by its mRNA decay rate. 

III. P53 PULSING COORDINATES TARGET GENE EXPRESSION 
We also investigated whether p53 coordinates expression 

of its target genes, similar to the pulsing transcription factor 
Crz1 in yeast [7]. We performed single-cell transcriptional 
profiling on cells treated to induce DNA double-strand 
breaks, then looked for correlations in the expression of 
pairs of genes. This revealed two coordinated subsets of p53 
target genes. One subset was p53-independent and largely 
composed of DNA repair genes; these genes maintained 
correlation throughout the DNA damage response. The other 
subset was p53-dependent and largely composed of genes 
with pulsing dynamics. The “pulsing” subset peaked in 
correlation after the third p53 pulse, at which time it became 
negatively correlated with the “repair” subset. 

IV. CONCLUSION 
Our results suggest that p53 pulsing generates diversity in 

target gene dynamics, enabling a complex response to DNA 
damage, and coordinates expression of a subset of its target 
genes in a time-varying manner, likely driving the DNA 
damage response through different stages. 

REFERENCES 
[1] Purvis JE, Lahav G (2013) Encoding and decoding cellular 

information through signaling dynamics. Cell 152, 945-956. 
[2] Levine JH, Lin Y, Elowitz MB (2013) Functional roles of pulsing in 

genetic circuits. Science 342, 1193-1200. 
[3] Dalal CK et al. (2014) Pulsatile dynamics in the yeast proteome. Curr 

Biol 24, 2189-2194. 
[4] Batchelor E, Loewer A, Lahav G (2009) The ups and downs of p53: 

understanding protein dynamics in single cells. Nat Rev Cancer 9, 
371-377. 

[5] Riley T et al. (2008) Transcriptional control of human p53-regulated 
genes. Nat Rev Mol Cell Biol 9, 402–412. 

[6] Purvis JE et al. (2012) p53 dynamics control cell fate. Science 336, 
1440-1444. 

[7] Cai L, Dalal CK, Elowitz MB (2008) Frequency-modulated nuclear 
localization bursts coordinate gene regulation. Nature 455, 485–490.

p53 pulses diversify and coordinate target gene 
expression   

Joshua R. Porter1, Brian E. Fisher1, and Eric Batchelor1 

A



  
Short Abstract — Cell signaling plays a key role in many 

cellular processes such as immune cell activation by antigen. 
We investigate two processes important to lymphocyte 
activation: membrane-mediated interactions between receptor-
ligand pairs at cell-cell junctions and subsequent signal 
propagation by a network with positive feedback. Using 
spatially resolved, deterministic simulations, we study 
membrane-mediated interactions between receptor-ligand 
pairs and characterize the influence of spatial clustering and 
diffusion on the spread of a chemical signal through space and 
time in a positive feedback network. 

I. INTRODUCTION 
ELL communication is vital for biological systems and is 
often highly dependent upon the interaction between a 

transmembrane surface receptor and its ligand. Lymphocytes 
such as T cells and B cells can be stimulated by cell-cell 
contact, with the ligand being presented on the surface of the 
other cell. This is an example of juxtacrine signaling, and 
receptor-ligand binding can couple with membrane 
mechanics to deform the membrane and locally exclude 
other surface molecules that are longer than the length of the 
receptor-ligand complex [1]. This can lead to effective 
membrane-mediated interactions between receptor-ligand 
pairs, thus contributing to their spatial organization on the 
membrane. In many cases, signaling networks downstream 
of the receptors contain feedback motifs that confer useful 
dynamical and steady state properties. The spatial 
organization of surface receptors can significantly influence 
the dynamics of signaling [2, 3]. Positive feedback networks 
are interesting because they can support bistability and fast 
propagation of a signal through space [4,5].  

II. RESULTS 
We begin by considering a model of receptor-ligand 

binding at cell-cell interfaces. Drift-diffusion partial 
differential equations provide a useful framework for 
describing the concentration profiles of long surface 
molecules (LSMs) present in the intercellular junction given 
that a receptor-ligand bond has formed [1]. We have 
explored the characteristics of LSMs and membrane 
energetics given that one or more receptor-ligand bonds 
have formed. The coupling of the drift-diffusion partial 
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differential equations and the Euler-Lagrange equation 
describing membrane shape and energetics has given insight 
into the time-dependent evolution of molecular 
concentrations in the system. 

Given that membrane mechanics can promote the spatial 
clustering of receptor-ligand complexes, we consider the 
effects of clustering and diffusion on switching to an active 
state in a bistable positive feedback network. We consider a 
simple two-component network and seek to understand how 
diffusion influences various properties of the reaction 
network. Coupled reaction-diffusion partial differential 
equations describe the spatiotemporal evolution of molecular 
concentrations. We obtain numerical solutions for the spread 
of an “active” chemical signal through space and time, given 
an initial localized pulse of the active species. The biological 
motivation includes clustering of receptors at the cell 
membrane and stochastic fluctuations that could trigger 
signaling. We find that a slower diffusion coefficient results 
in a more pronounced interface between active and inactive 
regions, and that the fastest signal propagation occurs at 
intermediate diffusion coefficients. It is interesting to note 
that the diffusion coefficient corresponding to the minimum 
time for the system to be in the active state over the entire 
domain is dependent on the ability of the active species to 
accumulate in a localized region. 

III. CONCLUSION 
A general understanding of communication at cell-cell 

interfaces remains a challenging problem. Methods that 
couple receptor binding with membrane mechanics and 
spatial organization have the potential to inform studies of 
signal transduction networks to give greater insight into 
receptor-mediated juxtacrine signaling. 
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Isogenic cells often exhibit different phenotypes under 

different circumstances, but the dynamic process of cell fate 
transition remains elusive. Here, by studying the correlation of 
gene expression noise of a ten-nodes gene regulatory network 
under different circumstances, we show that cell fate transition 
point corresponds to the bifurcation point of the gene regulatory 
network, where strong correlations of fluctuations among 
certain genes, which is defined as a core network, can be 
observed. Our preliminary results verify that correlation of 
fluctuations between genes might be used as an indicator of cell 
fate transition. 
 
Keywords — Cell fate transition, Noise, Bifurcation, 

Correlation 

I. INTRODUCTION 
EL fate transition is widespread among unicellular and 
multicellular organisms[1-3]. Unicellular organism often 

change phenotype such as proliferation, quiescence or 
sporulation, in responding to sudden change of environment, 
such as starvation, UV-exposure. Cell differentiation is 
important for the development and maintaining hemostasis of 
multicellular organisms. Diseases, such as cancer, have long 
been regarded as an catastrophic transition after a long time of 
accumulation of mutations[4]. All these cell fates transition 
are governed by the underlying complex genetic regulatory 
networks. The ultimate goal in the research field of cell fate 
transition is to effectively control cell fates. Previous studies 
mostly focus on identifying the so called key regulators of this 
process. Yet little is known about the complex dynamic 
process. Recently, the dynamic systems view of cell fates has 
gained increasing attention, which regards cell fates as high 
dimensional attractors[5,6]. Cell fate transition in respond to 
external environment or clues is regarded as the qualitative 
change of the epigenetic landscape produced by the 
underlying gene regulatory network. Can we predict when cell 
fate transition happens? Is there any early signature that can be 
get from experimental measurements? Is there core network 
that responsible for the transition? How can we control cell 
fate transition effectively? To answer these questions we 
studied a ten-nodes random gene regulatory network under 
various circumstances. 
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II. RESULTS 
Using ordinary differential equations, stochastic simulation, 

as well as analytical calculation, we show that when the gene 
regulatory network is tuned at bifurcation point, strong 
correlation of gene expression noise among certain genes can 
be observed.  

We first study the behavior of toggle switch and binary cell 
fate decision motif when tuned at critical point. Using 
Langevin equation and Linear Noise Approximation  method, 
we find both correlation of gene expression noise and 
variation of gene expression increasing rapidly when control 
parameter approaches the bifurcation point. 

When the random ten-genes regulatory network is 
subjected to saddle-node bifurcation or pitchfork bifurcation, 
strong correlation of fluctuation among some genes can be 
observed. To mimic the real situation of cell fate transition, we 
gradually change the control parameter from one 
regime(monostable) to another(metastable). Under this 
circumstance, time series analysis of gene expression profiles 
shows that only when the control parameter changes slowly 
enough can strong correlation of fluctuations be observed.  
This result give some constraint that only when cell fate 
transition process is slow enough can early indicator of 
transition observed experimentally.  

III. CONCLUSION 
Gene regulatory network shows strong correlation of 

fluctuations when it is tuned at bifurcation point. Only when 
cell fate transition is slow enough can we find early indicator 
of transition from experimental measurements.  
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Short Abstract — Bacteria live in rapidly changing, uncertain 

environments. As such, they need to take advantage of complex 
control systems to properly anticipate and respond to sudden, 
potentially dire changes. Here, we examine how signals in the 
transcription factor MarA are processed by downstream 
targets, altering the dynamics and distributions of gene 
expression. These data have implications for understanding 
bacterial stress response.  
 

Keywords — Signal Processing, Bacteria, Stress-Response, 
Optogenetics 

I. PURPOSE 
HE purpose of this study is to understand how dynamic 
expression of MarA impacts the downstream genes it 

regulates. We selected this transcription factor as it has been 
shown to upregulate over 40 downstream genes and play a 
critical role in the general stress-response phenotype [1].  
Previous computational results suggest that it may have 
interesting pulsatile expression dynamics as well [2].  The 
importance of MarA from a biological point of view, 
combined with potentially interesting endogenous dynamics 
make MarA an ideal target for our work. Our goal is to 
understand how a given MarA signal is interpreted and 
processed by a number of downstream promoters, providing 
insight into how general stress response is coordinated, or 
alternatively how each gene response is specialized through 
differential processing of a common input signal. In order to 
analyze the signal processing characteristics of each 
promoter, we are engineering systems to control the dynamic 
levels of MarA and simultaneously measure the output 
activity of downstream targets. First, we are developing 
constructs that place MarA under the optogenetic control of 
the CcaS/CcaR light controllable plasmids [2], as well as the 
IPTG inducible lacUV5 promoter. The combination of these 
two approaches gives us precise control over the levels of 
MarA in terms of both single-cell dynamics and population-
wide distributions. To measure the output, we are 
constructing a number of transcriptional fusion reporter 
plasmids for downstream genes [3], which will allow us to 
measure the modulation of downstream promoter activity as 
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a function of MarA concentration. By measuring the 
fluorescence with single-cell, time-lapse microscopy and 
flow-cytometry, we are able to generate both dynamics and 
distributions of downstream promoter activity levels. These 
data will allow us to develop possible models for how 
promoter activity shapes the phenotype distribution of the 
population in response to a signal from MarA.  

II. RESULTS 
Our preliminary data show correlation between MarA 

levels and downstream targets given a step input in MarA. 
By collecting data at the single-cell level we are measuring 
how MarA alters the shape of downstream protein 
distributions across populations and the dynamic 
concentrations within individual cells. Preliminary dynamic 
data suggest that the downstream gene micF pulses and that 
levels of MarA modulate the frequency and amplitude of 
these pulses. Initial flow-cytometry data show that the shape 
of population distributions in two of the transcriptional 
reporters responds differently to varying levels of MarA, 
indicating the potential for differential interpretation of 
MarA signals at the population level 

III. CONCLUSION 
The above data represents the first step in developing an 

understanding of how MarA can dynamically facilitate a 
multifaceted stress response. Having a distinct input/output 
relationship for several downstream genes will raise 
interesting questions about how unified the role of MarA is. 
Can a single MarA signal produce a multitude of promoter 
activities – or are all of the downstream promoters 
coordinated? Furthermore, do endogenous MarA dynamics 
have advantages over those generated using the synthetic 
optogenetic system? Additional experiments studying the 
greater marRAB operon will allow us to contrast naturally 
occurring MarA levels to those present in our synthetic 
systems. 
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Short Abstract — The microbiome’s underlying 

dynamics play an important role in regulating the 
behavior and health of its host. In order to explore the 
details of these interactions, we created an in silico model  
of  a  living  microbiome,  engineered  with  synthetic  
biology,  that  interfaces  with  a biomimetic, robotic host. 
By analytically modeling and computationally simulating 
engineered gene networks in these commensal 
communities, we reproduced complex, emergent 
behaviors in a physical robotic within an arena. Our 
system is a novel tool for exploring inter-kingdom 
ecological relationships while potentially impacting fields 
ranging from ecology to medicine. 
 

Keywords — Synthetic Biology, Computational Biology, 
Microbiome, Inter-kingdom, Robotics, Biomimicry 

I. BACKGROUND 
OMMENSAL microbes, and in particular the microbiome, 
have been shown to play a critical role in regulation the 

behavior of their hosts, with influence ranging from 
reproductive affinity[1] to anxiety and motility[2]. Although 
targeted microbiome engineering remains challenging, 
synthetic biology and biomimetic robotics provide us with 
two invaluable tools for understanding host-microbiome 
interactions. Using these two tools, we designed a robotic 
host with a synthetically engineered simulated microbiome in 
order to create a model system for studying host-microbiome 
interactions [3].  

II. RESULTS 
Our system architecture relied upon information exchange 

between an engineered cell population and the onboard 
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robotic microcontroller. We conceptualized this system as 
having three different modules. (1) Inducer chemicals enter 
the cell population and activate gene circuits encoding for 
fluorescent proteins. (2) Changes in cell coloration are 
converted into a digital signal via a microscope. (3) The 
digital signal is processed by the robot microcontroller and 
converted into robot subroutines. Here, we computationally 
simulated modules 1 and 2 in MATLAB® and built and 
programmed a physical robot for module 3.  

We designed the cells to contain plasmids with canonical 
gene circuits from synthetic biology [4]. The cells were 
modeled and simulated using a system of differential 
equations based off of first principles. 
 Upon interfacing our physical robot with the simulated 
cell population, we found that simple engineered gene 
networks caused nuanced emergent robot behavior. These 
behaviors included preferential resource selection as well as 
predation behavior similar to those found in vertebrates 
[3,5]. It should be noted that at no point was the robot’s 
firmware altered, and all variations in robot behavior were a 
direct result of changes in the cell’s morphology.  
   

III. CONCLUSION 
By engineering and testing a robot that could interface 

with a simulated cell, we designed a novel tool for 
understanding host-microbiome interactions in nature. Our 
simulated cell population provides a predictive tool for 
effectively engineering living cell lines for selective robotic 
behaviors.     
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Short Abstract — Rule-based models are kinetic models 

where biochemical structures are modeled explicitly as graphs 
and kinetic mechanisms are modeled explicitly as reaction rules.  
The regulatory network of the system, envisioned as a bipartite 
diagram of sites and processes, is implicit in the overlaps 
between reaction rules. Visualizing individual mechanisms and 
identifying pathways and feedback loops would facilitate 
communicating about the model with other experts. In this 
work, we have developed an algorithm to automatically infer 
and organize the network structure of a BioNetGen rule based 
model. We have provided automated tools for visualizing 
individual rules as well as the inferred network. These tools are 
freely available with the latest distribution of BioNetGen 
software at http://bionetgen.org.  

Keywords — rule-based modeling, visualization, BioNetGen, 
reaction rules, regulatory network 

I. BACKGROUND 
ULE-based frameworks such as BioNetGen [1], Kappa 
[2] and Simmune [3] use a graph syntax to represent 

biochemical structures and kinetic mechanisms. Visualizing 
these models as a regulatory network is necessary to improve 
communication and usability. The directed bipartite graph 
showing relations between sites and processes is a classical 
abstraction used for visualizing regulatory networks. Naïvely 
automating a bipartite graph for rule-based models 
encounters combinatorial complexity in overlaps between 
reaction rules and lack of appeal to expert intuition. Prior to 
this work, regulatory interactions between reaction rules 
were inferred manually (Extended Contact Map [4]), 
automated as a unipartite graph (Rulebender [5]), automated 
for a subset of overlaps (Simmune Network Viewer [5]), part 
of the model specification (Rxncon [6]), or inferred by 
simulation [7]. Here we provide automated inference of the 
regulatory network by static analysis of a BioNetGen rule-
based model and user-guided organization and coarse-
graining of the inferred network. The tools described here 
generate visualizations in Graph Modeling Language (GML) 
format, which is compatible with dedicated graph layout 
tools such as yEd (yworks.com/yed) and Cytoscape [8]. 

II. RESULTS 

A. Rule Visualization 
BioNetGen structures, called patterns, are visualized as site 
graphs: graphs with nested nodes and edges representing 
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binding interactions. A kinetic mechanism, modeled as a 
reaction rule, is composed of reactant and product patterns. 
We provide two rule visualizations: (i) syntactical, where 
reactant and product patterns are embedded in a bipartite 
graph of the rule, and (ii) compact, where the action of the 
rule is shown as a set of graph operations on structures.  

B. Regulatory Network Inference 
The pattern is coarse-grained from an explicit graph to a set 
of discrete ‘sites’ or atomic patterns. A reaction rule is then 
summarized using bipartite relations to atomic patterns: 
consumption (reactant), production (product) or requirement 
(context). These are visualized on the bipartite regulatory 
graph. Regulatory graphs of individual rules are aggregated 
into a regulatory network of the model. 

C. Regulatory Network Organization 
We have provided flexibility to optimize the visual 
complexity of the regulatory network. Background sites and 
constitutive processes that obscure the regulatory structure 
can be tagged and removed. Rules modeling conditional 
variants of the same process are automatically identified and 
grouped together. This grouping can be seeded with 
equivalence classes for sites, which can be imposed as expert 
input. Collapsing groups to single nodes leads to compact 
and coarse-grained network diagrams. Using these tools, we 
were able to generate regulatory diagrams for large sets of 
reaction rules, such as the FcεRI interaction library [9] with 
162 rules, and the ErbB receptor family pathway model [10] 
with 544 rules. 

III.  CONCLUSION 
Rule visualization allows side-by-side display and 
comparison of kinetic mechanisms. The regulatory graph 
enables identification of pathways and feedback loops in the 
system. The user is also able to flexibly organize the network 
to appeal to expert intuition. Systematic coarse-graining 
enables compact visualization of large networks.  

REFERENCES 

[1] Blinov, M. L., et al. (2004). Bioinformatics, 20(17), 3289–3291.  
[2] Danos, V., & Laneve, C. (2004). Theoretical Computer Science (Vol. 

325, pp. 69–110).  
[3] Meier-Schellersheim, M., et al. (2006). PLoS Computational Biology, 

2, 0710–0724. 
[4] Chylek, L. A., et al. (2011). Molecular bioSystems, 7(10), 2779–95.  
[5] Cheng, H.-C., et al. (2014). BMC Systems Biology, 8, 70.  
[6] Tiger, C.-F., et al. (2012). Molecular Systems Biology, 8(578), 578.  
[7] Danos, V., et al. (2012).  FSTTCS Vol. 18, pp. 276–288).  
[8] Saito, R., et al. (2012). Nature Methods, 9, 1069–76. 
[9] Chylek, L. A., et al. (2014). Frontiers in Immunology, 5, 172. 
[10] Creamer, M. S., et al. (2012). BMC Systems Biology, 6(1), 107. 

Visualizing Regulation in Rule-based Models 
John A.P. Sekar1, José-Juan Tapia2, and James R. Faeder3 

R 

http://bionetgen.org/


! !
Directional Accuracy in a Model of Gradient 

Signaling during Yeast Mating 
!Rati Sharma  and Elijah Roberts  1 2!

I INTRODUCTION !The mating response of the yeast Saccharomyces cerevisiae 
is widely used as a model system for studying 
chemotropism. Haploid yeast sense nearby cells of the 
opposite mating type by detecting a pheromone gradient and 
then polarize and grow a mating projection in the direction 
of the gradient in an attempt to mate with a partner [1]. 
Experiments monitoring individual yeast cells in an artificial 
gradient show that they polarize with a broad distribution of 
directions centered on the gradient [2], but the probability 
distribution of the direction is not theoretically understood. 
Here, we present a hybrid model that uses both deterministic 
and probabilistic features to study the response of the circuit 
architecture to a gradient stimulus. In particular, we use a 
simplified model of the reactions that lead to the formation 
of the pheromone-receptor complex and activation of the 
mitogen-activated protein kinase (MAPK) cascade [3]. We 
simulate the model using a fully probabilistic method, the 
reaction-diffusion master equation (RDME), with novel 
gradient boundary conditions accounting for a point 
pheromone emitter a short distance away, the gradient for 
which has reached a steady state. We analyze the response to 
the gradient for different shapes of the simulation volume. !

II METHODS !A point pheromone emitter a short distance away from the 
matα cell creates a gradient. This gradient is modeled 
deterministically via partial differential equations (PDE) 
using the diffusion equation with constant flux conditions at 
the source and constant gradient conditions at the 
boundaries. The concentrations of the pheromone at the 
desired distance from the source are then selected and fed 
into the simulation volume which contains all the other 
species, namely the kinases, phosphatases and the receptors.  
The kinases themselves can exist in two states, 
unphosphorylated or phosphorylated and in the region of 
parameter space where both are stable states, the system is 
considered bistable, while the space where only one stable 
state exists, the system is considered monostable [4]. We 
model the reactions between these species in the bistable as 
well as the monostable conditions and carry out RDME 
based stochastic simulations of these reactions. !

III RESULTS !RDME simulations were carried out through lattice microbes 
[6] on the set of reactions after the inclusion of a pheromone 

gradient across the diagonal in a 3D cubic simulation 
volume and in a cell shape simulation volume. In a 3D cubic 
volume, the reactions occur randomly across the entire 
volume and hence are more distributed. This leads to 
decreased clustering of the kinases and therefore higher 
switching times between the two stable states. On the other 
hand, in the cell shape simulation volume, all the reactions 
occur on the membrane and hence there is more localized 
distribution of the species which leads to enhanced 
clustering and lower switching times between the two states.  
We also compared the direction of the pheromone gradient 
to that of the phosphorylated kinases in the theta-phi plane 
and notice that it is only at lower diffusion coefficients that 
the phosphorylated kinases follow the direction of the 
pheromone. !

IV CONCLUSIONS !
The rates of reactions, the switching times between the two 
states and clustering of molecules depend a lot on the 
simulation volume. The signaling cascade is more efficient 
in a smaller and more compact simulation volume and this is 
the strategy that most cells use to survive and grow. In 
addition, diffusion coefficients also play a very important 
role in the enhancement of the signal in the direction of the 
pheromone gradient and therefore it is important to 
understand diffusion related dynamics within the cell.  !

REFERENCES 
1. Li Y, Yi M, Zou X. (2013) Identification of the molecular 

mechanisms for cell-fate selection in budding yeast through 
mathematical modeling. Biophys J. 104, 2282-2294.  

2. Moore TI, Tanaka H, Kim HJ, Jeon NL, Yi TM. (2013) Yeast G-
proteins mediate directional sensing and polarization behaviors in 
response to changes in pheromone gradient direction. Mol Biol Cell. 
24, 521-534. 

3. Kofahl B, Klipp E. (2004) Modelling the dynamics of the yeast 
pheromone pathway. Yeast. 21, 831-850. 

4. Kochanczyk M, Jaruszewicz J, Lipniacki T. (2013) Stochastic 
transitions in a bistable reaction system on the membrane. J R Soc 
Interface. 10, 20130151.  

5. Wang X, Hao N, Dohlman HG, Elston TC. (2006) Bistability, 
stochasticity, and oscillations in the mitogen-activated protein kinase 
cascade. Biophys J.  90, 1961-1978. 

6. Roberts E, Stone JE and Luthey-Schulten Z. (2013) LatticeMicrobes: 
high-performance stochastic simulation method for the reaction-
diffusion master equation J. Comp. Chem. 34, 245-255  !

 Dept. of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA. E-mail: rsharm28@jhu.edu1

 Dept. of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA. E-mail: eroberts@jhu.edu 2

mailto:rsharm28@jhu.edu
mailto:eroberts@jhu.edu


  
Short Abstract — TEM imaging indicates that VEGF 

receptors tend to co-locate in clusters ranging from a few to a 
hundred molecules. Dimerization of receptors (usually ligand 
dependent) is necessary for signaling, but there is no known 
mechanism for larger bound aggregates.  

We hypothesize pre-existing high affinity regions on the cell 
membrane that preferentially exchange receptors with the 
remaining part of cellular membrane. This would increase the 
observed dimerization rates by increasing the concentration of 
receptors in the high affinity regions. We explore the 
implications of this mechanism through a compartmentalized 
version of a kinetic model of VEGF signal initiation [1].  

Keywords — Chemical Reaction Networks, Receptors, 
Ligands, VEGF, Clustering 

I. BACKGROUND 
E discuss a Chemical Reaction Network (CRN) model 
of the binding of Vascular Endothelial Growth Factor 

(VEGF) to its receptors.  VEGF has important roles in the 
spread of cancer; it facilitates tumor growth by summoning 
blood vessels to continue to feed the tumor once it has 
surpassed the size at which diffusion alone can provide 
oxygen and necessary nutrients [2]. 

High resolution imaging studies have revealed that the 
cell membrane is far from homogeneous; it has a varied 
landscape with elements of the cytoskeleton, accumulations 
of membrane proteins, and inhomogeneities in the lipid 
composition of the membrane. This landscape is reflected in 
the mobility and localization of membrane receptors and of 
other molecules involved in early signaling.  

Certain families of membrane bound receptors, such as 
receptor tyrosine kinases (RTK), require dimerization in 
order to activate. Ligand-induced dimerization is a central 
feature of the respective signaling machinery, whose precise 
kinetics ensures the proper behavior of cells. Molecular 
changes that result in increased or decreased dimerization 
rates may have far reaching consequences. The mobility of 
membrane-bound receptors can potentially have a similar 
impact on signaling, by facilitating or hindering receptor-
receptor collisions and impacting dimer formation.  

II. CRN MODEL OF VEGF SIGNAL INITIATION 
Our starting point is a mathematical model [1] developed 

by Mac Gabhann and Popel (MGP), based on experiments 
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quantifying the binding of VEGF to cells and the overall 
cellular response. VEGF receptors are monovalent (they 
bind to only one ligand) whereas the VEGF ligand is 
bivalent, binding to two receptors. The MGP model allows 
for a direct receptor-receptor bond, resulting in ligand 
independent dimer species; for a single receptor type, the 
resulting CRN has 7 species and 14 reactions [1]. This 
baseline model represents a spatially homogeneous, “well-
mixed” system where the receptors are distributed evenly 
and can move unobstructed over the entire membrane.  

III. MODEL WITH HIGH AFFINITY DOMAINS 
Based on TEM imaging of VEGF receptors, as well as a 

host of indications of clustering behavior in other receptor 
systems [3], we developed the following hypothesis. The 
membrane contains small attractive regions that concentrate 
the receptors in their random movement. The observed 
clusters reflect the size and distribution of these “high 
affinity domains”.  

We explore this hypothesis with a version of the MGP 
model where copies of the VEGF system are placed in 
multiple domains. Transfer reactions added to the system 
allow movement between the high affinity regions and the 
rest of the membrane. Computer simulations of this model 
indicate increased receptor concentrations in the attractive 
regions result in increased signaling as compared to the 
baseline MGP model. Analytical calculations provide an 
independent check of the simulations, as well as more direct 
insight into the behavior of the system. We are investigating 
the possibly multiple steady states, which are not forbidden 
by basic CRN theory. 

IV. OUTLOOK 
Beyond this, we are interested in the effect high affinity 

regions have on the speed at which cellular response occurs, 
which must be done through simulation.  We plan to use our 
framework of combining spatial and chemical networks for 
stochastic simulations of early VEGF signaling on the scale 
of the entire cell. 
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Short Abstract — Bacteria in nature spend most of their life 

in a nutrient-deprived state. It is well known that when 
transferred to a nutrient agar plate, a large fraction of these 
nutrient-starved bacterial cells fails to form colonies. 
Currently, little is known about the physiological and metabolic 
states of these non-rejuvenating cells. Here, we characterized 
physiology, metabolism and gene expression of nutrient-starved 
E. coli cells with single-cell resolution. Our study reveals 
surprising phenotypic heterogeneity in nutrient-starved cells. 
 

Keywords — Quantitative single cell microbiology, bacterial 
physiology, starvation, growth 

I. BACKGROUND 
N nature, bacteria spend most of their lifetime in nutrient-
depleted environments. When transferred to a nutrient 

agar plate, only a fraction of them forms colonies. A similar 
phenomenon was observed in laboratory experiments; when 
bacterial cells are deprived of nutrients, the number of cells 
that form colonies (when transferred to a nutrient agar plate) 
decreases by half within a couple of days (for reviews [1, 
2]). Currently, little is known about physiological and 
metabolic states of these cells that fail to form colonies. 

Here, employing time-lapse fluorescence microscopy and 
fluorescence markers, we characterized physiological and 
metabolic states of the non-rejuvenating cells.  
 

II. RESULTS 
A. Correlating membrane integrity and nutrient-uptake 
ability to rejuvenation.   
Cells that were previously growing exponentially were 

subjected to nutrient deprivation. At different times, we took 
an aliquot, treated the cells using propidium iodide (PI) and 
2-NBDG (fluorescent glucose analog) and transferred them 
to a nutrient agar plate. PI and 2-NBDG report membrane 
integrity and nutrient-uptake ability, respectively. Then, 
using time-lapse fluorescence microscopy, we monitored the 
rejuvenation of cells with single-cell resolution. Cells that 
have intact membrane (unstained by PI) and nutrient uptake 
ability instantly rejuvenated. As more time elapses in 
starvation, the number of instantly-rejuvenating cells 
decreases; the decrease quantitatively agrees with decrease 
in the number of colony forming units (CFU). 
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B. Phenotypic heterogeneity of non-rejuvenating cells.  
Next, we characterized non-rejuvenating cells. We see 

that they consisted of (i) membrane disrupted cells (stained 
by PI), (ii) ghost cells (judged by poor phase contrast 
image), and, importantly, (iii) healthy looking (based on 
phase contrast image) cells with intact membrane and 
nutrient uptake ability. The fraction of  the category (iii) 
cells was observed to be ~0% of the total population at the 
onset of the starvation, increased to ~5% within ~2 days, and 
remained about the same level afterwards (~for a week). 
When we monitor the category (iii) cells for an extended 
period of time, we see that they rejuvenate at much later 
times. Hence, they are dormant cells. 

Further characterization reveals their lack of ability to 
produce proteins and, also, their lack of resilience during 
starvation. 

III. CONCLUSION 
Our finding reveals phenotypic heterogeneity of nutrient-

deprived cells. Importantly, the high percentage of dormant 
subpopulation is of particular interest to microbial ecology 
and medicine.   
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Short Abstract — Oncogenic Ras mutations are common 

drivers of human cancer. One poorly understood aspect of Ras 
biology is the apparent tumor suppressor activity that wild-
type Ras sometimes appears to exhibit. This problem was 
investigated with a computational model of Ras signaling. 
Modeling demonstrates that tumor suppressor activity is 
actually not needed to explain data commonly interpreted to 
support the tumor suppressor argument. Modeling also finds 
that small changes in oncogene expression after the loss of the 
wild-type allele would have an effect that could be interpreted 
as the wild-type allele having acted as a tumor suppressor.  
 

Keywords — oncogene, tumor suppressor, Ras, cell signaling 

I. INTRODUCTION 
UTATIONS to the Ras GTPases are among the 

most common cancer promoting mutations [1]. It is 
now understood that oncogenic Ras mutations lead to 
constitutive proliferative signals [2]. Still unexplained is the 
tumor suppressor behavior that the Ras proto-oncogene 
sometimes appears to demonstrate [3-7]. 

A mathematical model of Ras signaling that accounts for 
the multiple biochemical mechanisms that regulate Ras 
activity has previously been developed and applied to the 
study of cancer promoting Ras mutations [8,9] and Ras 
pathway mutations [10]. The model allows one to find the 
behaviors that logically follow from what is already known 
and quantified about Ras biology. Here, the model is applied 
to the problem of whether or not wild-type (WT) Ras has 
“tumor suppressor” properties. 

II. RESULTS 
Arguments that Ras has tumor suppressor activity 

commonly refer to the frequent loss of heterozygosity 
(LOH) in Ras genes when a Ras oncogenic mutant is 
present. Common mechanisms for LOH not only result in a 
loss of the WT allele, but also in the duplication of the 
mutant allele [3,5]. Simulations find that doubling mutant 
expression results in a large increase in Ras signaling. This 
modeling result is consistent with experimental data that 
examines the consequences of Ras mutant dosage [6]. This 
suggests that tumor suppressor activity is not necessary to 
explain the LOH data. 

Arguments that Ras has tumor suppressor activity also 
refer to the inhibition of mutant Ras signals by dominant 
negative (DN) Ras mutants [5]. However, model simulations 
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find DN Ras results in less oncogenic Ras signaling. This 
follows from the inhibition of Ras GEFs by DN Ras. This 
suggests that tumor suppressor activity is not needed to 
explain DN Ras data. 

A compelling argument for tumor suppressor activity 
comes from mouse studies [4]. In these studies, Kras 
mutations were chemically induced. Mice with only one 
wild-type allele (Kras+/-) developed more tumors than mice 
with two wild-type alleles (Kras+/+). Our simulations 
suggest that Kras mutants would generate a higher level of 
Ras signal in the +/- mice if the +/- mice express more than 
50% as much KRas protein as the +/+ mice. The exact 
amount of expression varies based on the concentrations of 
Ras network proteins, but ranges from as low as 51% to as 
much as 65% of the amount of KRas expressed in the 
Kras+/+ mice. Experiments quantifying protein expression in 
these studies have typically been used to demonstrate less 
KRas in the +/- mouse, not to precisely quantify how much 
less KRas is in the +/- mouse. 

III. CONCLUSION 
Our analysis finds much of the data used to argue that WT 

Ras has tumor suppressor activity is actually consistent with 
the well-established activity of mutant Ras. Our simulations 
also suggest that a low level of increased expression from a 
single Ras allele could explain the increased tumor burdens 
in Kras+/- mice compared to Kras+/+ mice. Quantitative 
measurements of Ras protein expression that are capable of 
detecting small changes in expression could distinguish our 
hypothesis from the tumor suppressor hypothesis. Overall, 
this study demonstrates how quantitative modeling can 
contribute to the study of unresolved problems in cancer 
biology. 
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Short Abstract — It is generally assumed that multiple 

infections of microbes by viruses is rare. This assumption 
stems, in part, from the use of mean field models of virus-
microbe population dynamics. Here, we investigate an explicitly 
spatial model of interactions and assess the frequency of 
multiple infections given biophysically relevant rates of 
interaction and movement. We find that multiple infection are 
significantly more common than in mean field models, and we 
investigate how such infections can alter ecological dynamics 
and virus-microbe coexistence. 
 

Keywords — Viruses, Bacteria, Multiple infections, Spatial 
Models, Multiscale Models 

I. PURPOSE 
iruses are able to directly interact when coinfecting a 
host cell. This direction interaction benefits the viruses 
by allowing recombination leading to quicker adoption 

of positive mutations in the population [1]. However, 
coinfection allows direct competition leading to within-host 
niche specialization by viruses and the emergence of 
cheaters for shared viral products due to the modular 
structure of viruses [2]. Investigations of these phenomenon  
are in vitro settings mediated by high multiplicity of 
infection (MOI) inoculants. The relevance of coinfection in 
vivo settings is poorly understood. We address this gap in 
understanding via simulation. The goal of this project is to 
quantify the rate and magnitude of multiple infections within 
a stochastic individual based spatial model (IBSM). 
 Previously, IBSM have resolved apparent paradoxes in 
viral ecology such as the tragedy of the commons [3]. In 
addition, ecological IBSM feature increased ranges of 
coexistence [3]. These results stem from the spatial 
correlations between hosts and viruses and the existence of 
density dependent effects. Meanwhile, experimental effects 
of coinfection include delayed lysis and altered burst size 
[4,5]. Hence, coinfection is a phenomenon that affects 
dynamics across multiple scales. Our approach demonstrates 
what condition coinfection is amplified or tempered due to 
multi scaled feedback. 
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II. RESULTS 
By considering the dynamics of viruses and three classes of 
hosts (susceptible, infected, and coinfected) in an individual 
based stochastic spatial model. We consider parameter space 
corresponding to viral-host dynamics involving in 
autotrophs marine environments such as prochloroccocus.  
We demonstrate coinfection occurs frequently across 
parameter space. In addition we quantify the distribution of 
MOI across the host population. We show that coinfection 
occurs frequently and that high intracellular MOI can be 
achieved even when population level virus to bacteria ratio 
is low. Spatial correlation between host and virus 
populations account for this increased level of coinfection as 
compared to an analogous mean field model. We implicitly 
model intracellular effects due to coinfection by including 
parameter dependence on individual MOI. We characterize 
how altered lysis times and burst sizes affect the rates of 
coinfection within and coexistence of the virus host 
populations. 

III. CONCLUSIONS 
Coinfection and its effect on viral-host dynamics 

phenomenon is inherently multiscaled affecting intracellular 
decision-making to population level evolution. By 
demonstrating increased frequency of coinfection in a spatial 
environment as compared to a mean field model, we argue 
that modelers and experimentalists alike should consider 
multiple infections a more common phenomenon.  

REFERENCES 
[1] Turner PE, Chao L (1998) Sex and the Evolutuion of Intrahost 

Competition in RNA Virus phi6. Genetics. 150 2 523-532 
[2] Huang AS (1973) Defective Interfering Viruses Annu. Rev. Microbiol. 

27:101-118 
[3] Heilmann S, Sneppen K, Krishna S (2012) Coexistence of phage and 

bacteria on the boundary of self-organized refuges. PNAS 109. 12828-
12833. 

[4] Bode W (1967) Lysis inhibition in Escerichia coli infected with 
bacteriophage T4. J. Virol. 1(5) 948-955 

[5] Gadagkar R, Gopinathan KP (1980) Bacteriophage burst size during 
multiple infections. J Biosci. 2 3 253-259 

Frequency of multiply infecting bacteriophage 
in natural environments exposed by spatial 

models 
Bradford P. Taylor1, Catherine Penington2, and Joshua S. Weitz3,1 

V 



Short Abstract —It is found that miRNA and mRNA 
reciprocally regulate each other. However, the functionality of 
this mutual regulatory relationship is not fully understood. 
Here, through mathematical modeling, we found that 
depending on the recycle ratio of miRNA, the reciprocal 
regulation between mRNA and miRNA shows subsensitive 
activation, ultrasensitive and subsensitive inhibition. Bistability 
is generated when the ultrasensitivity from the miRNA-mRNA 
reciprocal regulation is equipped with a positive feedback loop. 
Furthermore, the degree of ultrasensitivity is amplified when a 
stronger competitor (ceRNA) is involved. Interestingly, 
bistability can also be generated from mRNA-miRNA 
reciprocal interactions when considering more than one 
binding sites.  
 
Keywords — Reciprocal, miRNA, mRNA, ultrasensitivity, 
bistability, recycle ratio. 

I. INTRODUCTION  
   n the gene regulatory networks, miRNAs serve as 
important post-transcriptional regulators of gene 

expression to control a large variety of essential cellular 
processes, such as EMT [1]. During the last decade, there are 
accumulated studies on the basic molecular mechanisms of 
miRNA biogenesis, function and degradation. 

Through base-pairing interactions, miRNA inhibits its 
target mRNA by two modes, translational repression and 
mRNA degradation. Furthermore, under some circumstance, 
miRNAs can stimulate mRNA translation. Quantitative 
measurements show that miRNA regulation establishes a 
threshold level of target mRNA [2]. However, the 
functionality of the gene expression threshold regulation by 
miRNAs remains to be established. 

Furthermore, recent results also provide evidence that 
mRNA targets can reciprocally control the stability and 
function of miRNAs. Kinetic analysis already provided 
support that miRNA could be recycled following regulating 
mRNA [3]. However, the endogenous functions of mRNA-
directed miRNAs degradation remain elusive. Interesting, it 
is also found that target interaction could stabilize miRNA 
by preventing its release from Ago and subsequent 
destabilization. Furthermore, each miRNA may target tens 
or hundreds of mRNA molecules, enabling cross-talk 
between competing endogenous RNAs (ceRNAs) targeted 

by the same miRNA. This appreciated reciprocal regulation 
between miRNAs and their targets adds a significant level of 
complexity to the miRNA-mRNA relationships. Thus, how 
the ceRNAs cross-talk and the miRNA-mRNA reciprocal 
regulation tune the miRNA-mediated regulation need to be 
further elucidated. 

II.   MODEL AND RESULTS  
To explore the features of the regulations between mRNA 

and miRNA, we built a mathematical model by considering 
the formation of mRNA-miRNA complex via base-pairing 
with complementary sequences, degradation of the complex 
and the recycle ratio of miRNA during the degradation. 

First, regulation of mRNA by miRNA generates 
ultrasensitivity in a recycle ratio dependent manner. The 
larger of the recycle ratio, the less sensitive inhibition of 
mRNA by miRNA and vice versa. That is, ultrasensitivity is 
generated by sacrificing efficiency. 

Second, regulation of miRNA by mRNA also generates 
ultrasensitive inhibition under small recycle ratio, 
subsensitive inhibition under large recycle ratio, or 
protection under near complete recycle.  

Taken together, the regulation between miRNA and 
mRNA are reciprocal and shows different level of 
sensitivity, either ultrasensitive or subsensitive. 

Third, ultrasensitivity from the miRNA-mRNA mutual 
regulation can also contribute to the generation of bistability.  
ceRNA with stronger binding affinity further enhances the 
ultrasensitivity of miRNA regulation on mRNA. 

Fourth, several kinds of response curves exist when 
considering two binding sites, including inhibitory 
subsensitivity, inhibitory ultrasensitivity, protective 
subsensitivity, duality, and especially bistability. The 
bistability generated from mRNA-miRNA reciprocal 
interaction in the absence of any imposed feedback 
regulation are never reported theoretically or experimentally. 
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Short Abstract — Cell polarity is the asymmetric 

organization of cellular structures. Many mathematical models 
of polarity rely on bistablility, or the existence of two stable 
steady states.  Bistable regulation of polarity has yet to be 
tested experimentally. 

Hysteresis is a hallmark of bistability. We tested for the 
existence of hysteresis in polarity establishment during the 
pheromone response of the Saccharomyces cerevisiae. 
Interestingly, mother cells display hysteresis, whereas in 
daughter cells do not. The results for daughter cells show that 
bistability is not a necessary condition for polarity.  The 
hysteresis observed in mother cells opens the possibility for 
bistability in certain cellular contexts. 
 

Keywords — Polarity, Bistability, Hysteresis, Pheromone 
Response, Saccharomyces cerevisiae. 

I. INTRODUCTION 

Cell polarity is the asymmetric organization of cellular 
structures and morphology. Polarity establishment is critical 

for differentiation, morphogenesis and migration in all 
eukaryotes [1]. Many mathematical models of polarity rely 

on bistablility, or the existence of two stable steady states [2-
6].  In the context of polarity establishment in response to an 

external stimulus, bistability means that cells can exist in 
either a polarized or unpolarized state for a range of stimulus 

strengths. Which steady state is observed depends on past 
conditions. Bistable regulation of polarity has yet to be 

proven or refuted experimentally. 

II. METHODS AND RESULTS 

One of the hallmarks of a bistable process is hysteresis [7]. 
In the context of stimulus induced polarity, hysteresis means 

that the stimulus strength needed to establish polarity is 
greater than that needed to maintain polarity once it is 

established. We tested for the existence of hysteresis in 
polarity establishment during the pheromone response of the 

budding yeast Saccharomyces cerevisiae. Using a custom 
microfluidic system, we determined the minimum 

pheromone concentration required to establish polarity and 
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compared it with the maximum concentration at which 
polarity is lost. Interestingly, we found that mother cells 

display hysteresis, whereas in daughter cells do not. Mother 
cells require a higher pheromone concentration to establish 
polarity than to lose polarity, while daughter establish and 

lose polarity at the same pheromone concentration. 

III. CONCLUSION 

The results for daughter cells show that bistability is not a 
necessary condition for polarity establishment.  The 

hysteresis observed in mother cells opens the possibility for 
bistability in certain cellular contexts. 
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Short Abstract — Simulation algorithms have become 

indispensable tools in modern quantitative biology, providing 
deep insight into many biochemical systems including gene 
regulatory networks. However, current stochastic simulation 
approaches handle the effects of fluctuating extracellular 
signals and upstream processes poorly, either failing to give 
qualitatively reliable predictions or being very inefficient 
computationally. Here, we introduce the Extrande method, a 
novel approach for simulation of bio-molecular networks 
embedded in the dynamic environment of the cell and its 
surroundings. The method is accurate and computationally 
efficient, and hence fills an important gap in the field of 
stochastic simulation. We employ it to study a bacterial 
decision-making network and demonstrate that robustness to 
fluctuations from upstream signaling places strong constraints 
on the design of networks determining cell fate. 
 

Keywords — Stochastic simulation, biochemical networks, 
fluctuating environment, time-varying propensities. 
 
 

YNAMIC simulation is an essential and widespread 
approach for studying models of bio-molecular 

networks in cell biology [1]. Often such models need to take 
into account biochemical stochasticity [2] as well as the 
effects of interactions with other fluctuating processes in the 
cell and/or with signals arising extracellularly [3].  

The stochastic simulation algorithm (SSA) [4] allows the 
random timing of reactions in the network model to be taken 
into account (often known as intrinsic noise). However, the 
SSA assumes constant propensities between reactions and 
cannot be used when other processes interacting with the 
network cause its propensities to fluctuate between reaction 
occurrences. Here, we introduce a new approach relaxing 
this assumption, which we call Extrande. The method allows 
stochastic simulation of a bio-molecular network of interest 
embedded in the dynamic, fluctuating environment of the 
cell and its surroundings. 

There are two existing approaches to stochastic simulation 
of reaction networks subject to dynamic, fluctuating inputs. 
The first class of algorithms [5-7] simply implements the 
SSA, under the approximation that the input remains 
constant between the occurrences of any two reactions. We 
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term these collectively the naive method. The second class 
of algorithms [8-10] involves step-wise numerical 
integration of reaction propensities until a target value for 
the integral is reached. We term these collectively the 
integral method. The naive method can yield qualitatively 
misleading predictions (even when dynamic inputs change 
relatively slowly) while the integral method can impose 
large and impractical computational burdens due to 
numerical integration of propensities. 

We demonstrate the clear advantages of Extrande in terms 
of speed and accuracy using two illustrative case studies. In 
the first case study, we study how various biological sources, 
including effects related to circadian oscillations, chromatin 
remodeling, the cell cycle, and pulsatile transcription factors, 
affect variation in gene expression levels across cells and 
over time. In the second case study, we use Extrande to 
study how fluctuations in the protein componentry of signal 
transduction networks affect downstream networks 
determining cell fate. We find that robustness to fluctuations 
from upstream signaling places strong constraints on the 
design of networks determining cell fate. 
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In response to large variety of stimuli, mammalian NF-κB 

transcriptional factors (TFs) promote diversified series of genes 
expression. The unique DNA-binding properties of NF-κB 
dimers is a key signal integration step. To investigate these 
properties, we build a library of NF-κB binding DNA elements 
(κB sites) in a synthetic promoter and use flow cytometer to 
evaluate the transcriptional activity in yeast. We further 
characterize these dimer-specific promoters and then rebuild 
genetic circuits, such as logic gates etc. These study provides us 
new insight of how NF-κB dimerization act as regulatory 
function and become a powerful toolbox for synthetic biology 
practice.  
 

I. INTRODUCTION 
IVING cells regulate gene expression by well-designed 
gene circuits. After the process of upstream signal 

transduction pathway, the delicate interaction between DNA 
and TFs play an important role[1].  

Several modular tools, such as zinc finger [2], TALE 
(transcription activator-like effector) [3], and CRISPR [4] 
system have been used to regulate gene expression in synthetic 
biology. Their excellent orthogonality and few off-target rate 
make them a broad application prospect. 

In this paper, we use NF-κB natural and refabricated 
protein to control programed promoters. First, our TFs 
derived from nature, which will be true reflection of real gene 
regulation mechanism. Second, NF-κB family proteins can 
form homo- and hetero- dimers, which exhibit specific DNA 
binding properties. Third, we can program extended logics 
into transcriptional regulation through controlling NF-κBs’ 
dimerization process. 

II. RESULTS 

A. Rapid Identification of NF-kB dimer specific gene 
activation DNA elements in yeast 
Based on database [5] and results from high throughput 

technology [6], we build a library of 260 different NF-κB 
binding sites and insert them in front of minimal CYC1 
promoter. Then we transform all the plasmids into 11 kinds of 
yeast with different combination of NF-κB proteins. 
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The sequence specificity of NF-κB dimers is obvious, 
which helps us to rediscover the specificity of NF-κB dimers. 
We also have got powerful toolbox and orthogonal pairs for 
synthetic genetic circuits. Well-conserved sequence motifs are 
shown for those dimers. 

B. Programmable gene regulation with rational designed 
synthetic promoters and refabricated NF-kB proteins. 
Combining NF-κB proteins with 18 other co-factors, such 

as med6 and hda3, the properties of natural NF-κB proteins 
are widened. A quicker repressor is born, which will 
dynamically change the regulation of downstream genes.  

Systematically engineering NF-κB binding position makes 
promoters, such as ADH1 and CYC1, have different basal 
expression and fold of activation and repression, which 
provide us an abundant source of material. 

C. Synthetic devises and logic gates coded by NF-kB 
protein dimerization 
Through changing different kinetic κB sites, we build 

different self-activation and inhibition curves, which will fit 
well with computation models. Taking use of the dimerization 
process of NF-κB protein, we have rebuilt almost all the logic 
gates with a single promoter, which is simpler and more 
modularized. 

III. CONCLUSION 
The ability to manipulate gene regulation is the most 

fundamental business in genetic engineering. Here, we 
rigorously measure the specificity of eukaryotic TF, NF-κB. 
We find that properties of TFs and promoters can be 
fine-tuned. Beyond these, with the dimerization process of 
NF-κB proteins, we simply rebuild useful synthetic devises. 
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Complex models in systems biology can include a large 

number of unknown parameters.  Many such models are 
“sloppy”, i.e., exhibit an extreme insensitivity to coordinated 
changes in many parameter combinations.  Because of this 
extreme insensitivity experimental design methods have been 
developed to optimally select those experiments that allow 
accurate estimates of all the parameters. These methods 
typically assume that the model is a complete representation of 
the system.   In practice, however, this is assumption is almost 
never true--models always involve simplifying approximations.  
We explore the effects of these approximations on model-based 
experimental design methods.  We conduct several numerical 
experiments in which data is generated from a complex model 
(acting as a surrogate for the actual system) but experiments 
are selected based on an approximate model.  We find that 
although the simple model is able to fit data generated by the 
complex model for many potential experiments, it is unable to 
fit data for those experiments selected as “optimal” as 
determined by experimental design methods.  This is because 
the “optimal” experiments are those most likely to make 
microscopic details more important, including those omitted 
from the model.   

 
ODELS of complex biological systems can involve a 
large number of unknown parameters.  Considerable 

attention has been given to the problem of parameter 
inference in systems biology.  Many models are “sloppy,” 
i.e., exhibit an extreme insensitivity to coordinated changes 
in the parameters.  Because of the near-universal appearance 
of sloppiness among systems biology models it was 
suggested that sloppiness was an inherent feature of such 
models and that accurate parameter inference would be 
practically impossible [1]. Subsequently, it was shown that 
model-based experimental design could be used to identify a 
collection of experiments that would enable accurate 
parameter estimates.  The idea was that although the model 
of each experiment would be sloppy individually, 
complementary experiments could be identified that would 
allow the accurate estimates of all the parameters [2].   
 There has been considerable interest in experimental 
design techniques for parameter inference in systems biology 
[2, 3, 4, 5].  However, nearly all of these methods assume 
that the model is a complete representation of the system.  In 
practice, however, this assumption is almost never true.  
Models always employ simplifying.  Indeed, it would be hard 
to imagine a “complete” model of systems biology.  Any 
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model will have rates and binding affinities that will be 
altered by the surrounding complex stew of proteins, ions, 
lipids, and cellular substructures.  Furthermore, in such 
systems there is no clear distinction between which 
parameters are important and which are not. 

We consider the model of EGFR signaling due to Brown 
et al. [6] for which optimal experiments were later identified 
by Apgar et al., [2].  We generate data for the Apgar et al. 
experiments using a model similar to that of Brown et al. but 
with Michaelis-Menten reaction replaced by the more 
accurate mass-action reactions.  We find that although both 
models can fit the data for the experiments in Brown et al. 
[6], the Michaelis-Menten model is unable to fit data 
generated by the mass action model for the experiments 
proposed by Apgar et al. 

We argue that this result will be generic for systems in 
which there is no clear separation between important and 
unimportant system features.  We describe such systems as 
“sloppy,” a natural extension of “sloppy” models.  Optimal 
experiments are those that highlight features of the system 
that were unimportant for other experiments.  This includes 
those components of the system that were omitted from the 
model.  When these experiments are carried out, the model 
will typically be unable to fit the resulting data.  Our results 
suggest that more careful uncertainty quantification is 
necessary when modeling and selecting experiments for such 
systems. 
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Short Abstract — AKT is a central regulator of growth and is 

important in the transmission of the insulin signal to a range of 
biological processes such as protein synthesis and glucose 
uptake in fat and muscle cells. AKT does not phosphorylate its 
substrates uniformly as they exhibit different temporal profiles 
in terms of shapes and speeds. Additionally, the 
phosphorylation kinetics of AKT itself, which is commonly used 
as a marker for its activity, does not match the phosphorylation 
kinetics of its substrates. Mathematical modelling revealed that 
variations in substrate phosphorylation speeds are in sufficient 
to explain the mismatch. This suggests that there is some 
missing mechanism of AKT activation that requires further 
investigation. 
 

Keywords — Insulin Signalling, AKT, Systems Biology, 
Kinetic Modelling. 

I. AKT AS A KEY HUB OF SIGNALLING 
KT is a key component of insulin signaling that 
potentiates many downstream processes such as glucose 

uptake, protein synthesis, lipid synthesis as well as inhibiting 
glycogen metabolism [1]. After insulin triggered 
translocation of AKT to the plasma membrane, it is 
phosphorylated at its T308 residue by PDK1 and S473 
residue by mTORC2 [2], [3]. These result in activation of 
AKT, enabling it to phosphorylate its target substrates. In 
this work, we explore the relationship between AKT 
phosphorylation and AKT activation and hypothesise that 
phosphorylation order and kinetics are the determining 
factors of activity.  

II. RESULTS 
  Insulin signaling was explored in the 3T3-L1 cell model. 

Initial results suggested that T308 and S473 kinetics are very 
similar. At maximal doses of insulin, the AKT 
phosphorylation and AKT substrate phosphorylation, such as 
AS160 at the T642 residue and GSK3β at the S9 residue, 
have matching temporal patterns. However, at a submaximal 
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dose, they are very different. This is because at 1 nM insulin 
stimulation, AKT phosphorylation features overshoot 
behavior, peaking at 2 minutes then reducing. Its substrates, 
however, peak at 5 minutes then sustain their response. 

Through simulation of described system using our newly 
developed dQSSA model, we found that AKT activity 
cannot be directly related to T308 or S473 phosphorylation 
[4]. It showed that substrate phosphorylation was not slow 
enough for them to be insensitive to the overshoot in AKT 
activation.  

Since AKT phosphorylation is not directly linked to 
substrate phosphorylation, we are now determining if AKT 
phosphorylation relates directly to AKT activity itself using 
an in vitro kinase assay. 

Given that singly phosphorylated AKT possesses some 
kinase activity, we will test to see whether this contributes to 
the disconnect between AKT and substrate phosphorylation. 
We will separate singly phosphorylated AKT from doubly 
phosphorylation AKT by finding the perturbation in S473 
and T308 phosphorylation time profiles from PDK1 and 
Sin1 (an mTORC2 component) knockout experiments, 
respectively, then analyzing them using mathematical 
modelling. These can then be used to determine the link 
between AKT activity and the pools of AKT 
phosphorylation. 
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Short Abstract — Apoptosis is a biological process that 

eliminates the damaged or useless cells in order to maintain 
inner balance in organisms. It’s responsible for many vital 
processes such as development, morphogenesis, homeostasis and 
deletion of dangerous cells. Escaping apoptosis can cause a lot of 
diseases such as cancer. As a vital process, apoptosis is regulated 
by a complex network. It can be divided into 2 pathways: 
extrinsic and intrinsic apoptosis network, which will give 
instructions to drug design for related diseases in future. 
 

Keywords — Apoptosis, Caspase 3, Caspase 9, XIAP 
 

I. INTRUODUCTION 
HE apoptotic mode of cell death is an active and defined 
process which plays an important role in the development 

of multicellular organisms and in the regulation and 
maintenance of the cell populations in tissues upon 
physiological and pathological conditions.[1]Apoptotic 
processes are of widespread biological significance, being 
involved in development, differentiation, proliferation, 
regulation and function of the immune system and in the 
removal of defect and therefore harmful cells. As a vital 
process, apoptosis is regulated by a complex network. [2][3][4] 
`In the vision of systems biology, the most important factor is 
the dynamics of Caspase3 activity in the mitochondria 
apoptotic pathway. The dynamics of Caspase3 mainly 
depends on the concentration of Caspase9, proteasome and 
XIAP. The questions I take most interest in are the network 
consists of these four nodes, in other words, I concerned about 
the dynamics of Caspase3 activity and apoptosis percentage 
which are caused by these three feedback loops. Based on 
experiments have been taken, I would like to take three 
measures to address my questions, the small molecule 
inhibitors, knocking down the expression of Caspase9 and 
XIAP, and knocking out those genes in the means of CRISPR. 

  In order to monitor the dynamics of Caspase3, Goldstein 
et.al designed FRET reporter[5] which its principle is 
measuring the extent of fluorescence resonance energy 
transfer within a recombinant substrate containing cyan 
fluorescent protein (CFP) linked by a short peptide possessing 
the Caspase3 cleavage sequence, DEVD, to yellow 
fluorescent protein (YFP). When Caspase3 was not activated, 
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we can see the yellow fluorescent (YFP) if it was given the 
excitation spectrum of CFP. While we can see the CFP when 
Caspase3 was activated because DEVD was cleaved by 
Caspase3. Rehm et.al monitored the dynamics of Casp3 using 
FRET report.[6] They found that Casp3 is always activated 
quickly and absolutely no matter what was the apoptotic 
inducing signal. We concerned about the dynamics of 
Caspase3 activity and apoptosis percentage which are caused 
by these three feedback loops. 

II. RESULTS 
I used siRNAs to knock down the expression of Casp9 and 

XIAP. By the results of quantitative western blot, I 
successfully knocked down the expression of Caspase9 and 
XIAP with approximately 60% and 40% efficiency each. 
Then we will monitor the dynamics of Casp3 by the imaging 
analysis. 

 

III. CONCLUSION 
I successfully knocked down the expression of Caspase9 

and XIAP with approximately 60% and 40% efficiency each. 
In the following two years, I plan to knock out Caspase9 

and induce exogenous Caspase9 dimerization in HeLa cells. 
By this way, I can work out the influence of Caspase9 
dimerization on the three-node network consists of Caspase3, 
XIAP and Caspase9 that play a vital role in the mitochondria 
apoptotic pathway  
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Short Abstract —We explored endogenous molecular-cellular 

network hypothesis for prostate cancer by constructing 
relevant endogenous interaction network model and analyzing 
its dynamical properties. Molecular regulations involved in cell 
proliferation, apoptosis, differentiation and metabolism are 
included in a hierarchical mathematical modeling scheme. This 
dynamical network organizes into multiple robust functional 
states, including physiological and pathological ones. Some 
states have characteristics of cancer: elevated metabolic and 
immune activities, high concentration of growth factors and 
different proliferating, apoptotic and adhesion behaviors. The 
molecular profiling of calculated cancer state agrees with 
existing experiments. We developed a novel numerical method 
of constructing potential landscape for large scale interacting 
biological network. Robust topological structures such as 
invariant surface in the phase space are revealed by the 
potential landscape obtained. 
 

Keywords - Prostate Cancer, Endogenous Molecular-cellular 
Network, Dynamical System, Potential Landscape, Attractors. 

I. BACKGROUND 
ANY ideas have been put forward for carcinogenesis. 
At the two ends of the spectrum are accumulation of 

mutations in somatic cells and endogenous molecular 
-cellular network hypotheses [1-5]. The former focuses on a 
few accidental hits due to environmental insult. The later 
blames the whole biological structure formed by evolution: 
The molecular-cellular interactions which enable organisms 
to cope with different living conditions also lay down 
“traps”, robust pathological states, in the endogenous 
molecular-cellular interaction network. While events leading 
to the pathological states vary, these disease causing states 
are well defined and therefore, having common features 
among individuals, according to the hypothesis.  
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II. METHOD 
We explored endogenous molecular-cellular network 

hypothesis for prostate cancer by constructing relevant 
endogenous interaction network model and analyzing its 
dynamical properties. We developed a new numerical 
method of calculating potential landscape for large-scale 
endogenous network.  

III. RESULTS 
This dynamical network organizes into multiple robust 

functional states, including physiological and pathological 
ones. Some states have characteristics of cancer: elevated 
metabolic and immune activities, high concentration of 
growth factors and different proliferating, apoptotic and 
adhesion behaviors. The potential landscape constructed 
even suggested the existence of more complex topological 
structure beyond stable states, such as invariant surface in 
the phase space. 

IV. CONCLUSION 
We developed a hierarchical mathematical model of 

endogenous molecular-cellular interactions for prostate 
cancer. By utilizing a new numerical method of calculating 
potential landscape, we effectively and intuitively 
demonstrate the dynamical behavior of the endogenous 
network, and even find out more robust topological structure 
hidden inside the complex biological interactions.  
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Short Abstract — Epithelial to mesenchymal transition 
(EMT) is a key step in cancer metastasis. It involves coopera-
tion of signaling pathways, such as Transformation growth 
factor-β (TGF-β), Wnt and Hedgehog (HH) pathways. These 
signaling pathways cooperate together and converge to Snail 
upregulation to turn on the core switches of EMT. The func-
tional roles of multi-signaling pathway crosstalks in EMT 
remain to be explored. In this project, we use integrated 
computational modeling and quantitative experimental stud-
ies to investigate TGF-β induced signaling crosstalk to pro-
mote Snail expression and EMT. 

Keywords — TGF-β, Hedgehog, Wnt, EMT, signal tras-
duction.  

I. PURPOSE 
HE process of cells transformed from health to cancer 
cells and the promotion of cancer cell metastasis in-

volves multi-steps, such as evading growth suppressors, 
avoiding immune destruction, enabling replicative im-
mortability, genome instability and mutation, activating 
invasion and metastasis, and so on [1]. EMT, which trans-
forms the regular-shaped epithelial cells with tight 
cell-to-cell attachment to spindle-like mesenchymal cells 
with loose or no cell-to-cell attachment, plays a key role in 
cancer metastasis. Previous studies showed that EMT can 
be induced in most of the mammalian cell lines by ex-
ogenesis signals, such as TGF-β, epithelial growth factor 
(EGF), HH, etc., and is regulated by a delicate signaling 
network [2]. 
  TGF-β is a major inducer of EMT. The core process of 
the transformation involves two transcription factors, Zeb 
and Snail, and two families of microRNAs, miR-34 and 
miR-200. These four components form two coupled dou-
ble-negative feedback loops that enable EMT process fol-
lowing two steps, first transition to partial EMT then to 
full EMT [3, 4]. The canonical TGF-β signal transduction 
pathway involves TGF-β receptor (TGFBR) to SMAD 
family and finally to Snail [5, 6]. However, many bypasses 
also exist in response to TGF-β signaling, resulting cross-
talk to other signaling pathways. For instance, SMAD3 
and SMAD4 that are promoted by TGF-β also induce 
Gli1/2. As two are major transcription factors in HH sig-

naling pathway, Gli1/2 also regulate Snail expression. 
Meanwhile, TGF-β also activates β-catenin, which is asso-
ciated to the Wnt pathway and binds to the promoter re-
gion of Gli to upregulate its expression [7]. The question 
then lay on the reason behind the fact that a single signal 
input promotes actually more than one signaling pathways 
and how they operate together to regulate Snail1 and 
EMT.  

II. EXPERIMENT PROCEDURE  
We constructed a mathematical model based on exper-

imental results that were collected from previous studies. 
After systematical analysis of the model, we found that the 
the three pathways are coordinately regulate Snail1 and 
EMT. Now we are confirming our predictions qualitative-
ly by traditional biochemistry experiments (flow cytome-
try, qPCR and western plot) and combined with cut-edge 
technology such as CRISPR for quantitatively verification. 
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Short Abstract — Most genetic studies in Caenorhabditis 

elegans are done in the N2 background, but it is unclear how 
this laboratory background affects these genetic studies. To 
examine these subtle effects, particularly on synapse 
development, we examine subtle synaptic mutants, using high-
throughput microfluidics and computer vision to obtain the 
requisite sample size. With heterozygotes between these and 
wildtype strains, we examine different backgrounds rapidly 
without extensive breeding, identifying an unknown interaction 
between a true wildtype and the genes jkk-1 and unc-104. This 
provides a methodology for studying multigenic and 
background interactions, particular their interaction with 
genetic studies in C. elegans. 
 

Keywords — Microfluidics, C. elegans, Quantitative 
Phenotyping, Computer Vision, Epistasis, Synapses, Synaptic 
Trafficking, Synaptic Morphology, High-throughput 

I. BACKGROUND 
HE model organism Caenorhabditis elegans is prized 
for ease of handling and genetic manipulation. This 

encourages use for genetic studies, an endeavor that has 
yielded ground-breaking results. However, the vast majority 
of genetic studies in C. elegans have been done on the strain 
N2, in which decades of cultivation has resulted in 
behavioral, physiological, and genetic divergence from wild 
populations [1]. It is probable that this genetic background 
modifies the results obtained in genetic studies, but the exact 
significance of these effects is unknown. 
 Evaluation of this has been bottlenecked by difficulties in 
experimental procedure, as well as the subtlety of 
background effects. Large-scale phenotypic effects drown 
out genetic background effects, while subtler effects require 
much larger sampler sizes, fluorescent markers introduced 
into every background under study, and detailed observation, 
rendering examination of more than a handful of genetic 
backgrounds impracticable. 
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II. METHODOLOGY AND RESULTS 
To address these difficulties, we introduce a methodology 

tying together several innovations made by this lab. These 
include the use of microfluidics for high-throughput 
imaging, computer vision for rapid and accurate 
quantitative phenotyping, and the use of heterozygotes for 
comparison of genetic backgrounds without burdensome, 
repeated outcrossing. The former two reflect innovations 
demonstrated previously by this lab [2], while the latter is a 
novel approach to a challenging experimental problem. 

We choose to use a combination of the two recently 
introduced dominant synaptic mutants jkk-1 (km2) and unc-
104 (wy673), along with the synaptic marker Pmig-13:snb-
1::yfp, all in the N2 background. These were chosen because 
of the relative subtlety of the phenotypes involved, as well as 
the relatively unexplored nature of synaptic morphology.  

By crossing these strains with wildtype strains of C. 
elegans, producing heterozygous F1 progeny, we show that 
background effects on a subtle feature like synaptic 
morphology can be discerned, using the N2-cross as a 
control. In particular, we show that the genetic background 
of the Hawaiian strain CB4856 exerts an effect on synaptic 
morphology similar to the km2 and wy673 alleles, without 
reinforcing these mutations when present. Since CB4856 
does not carry mutations known to affect synaptic 
morphology, the CB4856 wildtype background exerts a 
novel effect on these phenotypes. The choice of genetic 
background used for a given study can thus have a strong 
effect, and it is important to understand the interactions of 
genetic background with phenotype. 

We thus demonstrate that our method is capable of 
detecting subtle genetic background effects, and also that 
these effects are an important confound to genetic 
discovery. 

REFERENCES 
[1] McGrath, PT. (2011) Parallel evolution of domesticated 

Caenorhabditis species targets pheromone receptor genes. Nature 
477, 321-325 

[2] Chung, K., Crane, M. M. & Lu, H. (2008) Automated on-chip rapid 
microscopy, phenotyping and sorting of C. elegans. Nat. Methods 5, 
637–643. 

Examining Genetic Background and Synaptic 
Morphology with Heterozygotes 

Charles L Zhao1, Patrick McGrath2, Kang Shen3, and Hang Lu4 

T 



 We  studied  the  relation  between  optimal  growth

temperature (OGT) and information content (IC), in the

core  promoter  region  of  all  the  archeal  genomes

published to date, by calculating the information content

of the motiff that represents the TATA binding site (TBS).

We have tested several different approaches to predict 
transcription start sites (TSS) in a given genome we then 
used motiff prediction software in the flanking regions to 
the TSS, we constructed a database, compiling already 
available information from published sources, that 
contains characteristic growth conditions for each strain.
Our work hipotesis is that protein-dna interfase in 
thermophiles should be different from that of mesophiles,
in particular we propose and test a positive correlation 
between information content of binding sites and OGT in
archeas.
We show that the information content increases with 
increasing optimal growth temperature, and this effect 
cannot be explained solely by an increased CG 
composition.
Selective pressure towards binding sites with higher 
binding affinity to the protein could be the reason for this
correlation.
The established Rseq = Rfreq from molecular 
information theory doesnt take into account the effect of 
temperature as a selective pressure acting to skew the 
posible binding sites, and creating another cause for an 
increment in Rseq that doesnt apply to Rfreq.
Since entropy effects increase with temperature, Shannon
entropy effects might as well.

Keywords —  Information  Content,  Thermophiles,  TATA
binding protein, Basal Promoter.

I.PURPOSE

Life is limited by physical and chemical extremes that define 

the "habitable space" within which it operates. 

Aside from its requirement for liquid water, no definite limits

have been established for life under any extreme[1].

We know about some aspects of the adaptations to extreme 

environments, in particular there has been a lot of research 

regarding the adaptations to temperature in order to maintain

protein stability[2] and some possible mechanisms for 

stabilizing genomic DNA in archeas have also been proposed

[3], but trough what means the fine regulation that is 

normally exerted trough protein-DNA interactions is 

maintained, still is relatively unknown and might give 

insights into the determinants that mediate the inter-

molecular recognition process and how the extreme 

environments favor certain responses. Even tough our 

interest is in the general process of protein-DNA interaction 
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we choose to limit our study to the realm of the archeas since

they comprehend the majority of the hyper thermophiles.

One possible approach to understanding the adaptation 

process is looking for trends in the sequence changes of the 

organisms,  this line of thinking lead to many proposed ideas,

as for example the relation between GC content and the 

OGT[4].

We propose a novel relation between the information content

of a protein binding site and the temperature at witch the 

organism lives.

We choosed to work with archeas due to the wide range of 

temperatures they endure.

Protein-DNA interactions are central to cell activity 

regulation including transcription initiation, one of the more 

studied cases available for archeas , being the TATA box 

binding protein (TBP).

TBP is involved in promoter recognition, the first step of 

transcription initiation. TBP is universally conserved and 

essential in archaea and eukaryotes. In archaea, TBPs have 

to be stable and to function in species that cover an 

extremely wide range of optimal growth temperatures 

(OGTs), from below 0ºC to more than 100ºC. 

Thus, the archaeal TBP family is ideally suited to study the 

evolutionary adaptation of proteins to an extremely wide 

range of temperatures [5].

Organisms that do thrive in extreme environments might 

have in some way been affected by the selective pressure 

imposed by this conditions, for the particular case of the TBP

we expect TBP and TATA box to co evolve responding to a 

number of factors, adaptation to temperature, pressure, 

salinity, and other extreme biophysical conditions.

 

II.CONCLUSION

Our preliminary results confirm our hypothesis, there is an

apparent  correlation  between  information  content  and

optimal growth temperature.
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Short Abstract — Existing mathematical models of the shoot 
apical meristem (SAM) explain nucleation and confinement 
of a stem cell domain by a Turing mechanism, assuming that 
the diffusion coefficients of the activator (WUSCHEL) and 
inhibitor (CLAVATA) are significantly different. As there is 
no evidence for this assumption of differential diffusivity, 
we recently proposed a new mechanism based on a “bistable 
switch” model of the SAM. Here we study the bistable-
switch model in detail, demonstrating that it can be 
understood as localized switches of WUSHEL activity in 
individual cells driven by a non-uniform field of a 
hypothetical hormone. By comparing domain formation on a 
cell-network driven by Turing and bistable-switch models, 
we show that better domain control is possible with the new 
mechanism.  
Keywords —minimal model of SAM, reaction-diffusion 

systems, Turing instability, bistability, fast diffusive field. 

I. PURPOSE 

The stem cells residing in the shoot apical meristem 

(SAM) give rise to above ground tissues [1]. Hence, 
maintenance of stem cell niches is of central importance to 
plant growth [2,3]. Negative feedback between the proteins 
WUSCHEL (WUS - a homeodomain transcription factor) 
and CLAVATA (CLV - a receptor kinase) is at the core of 
the signaling pathway controlling the central domain – the 
reservoir of stem cells [1]. Recently, theorists have proposed 
reaction-diffusion models of the SAM [4-7] that explain 
nucleation and confinement of the central domain as a 
Turing instability.  
 
The most well-known mechanism of pattern formation in 
dissipative systems is associated with a Turing instability 
[8]. In this case, a spatially uniform steady state, which is 
globally stable with respect to uniform perturbations, 
becomes unstable with respect to non-uniform perturbations, 
provided that the diffusion range of an inhibitor significantly 
exceeds the diffusion range of an activator [9]. Under these 
conditions, a periodic pattern emerges in a monostable 
system at a certain critical wavenumber [10]. For a 
mathematical model of SAM, a Turing mechanism requires 
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that the diffusion coefficient of CLV (inhibitor) significantly 
exceeds that of WUS (activator). At present, the diffusive 
properties of CLV and WUS are not well established; 
therefore, there is no clear experimental evidence on whether 
the Turing condition of differential diffusivity is applicable 
within the WUS and CLV expression zones of the SAM. 
 
Existing models of the molecular biology of SAM regulation 
have positive and negative feedback loops that can generate 
not only Turing patterns but also alternative stable steady 
states (bistability) in a certain range of parameter values 
[2,6,7]. Recently bistable reaction-diffusion models have 
been studied to simulate experimental data on cytokinin 
controlled domain confinement in SAM [3].  In our previous 
work [11], a mechanism different from Turing instability 
was proposed for pattern formation in a minimal, bistable 
model of SAM. In the present work, we study in detail the 
mechanism of domain nucleation reported in Ref. [11]. 

II. CONCLUSION 
Here we illustrate how a spatially non-uniform field of a 
peptide hormone synthesized by WUS can drive domain 
nucleation in a SAM model exhibiting bistability. We 
compare central-domain formation by Turing and bistable-
switch mechanisms on a polygonal cell-network and show 
that, in the latter case, domain nucleation at a target location 
is possible without the additional assumptions required by 
the former. 
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Short Abstract — There are a variety of methods that 

attempt to infer networks of positional correlations in proteins 
from multiple sequence data.  However, method accuracy is 
inconsistent from sequence alignment to sequence alignment, 
depends strongly on sequence preprocessing and method 
parameters, and the predicted networks from different 
methods show little overlap.  We use ensemble learning to 
combine the results of multiple scoring methods.  When tested 
on a large set of alignments, the ensemble method outperforms 
the individual scoring methods in the ensemble. 

I. INTRODUCTION 
MBEDDED in an evolving protein is a complex network 
of amino acid correlations.  The constraints induced by 

this network of correlated fluctuations drive residue 
substitutions at single sites.  Correlations can be strong even 
between pairs of residues widely separated in the folded 
structure because of allostery [1], charged interactions [2], or 
other forms of energetic coupling [3].  

In order to infer this correlation network from multiple 
sequence data, many methods under the names correlated 
substitution analysis have been developed.  The methods for 
scoring pairs of residues for high correlation include chi-
squared tests [4], explicit likelihood [5], variants of mutual 
information [6,7], and maximum entropy models [8]. 

Unfortunately, method accuracy – as assessed by 
comparison to protein contact maps – is inconsistent from 
sequence alignment to sequence alignment and can be 
strongly dependent on other preprocessing steps and scoring 
parameters.  In addition, predicted networks from different 
methods often show relatively poor overlap [9]. 

II. RESULTS 
In some machine learning problems, combining several 

models yields better results than can be achieved by any 
individual model [10]. We use an ensemble approach to 
blend the results of multiple correlated substitution scoring 
methods.  

We first convert the set of scores each method assigns into 
a set of ranks. The ranks are then aggregated, using a metric 
similar to those employed for web meta-search engines [11].   
We combined nine different scoring methods on a large (~ 
3500) set of high-quality protein alignments from the Pfam 
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database [12].  The methods used include both newer, more 
sophisticated methods [7,8,9] and older, simpler ones [4,6].  
The ensemble approach shows a marked improvement in 
scoring accuracy when compared to the individual ensemble 
members. 

III. CONCLUSION 
A large amount of effort in the field of correlated 

substitution analysis is directed towards developing ever 
more complicated, and hopefully more accurate, scoring 
methods.  Our mixture-of-experts results suggest that even 
older, relatively simple methods can still yield impressive 
predictions when properly blended.  Given that many 
scoring methods are derived from others, in the future it 
might be desirable to blend the models with a more 
sophisticated scheme [13].   
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Short Abstract — A statistical mechanical formulation of the 

law of mass action has been developed, coupled reaction theory, 
that is on equal theoretical footing with kinetic rate laws and 
describes chemical kinetics exactly. The formulation is based on 
a fluctuation theorem for coupled reactions and uses chemical 
potentials instead of rate constants. Furthermore, using this 
approach, it can be demonstrated that for many systems, the 
highest rate of flux at steady state corresponds to the optimal 
thermodynamic conditions as well. We discuss the significance 
of coupled reaction theory for applications in systems biology. 

Keywords — kinetics, thermodynamics, law of mass action, 
transition state theory, stochastic. 

I. MOTIVATION 
NE hundred and fifty years ago Peter Waage and Cato 
Maximillian Gulberg published their first article 

describing the law of mass action, that the rate of a chemical 
reaction is proportional to the concentration of the reacting 
species [1].  

Forty years after Waage and Gulberg’s initial publication, 
efforts were made to merge the law of mass action with 
Gibbs ensemble formulation of statistical thermodynamics, 
which culminated in 1935 with the Absolute Rate Theory of 
Eyring [2], and Polanyi and Evans [3]. While transition state 
theory, as it is now known, has been enormously successful 
as a framework for understanding chemical reactions, it has 
not had success in being a convenient formulation of 
statistical mechanics that can be used for large-scale 
modeling of coupled reactions [4]. 

II. A FLUCTUATION THEOREM FOR COUPLED REACTIONS 
Fluctuation theorems are used to describe stochastic 

models of dynamics [5]. In stochastic models of reactive 
systems (Markov models) the usual differential equation 
relating rate to concentrations is replaced by the change in 
probability of a state as a function of time. Fluctuation 
theorems relate conjugate processes from the same original 
state via the dissipation, 

 

Pr (J )π
1
(t | J )

Pr (J )π
−1
(t | J )

= eΩ1 ( J )    
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where Ω1 (J )  is a dissipation function for reaction 1 from 
state J . This is a significant aspect of fluctuation theorems 
– they relate the ratio of the probabilities of conjugate 
processes to a value that is potentially measurable or 
calculable. If one could determine Ω1 (J )  then the relative 
reaction probabilities could be determined and the system 
could be modeled without the use of the rate constants first 
described by Waage and Gulberg over 150 years ago.  

Using a fluctuation theory, we have been able to model 
the dynamics of coupled chemical reactions with the same 
precision as kinetic rate laws using differential equations or 
stochastic kinetic models.  

The dynamical trajectory of a reaction intermediate B 
from a stochastic simulation using coupled reaction theory is 
shown below along with a trajectory from a stochastic 
kinetic simulation and the steady state solution to the 
deterministic ordinary differential equation for comparison. 
When using the same set of random numbers, the trajectories 

are exactly the same, 
which indicates that 
the reaction 
probabilities are also 
exactly the same. In 
this case the ratio of 
the forward rate 
constants for the two 
coupled reactions 
was 10-4.  However, 
we have also been 
able to demonstrate 
that the exact results 
are obtained 
regardless of the 

difference in rate constants between sequential reactions. 
That is, coupled reaction theory represents one solution to 
multiscale modeling challenges. 
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Short Abstract — Spatially extended stochastic models for

predator-prey competition and coexistence display complex,
correlated spatio-temporal structures and are governed by large
fluctuations. We specifically study a stochastic lattice Lotka-
Volterra model. Generically, the system tends to relax into a
quasi-stationary state, independent of the initial conditions. We
investigate the non-equilibrium relaxation in the vicinity of the
critical point. We obtain a power law dependence between the
relaxation time and predation rate (critical slowing down), and
measure the critical aging scaling exponents.

Keywords— non-equilibrium relaxation, stochastic lattice
Lotka-Volterra model, critical point, critical exponent.

I. BACKGROUND

HE Lotka-Volterra model [1,2] describes a two-species
predator-prey coexistence / competition system with

'predators' A and 'prey' B. Predators spontaneously die with
rate μ. They also may consume prey and reproduce with rate λ
> 0. Prey may reproduce with rate σ.

0� ��A
AAAB � ��

BBB � � 0
We study a stochastic lattice Lotka-Volterra model [3,4] by

means of Monte Carlo simulations performed on a 2D square
lattice with periodic boundary conditions. Site restrictions are
applied to the system. Each lattice site can either be empty,
occupied by a ‘predator’ or by a ‘prey’.
If we fix μ and σ, the system relaxes into one of two

possible states which are governed by predation rate λ. There
is one stable state in which both species survive. The other
state is an absorbing state with only prey remaining. A critical
predator extinction threshold exists between these two states.

II. SUMMARY OF THE RESULTS

We set the initial condition as a random configuration with
both species densities 0.3 on a 1024*1024 lattice. The system
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relaxes into a quasi-stationary state with reaction rates σ = 1,
μ = 0.025 and λ1 = 0.25. Then we change the predation rate
from λ1 to λ2, followed by an ensuing relaxation to another
state.

A. Relaxation between two quasi-stationary states
We obtain non-equilibrium relaxation between two

quasi-stationary states when λ2 is in the stable region. The
density relaxes into a new state exponentially. The ensuing
relaxation times are measured via the peak width of the
population density Fourier transforms. The damping rate is
equal to the inverse of the relaxation time.
Away from the critical point, we find that the initial

configuration influences the oscillations for the duration of
one relaxation time.

B. Quench to the critical point
In the vicinity of the critical point λc, we obtain a power

law dependence of the relaxation time on (λ-λc)/λc (critical
slowing down). The associated dynamical critical exponent is
measured to be zυ ≈ 1.9 for a 512*512 system.

We employ different system sizes to carry out finite-size
scaling [5] in order to accurately measure the aging scaling
exponents.

III. CONCLUSION

In the lattice Lotka-Volterra Model, there is a species
coexistence state where both predators and prey can stably
survive. We observe relaxation between two quasi-stable
states when changing the predation rate. As expected, we find
that the initial state generically only influences the
oscillations for the duration of about one relaxation time,
implying that the system quickly loses any memory of the
initial configuration.We have measured the critical aging
scaling exponents following a quench of the system to the
predator extinction threshold.
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Short Abstract — Correct chromosome segregation during 

mitosis relies on the mitotic apparatus, a complex 
macromolecular machine that specifically assembles during this 
cell cycle stage. We previously established a quantitative model 
to describe metaphase chromosome dynamics via kinetochore-
microtubule (KT-MT) interactions mediated by viscoelastic 
linkages. Here, we used this quantitative framework in 
combination with experimental approaches to characterize the 
metaphase and anaphase KT/chromosome dynamics in cells 
with merotelic KT mis-attachments. We found that mis-
attachment can affect the dynamics of KTs other than the mis-
attached one. Moreover, we investigated the role of Kif2a in 
correction of KT mis-attachments in PtK1 cells. 
 

Keywords — Kinetochore, microtubule, merotelic, Kif2a 

I. BACKGROUND 
We previously developed a quantitative framework 
integrating forces that control the attachment to MTs, 
positioning, and dynamics of amphitelically (correctly) 
attached KT pairs during metaphase [1]. The model 
describes and predicts many aspects of spindle dynamics. 
Here, we utilized this model to address important biological 
questions. First, we investigated the chromosome dynamics 
(both in metaphase and anaphase) associated with erroneous 
KT-MT attachment, specifically merotelic attachment (a 
single KT bound to both spindle poles instead of just one). 
Merotelic KT mis-attachment is a major cause of aneuploidy 
in mammalian cells [2] and a major cause of chromosomal 
instability in cancer cells [3]. These mis-attachments arise 
frequently in healthy mitotic cells [4], but most of them are 
corrected before anaphase onset. This correction process 
depends upon microtubule dynamics fine-tuned by many 
mechanical and molecular signaling mechanisms, some of 
which have been extensively dissected and others that are not 
well understood. MT poleward flux is one such mechanism 
because, although there is evidence for a role of MT 
poleward flux in correction of KT mis-attachments [5], the 
exact mechanism is not clear. 

II. RESULTS 
We combined mathematical modeling and quantitative 

live-cell microscopy to study the effect of KT mis-
attachment on chromosome dynamics and the contribution of 
MT poleward flux to correction of KT mis-attachments. 
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A. Merotelic KT attachment and metaphase dynamics 
Our mathematical model reproduced the observed shift of 

merotelic KTs closer to the cell equator and their lack of 
oscillation [6] and predicted the sister of a merotelic KT 
displays reduced oscillation. Quantification of KT oscillation 
in live cells confirmed that the sister of a merotelic KT 
displayed shorter oscillation period and amplitude compared 
to KTs of normally attached chromosomes. 

B. MT poleward flux and correction of mis-attachments 
Model simulations predicted that reduced MT poleward 

flux resulted in larger numbers of MTs bound to KTs, 
suggesting reduced correction of KT mis-attachments. 
Experimental reduction of MT poleward flux resulted in a 
larger fraction of KT-bound MTs and increased rates of cells 
progressing through mitosis with merotelically attached KTs, 
confirming the model predictions. 

C. Merotelic KT attachment and anaphase dynamics 
We finally found that reduction of MT poleward flux did 

not affect overall rate of chromosome movement in 
anaphase. But strikingly, in anaphase cells with merotelic 
KTs that lagged behind at the spindle equator, not only the 
merotelic KT did not move poleward, but the poleward 
movement of all other, normally attached KTs was slower 
compared to anaphase cells without merotelic KTs. 

III. FUTURE DIRECTIONS 
Computer simulations will be used to dissect the 

mechanism responsible for the merotelic KT-dependent 
effect on anaphase chromosome dynamics and formulate 
predictions that we can test experimentally. 
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Short Abstract — We propose two temporal phases of 

collective computation in a visual motion direction 
discrimination task by analyzing recordings from 169 neural 
channels in the prefrontal cortex of macaque monkeys.  Phase I 
is an "intensive" or incompressible phase in which uncertainty 
is substantially reduced by pooling information from many 
cells.  Phase II is an "extensive" or compressible phase in which 
numerous single cells contain all the information present at the 
population level in Phase I.  Intriguingly, the most informative 
cells in Phase I are least coupled to each other on short 
timescales, as measured by size distributions of synchronous 
events.  We suggest that this dynamic of independent 
accumulation followed by cooperative propagation is a generic 
feature of robust collective computing systems related to 
consensus formation. 
 

Keywords — Neural coding, population coding, collective 
behavior, criticality 

I. INTRODUCTION 
HE nervous system is the paradigm of a distributed 
information processing system, with information present 

at multiple levels that span single cells,  correlated modules, 
the hemispheres, and the whole brain.  How these scales 
interact, how activity across scales becomes coordinated, 
and how adaptively significant information is encoded are 
among the primary concerns of cognitive neuroscience.  

Here, we explore these issues with data from an 
experiment developed by Newsome and collaborators [1,2] 
that tracks neuronal processing in a visual discrimination 
task. Macaque monkeys are trained to discriminate 
directions of motion in a stochastic random dot display.  In 
each trial, the stimulus is presented, and after a delay a “go” 
cue prompts the subject to indicate their decision about the 
dots’ direction of motion using an eye movement. A multi-
electrode array simultaneously measures times of action 
potentials in 169 neural units in prefrontal cortex.  Neurons 
in this area are known to carry high-level signals specific to 
salient visual targets and eye movements [2]. 
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II. POPULATION TO INDIVIDUAL CODING 
During the visual stimulus presentation (Phase I), a subset 

of cells becomes increasingly informative about the eventual 
decision.  Just before the go cue, Linear Discriminant 
Analysis can use their rates of firing to predict the monkey’s 
decision with ~85% accuracy.  The information, however, is 
not stored in any individual unit—maximal performance 
requires integrating over the activity of >20 cells.  After the 
go cue, when the decision is translated into an eye 
movement (Phase II), many more cells become predictive, 
and can predict the output with near perfect accuracy.  
Conversely, the number of units needed to attain maximal 
performance drops to 1–2.  In this way, the decision process 
includes a switch from accumulation in a population code to 
propagation of information to individual rates.  
Implementing this switch has implications for the units’ 
collective dynamical properties. 

III. CRITICALITY AND INFORMATION LOCALIZATION 
Multiple other neuronal systems have behavior suggestive 

of tuning toward a specific point between complete 
independence and complete correlation, a phase transition 
that implies maximal sensitivity to perturbations (e.g. [3-5]). 
For the units in our study that carry negligible information 
about the decision, we also find evidence of this near-critical 
state in their distribution of sizes of synchronous events. 

However, the cells whose firing rates contain the most 
information about the eventual decision are decidedly not 
critical, firing largely independently of one another, with an 
event size distribution similar to an independent null.  This 
more generally suggests a robust method for collective 
decision making: localized accumulation of evidence by 
independent individuals followed by a consensus process 
that propagates a single decision to the global scale.  
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Abstract — Krylov subspace methods have proved quite 

effective at approximating the action of a large sparse 
matrix exponential on a vector. Their numerical 
robustness and matrix-free nature have enabled them to 
make inroads into a variety of applications of great 
importance. A case in point is solving the chemical master 
equation (CME) that models a system of biochemical 
reactions. This is a challenging problem that gives rise to 
an extremely large matrix due to the curse of 
dimensionality. Inexact Krylov subspace methods 
combined with truncation techniques have helped solve 
some CME models that were considered computationally 
out of reach as recently as a few years ago.  However, as 
models grow, truncating them means using an even 
smaller fraction of their whole extent, thereby introducing 
more inexactness. But experimental evidence suggests an 
apparent success and the aim of this study is to give 
theoretical insights into the reasons why. Essentially, we 
show that the truncation can be put in the framework of 
inexact Krylov methods that relax matrix-vector products 
and compute them expediently by trading accuracy for 
speed.  This allows us to analyze both the residual (or 
defect) and the error of the resulting approximations to the 
matrix exponential from the viewpoint of inexact Krylov 
methods. Numerical experiments demonstrating the theory 
are reported. 
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Short Abstract — A hybrid stochastic model is used to 

investigate how exogenous niche signaling (Wnt and BMP) and 
auto-regulation promote homeostasis. This model uses sub-
cellular element method to account for three-dimensional 
structure of the crypt, external regulation by Wnt and BMP, 
internal regulation by Notch, as well as regulation by internally 
generated diffusible signals. Results provide an alternative view 
of crypt homeostasis where the niche is in a constant state of 
expansion and the spatial structure of the crypt arises as a 
balance between this expansion and the action of various 
sources of negative regulation that hold it in check. 

I. INTRODUCTION 
HE epithelium of the intestinal crypt is an incredibly 
dynamic tissue, constantly replenishing itself every 4-5 

days, which is fueled by approximately 15 CBCs [1], 
dividing roughly once per day even in healthy tissue [2]. 
Numerous investigations have shown the canonical Wnt / b-
catenin pathway to be critical in maintaining homeostasis 
[3]. There are two sources of Wnt signaling in the crypt [3]. 
The mesenchyme that surrounds it produces graded 
expression of Wnts; Paneth cells also produce Wnt3a. 
Genetic deletion of this “local”, Paneth cell derived Wnt 
source does not impair stem cell populations in the in vivo 
crypt [4], suggesting the global Wnt gradient is sufficient for 
homeostasis. However, in vitro studies of “mini-guts” grown 
from CBCs have shown that Paneth derived Wnt3a alone is 
also sufficient to maintain crypt structure in the absence of 
the other exogenous Wnt sources [5]. Additionally, Eph / 
ephrin signaling interactions generate repulsive forces that 
drive Paneth cells to migrate down the crypt wall while all 
other cells passively migrate upward from the base, driven 
by proliferative pressure [6]. Bone morphogenic proteins 
(BMPs) are also known to influence crypt homeostasis by 
suppressing proliferation of stem cells [7]. 
 How do these signaling components contribute to 
maintaining the spatial structure of the crypt and how do 
they interact? Extensive computational modeling has been 
employed to address this and related questions. 
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II. RESULTS 
Paneth derived Wnt promotes uncontrolled expansion 

of the stem cell niche. Simulations results show that stem 
and Paneth cells together create a mutually sustaining 
feedback that drives expansion of both populations. Thus, 
Paneth cell derived Wnt signaling alone cannot both fully 
sustain the niche and promote homeostasis at the same time. 

Regulation of proliferation by BMP constrains niche 
expansion. Simulation results suggest that there is a balance 
between expansion and repression that is required to 
maintain homeostasis. Wnt, which influences differentiation, 
promotes niche expansion while BMP, which influences 
proliferation, constrains that expansion. 

Eph/Ephrin mediated Paneth cell motion is required to 
constrain niche expansion. These results suggests that 
rather than being required to maintain the niche, Paneth cell 
migration is instead required to maintain proper structure in 
the upper walls of the crypt, and in particular to constrain 
niche expansion. Also the rate of cellular proliferation and 
the drag between cells and the crypt wall induced by 
adhesion are also observed to investigate the role of cell 
motions.  

III. CONCLUSION 
We find that there are redundant signals created by both 

the epithelium itself and surrounding tissues that act in 
parallel to maintain epithelial structure. However, this 
redundancy introduces the possibility of explosive stem cell 
population growth. Additional results suggest that other 
signals along with choreographed motion of cells are 
responsible for repressing this expansion. Taken together, 
our results provide a novel hypothesis for how robust but 
fast renewal of the crypt is achieved: as a balance between 
expansion, which drives fast renewal and repression, which 
holds that expansion in check to maintain the crypt’s 
structure.  
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Short Abstract — Systems and synthetic biologists aim to 

decipher the structure and dynamics of cellular networks 
underpinning specific responses, then to alter existing networks 
or engineer de novo ones. Both tasks could benefit from study 
of which structural and dynamic features can emerge from 
evolutionary processes, through which intermediary steps these 
arise, and whether they constitute key “design principles”. 
Here, we present a design approach that focuses on discovering 
a range of possible signalling circuits with a given response 
dynamics. This approach combines in silico evolution and rule-
based modelling of signalling proteins and their interactions. In 
particular, we evolve ultrasensitive and bistable signalling 
circuits that display both known and hereto unknown design 
features. 
 

Keywords — Design Principles, Signalling Networks, 
Evolution in silico, Rule-based Models, Computational Design 

I. INTRODUCTION 
IGNALING networks allow organisms to sense and 
process environmental information and thereby 

implement phenotypic behaviors that enable survival. It is of 
fundamental interest to understand the structure and 
dynamics of these cellular networks. In particular, systems 
biologists hope to be able to define common structural and 
dynamical features of networks that can be seen as “design 
principles” that are re-used in diverse systems, while 
synthetic biologists aim to utilize such design principles for 
reliable and modular engineering of biology [1]. One 
approach for understanding the evolutionary processes that 
lead to existing network elements, and for exploring the 
space of possible solutions, is to re-create the evolutionary 
dynamics of cellular networks in silico. Here, we present a 
design approach based on a novel combination of in silico 
evolution with a specific rule-based modeling of signaling 
proteins called Allosteric Network Compiler (ANC) [2]. The 
use of rule-based models allows us to define biochemical 
features of signaling proteins in detail, while overcoming the 
combinatorial explosion in model structure that arises from 
evolving protein interactions [3]. At its core, the rule sets in 
the ANC framework allows us to define any number of 
signaling proteins, each with a number of domains, and their 
interactions, i.e. a complete signaling circuit. Combining the 
ANC with an in silico evolutionary algorithm, we are able to 
evolve such signaling circuit models according to a user-
defined fitness function [4]. 
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II. RESULTS 
We applied this approach to explore signaling circuit 

design exhibiting switch-like (i.e. ultrasensitive) and bistable 
response dynamics. These types of response dynamics are 
particularly important in information processing and 
decision-making in cells [5,6].  

For signaling circuits with ultrasensitive response 
dynamics emerged from evolutionary simulations, 
approximately half of them utilize the zero-order sensitivity 
to get ultrasensitivity [6]. More interestingly, some evolved 
circuits displayed bistability, while, from previously 
reported works, the only suggested cases for bistability in 
phosphorylation based signaling networks were multi-site 
phosphorylation and positive feedback loops where 
phosphorylated proteins acted upon their own, upstream 
kinases [5,6,7]. The evolved bistable circuits we find 
displayed neither of these features. To better understand the 
role of allosteric regulation, we analyzed the simplest found 
circuit with bistability and further reduced its complexity by 
removing reactions from it. This led to a minimal design for 
bistability, in which we had a protein with a single 
phosphorylation site that is phosphorylated by an allosteric 
kinase.  

III. CONCLUSION 
This analysis demonstrates the power of an in silico 

evolution approach in designing signaling networks as well 
as the potentials for discovering design principles of 
ultrasensitive and decision making in cells.  
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Short Abstract — Biofilm bacteria are embedded in 
extracellular polymers (EPS). Multiple types of EPS can be 
produced by a single bacterial strain - the reasons for this 
redundancy are not well-understood. Our work suggests that 
different polymers may confer distinct mechanical benefits. 
Biofilms initiate when bacteria attach to a surface, sense the 
surface, and change their gene expression. The EPS PEL 
enhances surface sensing by increasing mechanical coupling of 
single bacteria to the surface.  For the mature biofilm, the EPS 
PSL stiffens and strengthens biofilms.  For bacteria in chronic 
infections, EPS expression evolves to combine mechanical 
fitness with complementary, chemical fitness benefits. 
 

Keywords — P. aeruginosa, biofilm, mechanosensing, 
signaling, cyclic-di-GMP, extracellular polysaccharide (EPS), 
motility, shear stress, rheology, evolution. 

I. BIOFILM INITIATION, MECHANICS, AND EVOLUTION 
Pseudomonas aeruginosa is an opportunistic human 

pathogen that forms chronic infections in the form of 
biofilms, a phenotypic state associated with increased 
antibiotic resistance and evasion of the immune defense.  In 
biofilms, sessile microbes are embedded in a matrix 
consisting largely of self-produced extracellular 
polysaccharides (EPS).  PAO1 is a lab strain that, in vitro, 
produces two types of EPS, PEL and PSL.   

In vitro biofilm formation initiates when bacteria 
encounter, and attach to, a surface.  Cyclic-di-GMP, a 
second messenger whose intracellular levels increase upon 
adhesion of P. aeruginosa to a surface, regulates the 
expression of many genes for biofilm initiation.  What cues 
notify bacteria that they are attached to a surface to increase 
cyclic-di-GMP production are unknown.  This is a gap in 
our understanding of a fundamental microbiological process. 

The biofilm matrix can protect bacteria chemically and 
mechanically.  P. aeruginosa infections in the cystic fibrosis 
(CF) lung often last for decades, ample time for the infecting 
strain(s) to evolve.  Production of a third EPS material, 
alginate, is well-known to tend to increase over time in CF 
infections and to be associated with poorer outcomes for 
patients.  Alginate chemically protects biofilms, but also 
makes them softer, which seems to be a mechanical 
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disadvantage.  It was recently found that bacteria in chronic 
CF infections also evolve to increase PSL production [1].   

II. MECHANOSENSING OF SURFACES 
We use a green fluorescent protein (GFP) reporter for 

intracellular cyclic-di-GMP levels [2].  With increased flow 
rate of liquid media, and thus increased shear stress, the 
intracellular cyclic-di-GMP levels increase in a dose-
response fashion.  Moreover, at low shear stress we find that 
PEL enhances the cyclic-di-GMP signaling response– 
populations of wild-type (WT) and ∆pel have 
indistinguishable GFP intensity distributions when in liquid 
suspension and at high shear rates, but at low shear the WT 
are brighter than the ∆pel.  Motility measurements suggest 
that PEL may increase frictional interactions between the 
surface and the bacteria.  To date, the role of PEL in PAO1 
biofilms has seemed relatively minor and redundant with 
PSL.  We infer that a major role of PEL is to enhance 
surface sensing by increasing the mechanical coupling.[3]   

III. PSL STIFFENS AND STRENGTHENS BIOFILMS 
We use oscillatory bulk rheology to determine the unique 

contributions of EPS materials to the mechanics of biofilms 
grown from isogenic PAO1 variants and from sets of 
chronological clinical isolates from four CF patients over 
decades of infection [1].  We find that PSL stiffens biofilms 
and PEL and alginate make biofilms more ductile.  
Comparing, biofilm mechanics to estimated forces exerted 
by phagocytosing neutrophils [4], we infer that increased 
PSL could confer a mechanical fitness benefit. [5] 
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Short Abstract — Mechanism Inference from Single Cells 

(MISC) is a method we have developed to extract the structure 
and strength of kinetic interactions among two or more 
signaling molecules. The algorithm considers all possible 
network structures of a certain size that could relate the 
measurements and then tests each network structure against 
the single-cell data.  Well performing network structures are 
used to find a consensus model that suggests potential 
underlying signaling mechanisms.  
 

Keywords — Signal transduction, single-cell, mechanism 
inference, networks, machine learning. 

I. BACKGROUND 
ETWORK motifs in cellular signaling pathways are 
indicative of the underlying function of the signaling 

network [1].  Sometimes the interactions between two 
signaling molecules can be easily inferred, for example, if 
one directly activates or represses another. However, there 
are many instances where multiple molecules are involved 
in a signaling response, but the exact mechanism in which 
they interact with each other is not clear.  To address this 
problem, we developed a computational method called 
MISC (Mechanism Inference from Single Cells) that uses 
paired time-series measurements from individual cells to 
predict the underlying network structure with no prior 
knowledge about the network architecture. 

II. DETAILED ALGORITHM 
The input for MISC is two sets of time series traces from 

individual cells, such as those generated from fluorescent 
biosensors used in live-cell imaging experiments.  The 
output is a ranked list of signaling mechanisms from a 
complete list of network topologies of a certain size that 
describe the kinetic relationships among the biosensors. 

The steps of the algorithm are as follows:  (1) All possible 
network structures of a given size that relate an input signal 
and output signal are enumerated. This is to say that every 
possible network with a set number of nodes or less with a 
path from the input signal to the output signal is generated.  
If it is unknown which signal is upstream, the algorithm 
may be run both ways.  The ability to include additional 
nodes beyond those observed allows for the possibility of 
other unknown factors to influence the network. (2) 
Ordinary differential equations are automatically generated.  
MISC allows the user to specify the functional form of the 
equations for positive and negative links, so the method can 
be applied to a large range of systems.  (3) Signals are 
simulated using the single-cell data from the input 
biosensor.  These are fed through all networks and 

 
1Department of Genetics, Bioinformatics & Computational Biology 

Graduate Program, University of North Carolina at Chapel Hill. 
Correspondence E-mail: haggerty@unc.edu 

evaluated for how well each reproduces the output 
biosensor.  (4) All possible networks are given a score based 
on how well it fits the output biosensor signal and ranked.  
(5) A consensus network is calculated to best describe the 
network. 

III. METHOD VALIDATION 
A. Synthetic Data 
To validate that our method works correctly, we 

generated a network with three nodes involved, but only 
associated biosensors with two nodes.  Using this network, 
we generated ordinary differential equations to describe the 
system and used them to simulate single-cell data for the 
input and output biosensor by varying the initial conditions 
and adding noise.  

B. Results 
We tested the synthetic biosensor data on MISC to 

determine whether we could recover the original network 
we used to create the synthetic data.  We ran the algorithm 
with the possible number of nodes set to three or less.  Links 
that were present in the original network were enriched in 
the top ranked models.  In addition, the consensus model, in 
this case created by clustering the top 10% of models and 
finding the centroid of the cluster with the lowest error, was 
very similar to the original network.  Additionally, we then 
generated synthetic signals for if we had a biosensor on the 
third node, and the behavior of this signal was very similar 
for the original network and the consensus model network.  

 

IV. CONCLUSION 
MISC is an algorithm that allows us to discover the 

mechanism by which one factor is influenced by another via 
single-cell data.  There is a large range of potential 
applications for which this method could also be applied.  
In general, it searches for plausible interaction networks 
between any two (or more) signals.  Because it ranks all 
possible networks, it also suggests which sets of signaling 
motifs may have equivalent functions. Moreover, the ability 
of MISC to account for unobserved signaling molecules in 
the network allows for the discovery of novel factors and 
interactions. 
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Recruitment of RNA polymerase II (PolII) to target gene 
promoters to initiate RNA synthesis has long been 
considered the key step for gene regulation. However, 
recent genome-wide studies have revealed transcription of 
many genes are regulated post transcription initiation. 
Therefore, regulation of PolII transcription elongation, 
which is controlled by positive elongation factor complexes 
b (P-TEFb) and negative elongation factors (NELF), may 
be an important rate-limiting step in gene expression[1]. 
While many genes are known to be regulated at the PolII 
initiation step, little is known about how gene expression is 
modulated at the PolII elongation step.  
 

Introduction 
Pol II transcription elongation is regulated by positive 
elongation factor complexes b (P-TEFb) and negative 
elongation factors (NELF). Pol II pausing occurs shortly 
after transcription initiation and involves the association of 
pausing factors DSIF and NELF.(d)Pause release is 
triggered by the recruitment of the P-TEFb kinase. P-TEFb 
kinase phosphorylates the DSIF/NELF complex and CTD. 
Then the paused Pol II escapes into productive 
elongation.[2] 
 
Results 
We have found that LPS-induced expression of Cxcl1, a 
gene encoding a chemokine crucial for neutrophil 
recruitment, is regulated at the elongation step by 
transcription repressor hairy and enhancer of split 1 (Hes1) 
in mouse bone marrow-derived macrophages (BMDMs). 
Mechanically, Hes1 suppressed recruitment of the P-TEFb 
complex and subsequently attenuated e occupancy of serine 
2-phosphorylated PolII at the Cxcl1 gene locus. To directly 
evaluate PolII binding throughout the entire gene locus we 
analyzed genome-wide Pol II occupancy by chromatin 
immunoprecipitation followed by deep sequencing (ChIP-
seq)in wildtype (WT) and Hes1-deficient BMDMs. 

Consistent with ChIP-PCR data, ChIP-seq data showed that 
Hes1 deficiency did not affect PolII binding near the 
transcription start site of the Cxcl1 gene. Instead, PolII 
binding patterns at the Cxcl1 gene body region significantly 
differed between WT and Hes1-deficient macrophages, 
validating our hypothesis that Hes1 indeed regulated Cxcl1 
gene transcription via targeting post-initiation steps by 
inhibiting transcription elongation.  
 
By bioinformatic analysis of the PolII ChIP-seq data set, we 
wish to identify additional Cxcl1-like genes whose 
expression is regulated at thetranscription elongation step. 
In addition, we will further assess the role of transcription 
elongation in macrophages by genetically targeting P-TEFb 
and NELF complexes. We hope our results will elucidate 
mechanism and functional significance of regulation of 
inflammatory gene transcription at the elongation step, 
which may provide a rapid and efficient way for fine-tuning 
gene expression in response to environmental stimuli. 
 
Summary and Future Plan 
In this Study, Hes1 downregulated Cxcl1 gene transcription 
via targeting post-initiation steps by inhibiting transcription 
elongation. And we will further assess the role of 
transcription elongation in macrophages using RNAi to 
knockdown P-TEFb subunit (Cdk9) and NELFe or using 
NELFb knockout mice. 
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Short Abstract — Astrocyte reactivity is a response often to 

mechanical stimulation that is defined by biochemical changes 
and increased proliferation. There is a growing need to 
understand this reactive response in relation to insult associated 
with common mechanisms of traumatic brain injuries. This 
study aimed to characterize the response of astrocytes after 
exposure to overpressure using both two- and three-dimensional 
models. Structural and other related biomarkers were 
quantitatively assessed at acute time points after exposure. 
Results indicate that cytoskeletal structure of the cells was not 
compromised and some reactive markers indicate different time 
periods of activation of the two- and three-dimensional models. 
 

Keywords — astrocyte, reactivity, neurotrauma, cytoskeleton 

I. INTRODUCTION 
last-induced neurotrauma is a growing concern in 
military personnel, with more than 73% of casualties in 

recent military endeavors involving explosives [1]. The 
prevalence and long-term impacts of these injuries dictate a 
need to better understand cellular responses to injury in this 
context in order to be able to design targeted therapeutics. 
Astrocytes play a critical role in the central nervous system’s 
response to injury [2]. Moreover, they have a reactive 
response, termed astrogliosis, as a result of exposure to 
mechanical stimuli. Astrogliosis is characterized by 
increased proliferation as well as up-regulation of activation 
markers including glial fibrillary acidic protein (GFAP) [2-
4]. The role of astrocyte activation in both neuroprotection 
and degeneration has been explored [2, 5-6], however, the 
response is still not completely understood. In this study, 
cells were exposed to overpressure profiles characteristic of 
blast exposure. This study aimed to compare two- and three-
dimensional models of astrocyte reactivity to quantitatively 
assess the effect of both exposure and environment on gene 
expression for several structural proteins as well as a 
proliferation marker. Each target was chosen as a potential 
biomarker for activation in response to overpressure. 

II. EXPERIMENTAL APPROACH 
C6 astroglioma cells (ATCC, CCL-107) were used in two- 

and three-dimensional in vitro models to characterize acute 
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astrocyte response and reactivity to an overpressure of 18-20 
psi. A custom chamber was used to measure and record 
overpressure in real time. Quantitative assessment was 
conducted using reverse transcription, real-time polymerase 
chain reaction (RT-PCR). RNA was extracted from samples 
at 48 and 72 hours post exposure and was used to synthesize 
cDNA for RT-PCR. Fold changes for each target (Table 1) 
were calculated by using a delta-delta (ΔΔ) Ct method and by 
normalizing to a sham group.  

Table 1. Biomarkers of interest for astrocyte reactivity. 
Target Classification/Function

Glial fibrillary acidic protein intermediate filament, mechanical strength
β-actin cytoskeletal protein, shape, integrity
Vinculin cytoskeletal protein, anchors actin
Piezo2 transmembrane protein, cation channel, mechanosensor
Ezrin peripheral membrane protein, adhesion, communication
Mitogen-activated protein kinase kinase 1 enzyme, stimulates MAP kinases pathways (proliferation)  

III. RESULTS 
In both models there were significant differences in fold 

change of GFAP expression from the sham groups (p<0.05), 
with opposite responses at 48 hours. For the two-dimensional 
model, GFAP expression was elevated to a fold change of 
1.66, whereas it was decreased to 0.51 for the three-
dimensional model. Both models showed a return to normal 
levels by 72 hours. This suggests different time periods of 
activation relative to environment. There were no significant 
differences from sham for other structural components at 
either time point, however, several targets had trending 
increases from the 48 to the 72-hour time point. While 
analysis suggests no significant structural damage to the 
cells, it does show potential for differential activation 
markers between the two- and three-dimensional in vitro 
models.  
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Cells are crowded by macromolecules, posing challenges 
for proteins to locate functional partners and avoid 
misinteractions. Overexpressed proteins may saturate 
partners, leaving leftovers for nonspecific binding. To 
avoid this, protein expression levels may be balanced 
according to the structure of their binding networks. We 
simulated several such networks under varying protein 
concentrations while allowing for nonspecific 
interactions. It was found that relative concentrations 
could be optimized to minimize misinteractions, and that 
network motifs determined how sensitive the networks 
were to non-optimal concentration levels. We conclude 
that there is evolutionary pressure on both protein 
abundance and network topology. 
 

Keywords — Cellular crowding, dosage balance hypothesis, 
misbinding, protein-protein interaction network, network motif  

I. INTRODUCTION 
To perform multiple functions reliably, cells have evolved a 
vast network of protein-protein interactions (PPI). Human 
cells alone contain about 20,000 genes encoding for at least 
30,000 unique protein types1.  One challenge that cells face 
is ensuring that their proteins bind to functional partners 
reliably as they diffuse through the cell. The cell interior is 
crowded:  5-40% of cell volume is occupied by 
macromolecules2, posing challenges for proteins to both 
locate functional partners and avoid misbinding.  Misbinding 
– nonspecific interactions that pose no benefit to the cell – 
can be hazardous to cell function, depleting resources and 
leading to pathogenic aggregations3,4. Highly abundant 
proteins are at particular risk for misbinding since they may 
saturate functional partners, leaving leftovers for 
nonfunctional binding. These “supersaturated” proteins have 
been linked to neurodegenerative diseases5. To avoid 
leftover proteins, cells may have evolved stoichiometrically 
balanced gene expression levels, a theory known as the 
“dosage balance hypothesis” (DBH)6. Indeed, copy number 
variations of genes have been linked to increased 
susceptibility to a number of diseases, including cancer and 
multiple sclerosis7,8.  While the DBH has been explored for 
single protein complexes, one unexplored question is 
whether protein expression levels are balanced according to 
their overall binding networks.  

II. RESULTS 
To study the effects of relative protein abundance on 
nonspecific complex formation, we first simulated five 
simple network motifs under varying protein concentrations 
using the Gillespie algorithm. While the motifs formed 

roughly the same proportion of nonspecific complexes under 
optimal conditions, they varied in sensitivity to initial 
concentrations (ICs), with the hub being the most sensitive 
and triangle being the least, and high sensitivity correlating 
with motifs that allow more ways to form nonspecific 
complexes.  We then simulated 500 large networks of 90-
200 nodes with varying topological properties under equal, 
random, and optimized ICs. Binding affinities for all specific 
and nonspecific interactions were determined using a coarse-
grained protein sequence model. The proportion of protein in 
nonspecific complexes was recorded as a function of degree 
distribution, network density, average binding strength, local 
topology, and ICs. It was found that optimizing the local 
topology via introducing more hubs and less chains and 
flags; similar to real networks; decreased the number of 
nonspecific complexes under optimal ICs, but also increased 
sensitivity to ICs. Degree distribution, surprisingly, had little 
influence once local topology was optimized. A lower 
average binding strength resulted in a lower proportion of 
nonspecific complexes, in agreement with the hypothesis 
that abundant proteins are less sticky to avoid 
misinteractions9. 

III. CONCLUSION 
We conclude that there is evolutionary pressure to both favor 
certain network motifs and to balance protein abundance to 
avoid misinteractions. Future work will add noncompetitive 
binding to the model and perform the analysis on real 
protein networks to compare with experimental expression 
level data. 
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Short Abstract - Temporal dynamics of morphogen-driven 

signaling events are critical for proper embryonic 
development. During development, cells translate 
extracellular bone morphogenetic protein (BMP) gradients, 
often subject to noise, into graded intracellular tail-
phosphorylated SMAD (TP-SMAD) levels. Using modeling 
and experimental approaches, we found that BMPs induce 
TP-SMAD responses in neural precursor cells (NPCs) in a 
concentration-dependent manner, which are semi-adaptive 
within a specific intermediate range of BMP concentration. 
These semi-adaptive TP-SMAD responses involve an 
intrinsically-slow deactivation of BMP receptors, which 
attenuates noise by prolonging SMAD deactivation time after 
BMP withdrawal, but increases response time. Interestingly, 
negative feedback on BMP receptors is also required for 
semi-adaptation, which benefits both noise attenuation and 
response time, and therefore balances the tradeoff seen with 
slow BMP receptor deactivation. These results highlight the 
rich dynamics of SMAD regulation in response to graded 
BMP concentration, and elucidate general design principles 
for balancing noise attenuation and activation speed in 
signaling systems. 
 

Keywords — Activation time / adaptive response / noise 
attenuation / signaling speed / deactivation 

I. BACKGROUND 
one morphogenetic proteins (BMPs) play critical roles 
in embryogenesis and tissue patterning. As 

morphogens, BMPs regulate patterning by forming 
concentration gradients within developing tissues [1] and 
specify multiple cell fates in a concentration-dependent 
manner. Central to BMP-induced intracellular signaling is 
phosphorylation of SMAD transcription factors [2]. Tail-
phosphorylated SMADs (TP-SMADs) are imported into 
the nucleus to regulate transcription. 

In neural precursor cells (NPCs) of the developing 
cerebral cortex, steady-state TP-SMAD levels form a 
dorsoventral gradient in vivo [3] and approximate 
extracellular BMP concentrations in vitro [4], suggesting 
that TP-SMAD is a direct and proportional readout of 
extracellular BMP concentration. In addition to steady-
state responses, pulse-like responses to morphogens can be 
critical for tissue development [5]. While BMPs can 
generate this type of response at the level of SMAD1 [6], 
the temporal dynamics of SMAD1 activation to graded 
BMP signals is poorly understood.  
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II. RESULTS 
We combined experimental and modeling approaches to 

investigate the dynamics of SMAD1 activation in NPCs 
responding to graded BMP signals. We showed that an 
intermediate range of BMP concentration triggers semi-
adaptive SMAD1 responses, which differ from the non-
adaptive responses stimulated by higher or lower BMP 
levels and accelerate cell responses.  

Using sensitivity analysis, we found that BMP receptor 
deactivation rate has pronounced effect in attenuating 
fluctuations of BMP signals. In particular, slow receptor 
deactivation rate benefits noise attenuation, but exhibits 
the tradeoff of increasing response time. Interestingly, 
BMP receptor inhibition through negative feedback, which 
is required for the semi-adaptation, exhibits no such 
tradeoff. 

III. CONCLUSION 
Our experimental observations and computational 

analysis demonstrate unique dynamic features of cellular 
responses to graded BMP signals. Our findings suggest a 
general cell-intrinsic control mechanism for creating fast 
adaptive responses with attenuated noise within a 
morphogen gradient. Combination of slow morphogen 
receptor deactivation rate with negative feedback can 
optimize both activation speed and noise attenuation 
property.  
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Short Abstract — Morphological changes in retinal pigment 

epithelium (RPE) is often associated with the disease 
progression of age-related macula degeneration (AMD). We 
applied different statistical methods to quantify the morphology 
of RPE in both mouse and human eyes as well as in simulated 
AMD eyes. Distinct pattern of second-order spatial properties 
reveal the RPE pattern signatures of AMD eyes. Classification 
of genotypes and ages by RPE cell morphometric measures 
suggests there is little difference in prediction rates in angular 
locations, but significant differences in radial locations.  

Keywords — retinal pigment epithelium, age-related macula 
degeneration, quantification, morphological changes.   

I. INTRODUCTION 
ETINAL pigment epithelium (RPE) is a monolayer of 
cells key to the wellbeing of photoreceptor cells in eyes. 

Previous study has quantified the RPE morphological 
changes in AMD [1, 2]. In this study we further quantify 
such changes in spatial locations, which will help to 
understand whether AMD progresses as well as how RPE 
morphologies differ in individuals with different genotypes 
and ages during and after AMD. Developing a set of 
quantitative tools for this purpose will also have practical 
applications in the early diagnosis of AMD.   

II. METHODS 
RPE images were obtained from mouse and human 

(donor) eye flatmounts, with RPE cell borders stained by 
anti-ZO-1. We developed a reproducible segmentation 
procedure to identify cells with ImageJ and represented 2D 
cell distribution by a spatial point process of cell centroids. 
We then studied the second-order properties to investigate 
the changing patterns of clustering in both experimental and 
simulated RPE [2]. Cell morphometric features (24 in total) 
including cell shape, area, etc. were extracted using 
CellProfiler [4]. K-nearest neighbor (KNN) algorithm, 
combined with leave-one-out cross validation, were applied 
to classify the genotype and age in C57BL/6J (wild type) and 
RD10 mice and to calculate the prediction accuracy in 
various spatial regions. 
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III. RESULTS 
    Spatial analysis of simulated human RPE images showed 
that the oscillations in the variance stabilized K-function and 
pair correlation function (PCF) for normal RPEs gradually 
disappear as hexagonal cells stretch and distort. The AMD-
like RPE patterns show an increased clustering between 
distance 100 and 200 (in pixels), indicative of the disordered 
RPE pattern in AMD. The same analysis on experimental 
human RPE images shows the same change from normal 
eyes to diseased eyes. 

 
Figure 1. Simulated RPE tissue undergoing repeated clustered damage (black 

area: regions of cell apoptosis) and recovery from a normal RPE pattern.(A-E).  
F: Variance stabilized K function; G: Pair correction function.  

 
Figure 2. Stacked bar plots of relative prediction rates 
 
Previous research hypothesized a certain difference exists 

in different spatial regions of RPE sheets. The KNN 
classification showed little difference in RPE pattern in our 
defined 4 flaps, yet an increasing accuracy rate with zone 
numbers [1]. Morphometric variables such as eccentricity 
consistently perform well in a classification (prediction rates 
over 90%). We also find the linear weighted combination of 
the morphometric variables as morphometric signatures that 
best distinguish the disease progression of AMD. 
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Short Abstract — Bacteria are frequently exposed to 

starvation in their natural environments. Expression of relevant 
genes during early starvation is essential for their long-term 
starvation survival or resumption of growth when other 
nutrients become available. However, it is not clear how 
starvation limits cells’ ability to make gene products and how 
cells overcome such limitation. Here, using a synthetic biology 
approach and FISH (fluorescence in situ hybridization), we 
quantitatively characterized the process of gene expression in 
carbon starved cells and nitrogen starved cells. Our findings 
reveal that the different types of starvation limit gene 
expression differently and cells employ a distinct strategy to 
overcome the limitation. 
 

Keywords — Starvation response, fluorescence in situ 
hybridization, transcription and translation coupling, ppGpp 

I. INTRODUCTION 
OST bacteria experience nutrient poor conditions for 
most of their lifetime. Starvation imposes significant 

limitation on various processes essential for growth and 
survival in bacteria. Expression of relevant genes under 
starvation conditions, especially during early starvation, is 
critical for long-term starvation survival [1] or for rapid 
switching to other nutrient sources if such nutrient sources 
are available, e.g., during diauxic shift. However, starvation 
affects transcriptional and translational machineries, as well 
as availability of substrates needed to make gene products. 
As such, cells’ ability to express these genes is expected to 
be significantly limited. Currently, however, it is not clear 
how starvation limits gene expression and how cells 
overcome such limitation. In this work, we precisely 
controlled transcriptional activation and characterized the 
kinetics of gene expression in carbon-starved cells and 
nitrogen-starved cells.  

II. APPROACH 

To precisely control transcriptional activation, we 
designed a synthetic construct in which the synthetic 
promoter drives the expression of a lacZ reporter gene. For 
precise measurement of the low lacZ mRNA levels 
produced, Fluorescence in situ hybridization, (FISH) was 
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used. Concomitant changes in lacZ protein expression were 
quantified using a standard β-galactosidase assay.  

III. RESULTS AND DISCUSSION 
We observe that carbon starvation and nitrogen starvation 

have different effects on the kinetics of gene expression. 
Nitrogen starvation imposes strong limitation on translation, 
reducing the protein synthesis rate (per mRNA) as well as 
the speed of translation by ribosomes (i.e., polypeptide 
elongation speed). If unchecked, such a reduction would 
expose naked regions of mRNA, which is known to result in 
premature termination of transcription and have detrimental 
effects on gene expression [2]. We find that, cells avoid such 
effects by slowing down the speed of transcription to match 
the speed of translation through the stringent response 
alarmone, ppGpp. By contrast, carbon starvation imposes 
strong limitation on transcription, reducing mRNA synthesis 
rate as well as the speed of transcription. In this case, ppGpp 
is not needed to match the speed of transcription and 
translation. Our findings show that different types of 
starvation limit gene expression differently and distinct 
strategies are employed to overcome such limitation. 
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Short Abstract — In the cell division cycle of budding yeast, 

START refers to a set of tightly linked events that prepare a cell 
for budding and DNA replication, and FINISH denotes the 
interrelated events by which the cell exits from mitosis and 
divides into mother and daughter cells. Based on recent 
progress made by molecular biologists in characterizing the 
genes and proteins that control START and FINISH, we crafted 
a new mathematical model of cell cycle progression in yeast. 
 
 

Keywords — Cell Cycle, Budding Yeast.  
 

 
he cell division cycle is the ordered sequence of events 
by which a cell replicates its genome and segregates the 

replicated chromosomes to two daughter cells during mitosis. 
In budding yeast, Saccharomyces cerevisiae, START refers 
to a set of tightly linked events that prepare the cell for 
budding and a new round of DNA replication and FINISH 
denotes the interrelated events by which the cell exits from 
mitosis and divides into mother and daughter cells. Based on 
the noteworthy progress made by molecular cell biologists in 
characterizing the genes and proteins that control cell cycle 
progression in budding yeast, we have built a comprehensive 
mathematical model of the molecular mechanisms underlying 
START and FINISH. For this mathematical model, we use a 
new modeling framework in which all reactions are classified 
into three basic types: protein synthesis and degradation (→ 
C →), phosphorylation and de-phosphorylation (C ↔ CP), 
and binding to activator or inhibitor partners (C+A ↔ C:A).  
Results: The model successfully explains the observed 
phenotypes of 263 mutant yeast strains and can be used to 
predict the phenotypes of novel combinations of mutant 
alleles. The credibility of these predictions has been assessed 
by distinguishing between fragile predictions (which are 
sensitive to values of adjustable parameters) and robust 
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predictions (which depend on the regulatory network itself  
rather than specific parameter values).  
Conclusions: Our comprehensive model of the molecular 
events controlling cell cycle progression in budding yeast has 
both explanatory and predictive power. Future experimental 
tests of fragile predictions will be useful to constrain 
adjustable parameters of the model, and future tests of robust 
predictions will either confirm the underlying molecular 
mechanism or provide new insights into how the cell division 
cycle is regulated. 
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Short Abstract — In this paper, we describe a framework for 
automated development of executable models using 
information extracted from literature. The framework also 
includes model analysis and correction methods. The final 
objective is to have a representation for models of complicated 
mechanisms that allow for easy model exchange and 
improvement, facilitating the discovery of interventions (e.g., 
treatments or drugs in case of cell mechanisms). 
 
Keywords — automation, modeling, inference, interaction 
graphs, simulation, model checking, cell signaling pathways  

I. PURPOSE 
  Understanding complicated mechanisms usually requires 
collecting information from various sources such as 
published literature and integrating it all within a model. A 
large number of models in existing literature that were 
developed over the years for a particular biological system, 
for example, are rendered useless when they cannot be 
updated, validated or corroborated with each other. By 
designing a unified model knowledge database that can be 
exchanged, tested and improved, we can advance and 
accelerate knowledge exchange. Our aim is to automate 
reading and model building procedures, followed by model 
checking and improvement. With the assistance of experts in 
natural language processing, causal inference and cancer 
immunology, we hope to achieve the goal of developing a 
system that can learn, execute and manage models for large, 
complicated mechanisms, enabling informative simulations. 

II. PROPOSED FRAMEWORK 
Here we briefly discuss our framework for automation. 
Information extracted from literature using natural language 
processing algorithms is entered into a standardized format 
that can be further processed by causal inference algorithms. 
This yields an interaction graph with nodes and edges for the  
connections in the model. Models from databases such as 
[1], [2] and Biological Expression Language (BEL) can also 
be translated to generate the interaction graph. 

This is followed by inference of an executable model that 
involves automated inference of element update functions by 
combining qualitative interaction graphs and any other 
available quantitative information. We perform simulations 
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of such models using deterministic and stochastic 
approaches [3], [4]. The simulation results are further used 
for sensitivity and controllability analysis of the modeled 
system. Probabilistic and statistical model checking is 
performed using tools described in [5]. Perturbation analysis 
considers the effects of altered causal relationships in 
steady-state and transient behavior [6], [7]. We are currently 
developing automated hypotheses extraction that follows 
model analysis. This step will lead to refinements to the 
model, guide new literature search and help design new wet 
lab experiments to validate generated hypotheses. 

III. CONCLUSION 
The focus of our project is development of a completely 

automated model design and analysis procedure. We are 
applying this approach on models of cell signaling and 
metabolism networks, as well as to cell-cell communication 
scenarios in cancer.  

REFERENCES 
[1] Demir E, Cary MP, Paley S, et al. “BioPAX – A community standard 

for pathway data sharing.” Nature biotechnology. 2010;28(9):935-942. 
doi:10.1038/nbt.1666. 

[2] Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, 
Carolyn Talcott, “Pathway Logic: Executable Models of Biological 
Networks”, Electronic Notes in Theoretical Computer Science, 
Volume 71, April 2004, Pages 144-161, ISSN 1571-0661, 
http://dx.doi.org/10.1016/S1571-0661(05)82533-2 

[3] N. Miskov-Zivanov, D. Marculescu, and J. R. Faeder, “Dynamic 
behavior of cell signaling networks: model design and analysis 
automation.” in Proc. of Design Automation Conference (DAC), 
Article 8, 6 p., June 2013 

[4] N. Miskov-Zivanov, P. Wei, C.S.C. Loh, “THiMED: Time in 
Hierarchical Model Extraction and Design,” in Proc. Of 
Computational Methods in Systems Biology (CMSB), pp. 260-263, 
November 2014. 

[5] N. Miskov-Zivanov, P. Zuliani, E. M. Clarke, and J. R.Faeder, 
“Studies of biological networks with statistical model checking: 
application to immune system cells,” in Proc. Of ACM Conference on 
Bioinformatics, Computational Biology and Biomedicine (ACM-
BCB), September 2013, pp. 728. 

[6] A. Garg, K. Mohanram, A. Di Cara, G. De Micheli, and I.Xenarios, 
“Modeling stochasticity and robustness in gene regulatory networks,” 
Bioinformatics, vol. 25, pp. i101-i109, 2009.Tavel, P. 2007. Modeling 
and Simulation Design. AK Peters Ltd., Natick, MA. 

[7] N. Miskov-Zivanov, M. S. Turner, L. P. Kane, P. A. Morel, and J. R. 
Faeder, “The duration of T cell stimulation is a critical determinant of 
cell fate and plasticity,” in Science Signaling, 6, ra97, November 
2013.

Automation of Model 
Design and Analysis for Big Mechanisms  

Anuva Kulkarni1, Cheryl Telmer2, and Natasa Miskov-Zivanov1 



� 
Short Abstract — Live Cell Interferometry (LCI) is a new 

technology for biomass profiling of single living cells or cell 
clumps (3D structures) with picogram sensitivity. It has shown 
highly repeatable (<1% coefficient of variation) quantification 
of cellular biomass, mass accumulation or loss rates, and mass 
distributions for medium-sized populations of cells (103) on a 
single cell basis, and has broad potential application in studies 
of normal cell physiology, cancer, and additional diseases 
showing aberrant growth and deregulation of cell biomass 
control. Our poster will discuss our group’s recent applications 
of LCI technology for conducting single cell drug response 
assays, studying biomass dynamics in stem cell differentiation 
and for detecting subtle drug-induced aberrations in mass 
partitioning during cell division. 
 

Keywords — Biomass Profiling, Single-Cell, Drug 
Development, Stem Cell Differentiation, Cell Division 

I. BACKGROUND INFORMATION 

LIVE Cell Interferometry (LCI) is a new technology for 

biomass profiling of single living cells or cell clumps (3D 
structures) with picogram sensitivity.  LCI quantifies the shift 
in phase imparted to light propagating through a transparent 
cell body, which is proportional to biomass.    It has shown 
highly repeatable (<1% coefficient of variation) 
quantification of cellular biomass, mass accumulation or loss 
rates, and mass distributions for medium-sized populations 
of cells (103) on a single cell basis, and has broad potential 
application in studies of normal cell physiology, cancer, and 
additional diseases showing aberrant growth and 
deregulation of cell biomass control [1, 2]. 

II. RESULTS 
Our group has successfully utilized LCI to accurately 
quantify the sensitivity of single cell and colony-forming 
human breast cancer cell lines to the HER2-directed 
monoclonal antibody, trastuzumab (Herceptin). Relative 
sensitivities were determined tens-to-hundreds of times faster 
than possible with traditional proliferation assays [1].  
 Currently, we are using LCI to investigate the sensitivity 
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of established human melanoma cell lines to the B-Raf 
enzyme inhibitor vemurafenib (Zelboraf). Additionally, our 
LCI has demonstrated accuracy in measuring smaller human 
cell types in a recent collaboration investigating mast cells 
and their degranulation process.  
 Finally, our group is in the initial phases of using LCI to 
study the recovery of immune system cells following stem 
cell transplantation in patients with blood and bone marrow 
cancers in order to predict the onset of graft-versus-host 
disease.  

III. CONCLUSION 
Live Cell Interferometry enables real-time quantification 

of single-cell and cell cluster mass with picogram sensitivity. 
It can be used to accurately predict drug sensitivity in cell 
samples hours faster than gold-standard clinical growth 
assays. Our LCI’s increased speed of analysis and 
quantification of therapeutic responses for aggregated cell 
clumps, sheets, and spheres provides exciting new 
opportunities for agent selection, prognosis in solid tumor 
therapy, applications in the study of immune cell function, 
and delving further into basic cell physiology.  
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Short Abstract — Although abundant structural data are 

available on the transcription apparatus (TA), little is known 
about how it operates kinetically. By analyzing the organization 
architectures of proteins binding to the regulatory DNA 
sequences, we first propose a model of how the TA operates on 
the glnAp2 promoter. We then characterize the transcription 
behaviors in response to various concentrations of NtrC 
(transcription factor). Specifically, an enhancer and a 
low-affinity binding site can be transiently bridged by an NtrC 
oligomer at its low and intermediate levels, contributing to 
transcription initiation. This work also clarifies different roles 
for two enhancers in gene transcription. 
 

Keywords — transcription initiation, DNA looping, kinetics 

I. BACKGROUND 
sing a newly developed fluorescence technology, 
Friedman and Gelles recently dissected the major steps 

of transcription initiation at an activator-dependent bacterial 
promoter [1]. The study revealed the formation of two 
sequential closed complexes and an open complex, as well as 

the release of σ54. Nevertheless, how the DNA-bound 

activators and the promoter-bound holoenzyme σ54RNAP are 
positioned properly remains unclear. Here, we address this 
issue in terms of activity of the glnAp2 promoter in 
Escherichia coli. 

The glnAp2 gene expresses the nitrogen assimilation 
enzyme glutamine synthetase under the regulation of NtrC 
(nitrogen regulatory protein C). Intracellular free NtrC 
molecules exist as dimers. Upon activation in nitrogen-starved 
cells, NtrC dimers are phosphorylated and can nucleate 
formation of hexamers. NtrCP binds to two strong sites 
(enhancers) at -140 (site I) and -108 (site II) and to three 
weaker sites at -89, -66 and -45 (sites III-V) relative to the 

transcription start site [2], while σ54RNAP binds the -24~-12 
region. It is generally held that enhancer-bound NtrC 
hexamers can contact and catalyze the holoenzyme, which 
then opens the DNA double strands and initiates mRNA 
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synthesis. Whether and how those low-affinity sites also play a 
role is largely unknown. 
 Although the transcription apparatus (TA) on the glnAp2 

promoter involves only NtrC, σ54RNAP and promoter DNA, 
it exhibits rather complex behaviors [2], some of which cannot 
be accounted for by traditional models. To elucidate how the 
TA operates, it is essential to associate the binding kinetics of 
NtrC with transcription initiation.  

II. RESULTS 
By structurally and kinetically analyzing the organization 

architectures of NtrC and σ54RNAP on the glnAp2 gene, here 
we present a model of how the TA dynamically operates [3]. 
We propose that enhancer II and low-affinity site V can be 
transiently bridged by an enhancer II-bound NtrC 
tetramer/hexamer at low and intermediate activator 
concentrations. During the short lifetime of this conformation, 
another hexamer bound to enhancer I is just around the 
-24~-12 region; a newly recruited holoenzyme can be 
immediately activated to initiate mRNA synthesis, thus 
elevating transcriptional levels. At high concentrations of 
NtrC, the three low-affinity sites are occupied, rendering the 
DNA more rigid and hindering DNA bending to repress 
transcription. Stochastic simulation results further reproduce 
the experimental observations quantitatively. Experimentally 
testable predictions are also made. 

III. CONCLUSION 
    A dynamic mechanism for transcription initiation on the 
glnAp2 gene is provided, and weak molecular interactions can 
play a critical role in transcriptional regulation. 
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Short Abstract — The slime mold cell Dictyostelium 
discoideum is well studied, serving as both a model for 
amoeboid motion as well as for g-protein mediated chemotaxis 
up gradients of cyclic adenosine monophosphate (cAMP). Since 
cells also secrete cAMP, they end up in heat-to-tail “streams” 
that help the colony collapse into an aggregate to facilitate 
sporulation. We investigated the role of cell-cell and cell-
surface adhesion on these heat-to-tail patterns. Using cell shape 
analysis, we found evidence of actin wave transmission across 
cell neighbors, a phenomena that disappears upon the loss of 
surface adhesion. Additionally, by tuning external buffer 
concentrations to diminish cell-cell adhesion, we found that 
large scale streaming structures were progressively absent from 
self-aggregation experiments with low adhesion, suggesting a 
role for mechanical interactions in stabilizing migratory 
patterns. Using numerical simulations, we demonstrate that 
adhesion preserves cell-cell contacts over time, which stabilize 
otherwise transient streams into cohesive structures. 
 

Keywords — Dictyostelium discoideum, chemotaxis, 
streaming, adhesion, actin, simulations 

I. INTRODUCTION 

THE slime mold cell Dictyostelium discoideum is well 

studied, providing a model organism for the study of 
amoeboid motion as well as for g-protein mediated 
chemotaxis up gradients of cyclic adenosine monophosphate 
(cAMP) [1,2]. When in a nutrition poor environment, cells 
begin to secrete cAMP and migrate, which leads to heat-to-
tail “streams” that help the colony collapse into an aggregate 
to facilitate sporulation. The migration itself is due to 
preferential polymerization of actin, which has been seen to 
create protrusion waves that travel down the cell [2].  

II. DO MECHANICAL CUES STABILIZE STREAMS? 
 We focused our attention on investigating possible 
adhesive cues to stream formation and stability, both due to 
cell-cell and cell-substrate contact. Ion concentration is 
known to be able to vary cell-cell adhesion and cell substrate 
adhesion, because, by screening out the negative charges on 
cells and some substrates, e,g, glass surfaces, ions reduce the 
electrostatic repulsion between them [3].  We studied 
migration of cells in medium with different ion 
                                                           

1Dept. of Physics, U. of Maryland, College Park, MD, USA.  
2Dept. of Biophysics, U. of Maryland College Park, MD, USA 
3Institute for Research in Electronics and Applied Physics, U. of 
Maryland, College Park, MD USA 
* E-mail: wlosert@umd.edu 

concentrations and found that diluted medium greatly 
inhibits the formation of cell-cell contact but retains cell-
surface contact and cell motility [4].  Cells exhibit 
significant steaming defect and aggregate through very short 
streams when cell-cell contact is partially inhibited. With 
even lower ion concentration, cells remain active motion but 
do not form multicellular streams or cell-cell contact. Thus, 
these experiments elucidate that inhibiting cell-cell/substrate 
contact results in significant collective streaming defect: 
cells do not align in a head-to-tail fashion without proper 
adhesions. 
 To focus only on cell-cell adhesion, we developed a 
numerical model of chemotactic migration. Treating the 
center-of-mass motion of each cell as being driven by the 
relative local cAMP concentration and the resultant motion 
as a sum over protrusions [2], we compared the stability of 
cell-cell contacts in ensembles of cells migrating in an 
external gradient [5]. In particular, we measured the fraction 
of broken contacts over a period of time, F, which is 
normalized by the same measure on experiments with 
secretion inhibited. We demonstrated that this measure 
properly distinguishes “boundaries” in the pseudo-phase 
diagram (with respect to density and external concentration) 
representing regions of steady state individual motion, 
streaming, and aggregation. By then including cell-cell 
adhesion, we found that the region of individual motion 
shrinks in favor of streaming, representing an earlier onset of 
stream stability. 

III. CONCLUSION 
We've shown that cell-cell and cell-surface adhesion play 

a role in stabilizing the local neighborhood allowing for the 
transmission of actin protrusive waves across cell-cell 
boundaries as well as preventing loss of neighbor contacts. 
This in turn allows for easier stream formation and stabilizes 
those streams that form, leading to faster formed aggregates 
containing a larger portion of the cell population. 

REFERENCES 
1. C. Parent, “Making all the right moves: chemotaxis in neutrophils 

and Dictyostelium”, Current Opinion in Cell Biology, Volume 16, 
Issue 1, February 2004, Pages 4-13  

2. M.K. Driscoll et al, “Cell Shape Dynamics: From Waves to 
Migration", PLoS Computational Biology, 8(3), pp. e1002392, 2012. 

3. M Socol et al, “Synchronization of Dictyostelium discoideum 
adhesion and spreading using electrostatic forces.” 
Bioelectrochemistry 79, 198–210, 2010. 

4. C. Wang et al,  "The interplay of cell-cell and cell-substrate adhesion 
in collective cell migration”, J. R. Soc. Interface 2014 Nov 
6;11(100):20140684 

Adhesive forces play key roll in pattern formation 
and stability in chemotaxing cells 

 
Chenlu Wang1,2, Joshua Parker2,3, and Wolfgang Losert1,2,3 * 

mailto:wlosert@umd.edu


5. J Parker et al,  “A broken-contact order parameter for inferring inter-
cellular communication from patterns of externally guided migrating 
cells,” in preparation 



 

Short Abstract  — Gabi is a novel algorithm for inference of

small-scale networks from human tumor tissue samples scored

for  protein  expression  using  quantitative  antibody-based

technologies.  These signed,  directed networks provide insight

into  pleiotropy,  complexity  and  context-specificity.  Inferred

networks  successfully  recover  the  information  flow between

proteins on synthetic  data generated by the PySB simulation

framework.  Directionality  predictions  have  high  precision

(79%)  if  input  network connectivity  is  accurate.  The  Gabi

algorithm  was  applied  to  study  multiple  carcinomas  (renal,

breast, ovarian), providing novel insights into the relationships

between  epithelial–mesenchymal  transition  (EMT)  players

and  fundamental  processes  dysregulated  in  cancers  e.g.

apoptosis and proliferation.

Keywords — network biology, systems medicine

I. INTRODUCTION

HE biological  network  has  become a  key concept

within  systems  medicine.  Network  analysis  shows

particular  promise  for  cancer  biology,  where  the

underlying  causes  are  complex  and  heterogeneous.

Dysregulation  of networks/pathways is key to oncogenesis

and clonal selection within tumors [1]. Indeed, changes in

network  structural  properties  can  be predictive of patient

outcome [2].

T

Functional  proteomics  platforms,  including  tissue

microarrays  (TMAs)  and  reverse-phase  protein  arrays

(RPPAs) are particularly relevant for understanding cancer

signaling  activity,  wherein  protein  abundance  and  post-

translational  modifications  are  key  determinants.  The

antibody-based TMA and RPPA platforms both enable study

of  ex  vivo tissue  from  carcinomas  of  interest,  providing

insight  into the context specific and pleiotropic activity of

proteins.

Here  we  present  Gabi:  a  bespoke  method  to  infer

biological  networks  from  functional  proteomics  data

typically  containing  6–100  protein  markers.  Key

improvements over existing methods include detection of a

broad  array  of  coexpression  patterns  by  combining

Spearman  correlation  and  symmetric  uncertainty

(normalized  mutual  information),  relevance  thresholding

using an automated parametric approach, and directionality

inference  based  on  conditional  independence  detection,

including graph theoretic evidence weighting based on the

maximum clique algorithm.


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II. RESULTS

A. Incorporation of functional scaffolds

During  Gabi  calibration  on  data  from  the  DREAM4

network  inference  competition  [3],  it  was  noted  that

directionality precision improved from 56% to 79% if the

correct network connectivity was supplied. Thus, we added

the ability to include high confidence prior knowledge edges

[4] into the procedure.

B. Benchmarking

A  tool  was  developed  for  extracting  gold  standard

information  flow  networks  from  models  in  the  PySB

framework  [5].  The  Apoptosis  Necrosis  Reaction  Model

(ANRMv2.0) was used. Gabi achieved similar directionality

precision to methods pcalg [6] and ggm [7] but with twice

and four times the directionality recall respectively.

C. Carcinoma networks

Gabi  networks  were  generated  from  renal,  breast  and

ovarian  cancer  datasets  from  Western  General  Hospital,

Edinburgh,  UK and  The  Cancer  Genome  Atlas  (TCGA)

project [8]. Existing knowledge is recapitulated e.g. clusters

of epithelial  adhesion  markers  and  mesenchymal/invasion

markers. Novel insights include connections between tumor

weight  and  key  proteins  in  the  TCGA  breast  cancer

network,  and  elucidation  of  ER-β2's  role  in  high  grade

serous ovarian cancer.

III. CONCLUSION

Gabi  is  a  network  inference  algorithm  for  small-scale

proteomics  data  providing  key  improvements  in

connectivity and directionality inference. The algorithm was

calibrated  and  benchmarked  using  separate  synthetic

modeling approaches.  Performance on synthetic data from

ANRM  exceeded  rival  methods  overall.  Known  cancer

biology and  novel insights  are observed in  Gabi networks

generated on cancer proteomics datasets.
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Short Abstract — The tumor suppressor p53 oscillates in 

response to DNA double-strand breaks. We model a class of 
ubiquitous post-transcriptional regulators, termed microRNAs, 
which form positive feedback loops with the p53 regulatory 
network. Simulations reproduce the oscillation of p53 under 
DNA damage stimulus. Importantly, model analysis show that 
specific microRNA abrogation leads to loss of the wild-type 
phenotype. For evaluation, we perform microRNA-
perturbation experiments in MCF7 breast cancer cells. 
Quantitative microscopy analysis confirms that the p53 
oscillatory performance is compromised under specific 
microRNA perturbation. Our results provide evidence of the 
impact of microRNA-mediated positive feedback loops on the 
stress-induced p53 oscillations. 

I. INTRODUCTION 
HE behavior of the tumor suppressor protein p53 could 
be significantly dynamical in response to stress signals 

[1]. Experiments demonstrate that DNA double-strand 
breaks trigger oscillations of p53 and its core antagonist 
MDM2 [2]. Previous studies have shown that the p53-
MDM2 negative feedback loop is essential for the stress-
induced p53 oscillations. However, the role of positive 
feedback loops in p53 oscillations remains largely elusive.  

MicroRNAs are small noncoding RNAs serving as post-
transcriptional regulators. Intriguingly, recent studies have 
revealed extensive crosstalk between the p53 network and 
microRNAs [3]. In this work, we investigate the role of 
microRNA-mediated positive feedback loops that interface 
with the p53 regulatory pathways. 

We develop a mathematical model of a p53-MDM2-
microRNA network that involves three different microRNAs 
forming positive feedback loops. We perform simulations 
and robustness analysis of p53 oscillations under abrogation 
of microRNA-mediated feedback loops. Specifically, 
bifurcation analysis is used to probe the system behavior 
under parametric variability in relationship to cellular noise. 
To experimentally evaluate our predictions, we introduce 
microRNA inhibitors in the MCF7 breast cancer cells, and 
perform time-lapse microscopy to track the p53 dynamics 
under drug-induced DNA double-stranded breaks. Our 
experimental results reveal that the three microRNA-
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mediated positive feedback loops confer different level of 
control to the stress-induced p53 oscillations. 

II. RESULTS 
A. MicroRNAs mediate positive feedback loops with p53 
The miR-192 family, miR-34 family and miR-29 family 

are transactivated by p53. In turn, miR-192 inhibits MDM2. 
In addition, miR-34 inhibits SIRT1 and YY1, while miR-29 
inhibits CDC42 and Wip1, which are direct or indirect 
negative regulators of p53. As a result, these microRNAs all 
form positive feedback loops with p53.  

B. Modeling and analysis of p53-MDM2-miRNA network 
A mass-action model of the p53-MDM2-miRNA network 

is developed based on our previous work [4], incorporating 
the three different microRNAs that form positive feedback 
loops. We simulate DNA damage-induced p53 oscillations 
under inhibition of each of the microRNAs. Furthermore, we 
perform bifurcation analysis to account for the significant 
cellular variability due to extrinsic noise in parameters. The 
results suggest that only the repression of miR-192 could 
effectively abrogate the p53 oscillations in single cells. 

C. Experimental evaluation of microRNA abrogation on 
p53 oscillations  
We experimentally track the p53 response in single MCF7 

cells under wild-type and microRNA repressed conditions. 
By quantifying the percentage of oscillatory cells in a 
population, we confirm that cells transfected with the 
inhibitor of miR-192 show markedly decreased portion of 
p53-oscillating cells compared to the wild-type phenotype. 

III. CONCLUSION 
Using theoretical modeling in combination with single-

cell experiments, we provide the evidence that microRNA-
mediated positive feedback loops can control the robust 
manifestation of stress-induced p53 oscillations. 

REFERENCES 
[1] Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G: 

p53 dynamics control cell fate. Science 2012, 336(6087):1440-1444. 
[2] Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz 

MB, Alon U: Dynamics of the p53-Mdm2 feedback loop in individual 
cells. Nat Genet 2004, 36(2):147-150. 

[3] Feng Z, Zhang C, Wu R, Hu W: Tumor suppressor p53 meets 
microRNAs. J Mol Cell Biol 2011, 3(1):44-50. 

[4] Ma L, Wagner J, Rice JJ, Hu W, Levine AJ, Stolovitzky GA: A 
plausible model for the digital response of p53 to DNA damage. Proc 
Natl Acad Sci U S A 2005, 102(40):14266-14271. 

Regulation of P53 Oscillations by MircoRNA-
mediated Positive Feedback Loops 

Richard Moore1,2*, Hsu Kiang Ooi1*, Taek Kang1,2,  Leonidas Bleris1,2,3 and Lan Ma1 

T 

mailto:lan.ma@utdallas.edu
mailto:bleris@utdallas.edu


  
Human embryonic stem cells (hESCs) are an attractive raw 

material for regenerative medicine due to their potential to 
deliver a variety of clinically important mature lineages. 
Several experimental studies have identified the signaling 
players that govern endoderm lineage specification of hESCs, 
however the precise mechanisms by which these molecules 
work together to orchestrate the dynamics of this process are 
not clearly known. Using a combination of mathematical 
modeling and model informed experiments, we evaluated the 
systems level interactions in the TGF-β/SMAD pathway and the 
role of crosstalks with the self-renewal pathway (PI3K/AKT) in 
controlling signal propagation and variability during 
differentiation. 
Keywords — SMAD-AKT crosstalks, Endoderm 

differentiation, Parametric ensembles, Global sensitivity 
analysis, Dynamic Bayesian Networks. 

I. BACKGROUND 
 
HE process of endoderm differentiation in hESCs is 

initiated by elevating the levels of signaling molecules called 
SMADs by adding Activin A to the growth medium. 
However, this alone is not sufficient, the context of the 
survival pathway PI3K/AKT is extremely important in 
determining the efficiency of differentiation. Particularly, 
the signaling activity of this pathway has to be inhibited to 
get high endoderm differentiation. But this comes at a cost 
of high cell death. In this work, we evaluated the nature of 
signaling interactions that govern the balance of signaling 
interactions during the entire differentiation process. 

II. MATERIALS AND METHODS 

A. Experimental setup and analysis 
H1 hESCs were maintained on matrigel-coated plates in 

mTeSR1 and endoderm differentiation was performed using 
100 ng/ml Activin A + modulation of PI3K/AKT pathway 
using Wortmannin. The phosphorylation dynamics was 
measured using MagPix multiplex technology. The initial 
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selection of key molecules was based on the study by Singh 
et al. [1]. Nucleo-cytoplasmic shuttling rates were measured 
using Fluorescence Recovery After Photobleaching (FRAP). 

B. Quantitative analysis 
We first employed Dynamic Bayesian Network Analysis 

(DBN) to identify possible interactions from the signaling 
time series [2,3]. Detailed mechanistic Ordinary Differential 
Equation (ODE) model for the TGF-β/SMAD2,3 pathway 
with crosstalk interactions of PI3K/AKT was then developed 
for a systems level analysis. The model was calibrated using 
Affine Parallel Tempering based MCMC to identify 
parametric ensembles and sensitive reactions were identified 
by meta-model based Global Sensitivity Analysis (GSA) [4]. 

III. RESULTS AND DISCUSSION 
Application of DBN on the experimental signaling 

dynamics showed that the molecules p-SMAD2, SMAD4 
and p-SMAD3 are influenced by p-AKT in the early phases 
of the signaling dynamics. This crosstalk is removed under 
PI3K inhibition, in spite of recovery of p-AKT levels back to 
the basal levels. Further, the receptor RII levels influenced 
the downstream molecules during the entire phase of the 
signaling dynamics. hESCs further showed divergence in the 
dynamics of regulatory SMADs. When evaluating this 
divergence using a mechanistic model, the parametric 
ensembles of p-SMAD2 and p-SMAD3 showed that there 
are differences in negative regulation by the negative 
feedback molecule SMAD7. Further, time to peak response 
of SMAD2 and SMAD3 was sensitive to the receptor levels 
and negative feedback. This affects the variability in the 
availability of SMAD molecules in the nucleus and the 
nuclear shuttling rates, ultimately controlling the variability 
seen during differentiation. 

IV. CONCLUSION 
Our analysis showed that modulation of crosstalk 

interactions in combination with inherent variability of 
specific signaling nodes affects the differentiation response 
of hESCs. This approach provides a new avenue for rational 
design and optimization of differentiation media of hESCs. 
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Short Abstract — Cortical actomyosin contractions have been 

implicated in a broad range of morphogenetic tissue 
movements. Actomyosin consists of two cytoskeletal proteins, 
filamentous actin (f-actin) and non-muscle myosin II. We 
consider the biomechanics of actomyosin, how force within the 
cell is produced, and how these forces remodel the actin 
cytoskeleton. We have constructed a 2D agent-based model 
representing a patch of cell cortex. We compare experimental 
actomyosin to our simulated 2D network in order to gain 
insight into the biophysical origin of pulsatile contractions, how 
intra-filament forces modulate f-actin array morphologies, and 
how these arrays drive cell shape and tissue morphogenesis. 
 

Keywords — actomyosin, Monte Carlo, agent-based 
modeling, cell mechanics, cytoskeleton function & dynamics 

I. PURPOSE 
YNAMIC actomyosin networks play a critical role in 
morphogenesis by providing forces to move cells and 

establishing tissue mechanics. For example, contractile 
actomyosin networks drive cell shape change, resulting in 
bending of epithelial sheets during Drosophila gastrulation 
[1], and are responsible for the viscoelasticity and force 
production in Xenopus embryonic tissues [2,3]. It is 
surprising that we know little about the biophysical 
connection between active, dynamic pulses in the 
actomyosin network, which occurs on the molecular level, 
and the mechanical processes of cell rearrangement and bulk 
movements on the tissue level. 
 Actomyosin dynamics have been studied in vivo utilizing 
fluorescently tagged f-actin and actomyosin targeting drug 
perturbation studies [4,5]. In vitro models use reconstituted 
gels [6] and micropatterned arrays [7] to understand the 
mechanical properties of cortical actomyosin and 
characterize biophysical properties. In silico  models 
investigate the biophysical principles and processes leading 
to emergent behaviors of actomyosin arrays [8,9]. In the 
work presented here, we have built on our previous 
rotational model [10] to address the gaps of understanding 
dynamic actomyosin networks from the molecular to the 
cellular level. We have developed a two-dimensional model 
that incorporates dynamic aspects of in vivo actomyosin 
interactions, captures the observed behaviors of in vitro 
model system actomyosin, and lays the simplified 
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groundwork for future efforts.  

II. RESULTS 
For physiologically relevant parameters, we observe the 

emergent morphology of actomyosin as a f-actin aster with a 
punctuated concentration of myosin II at the center.  The 
aster morphology arises from an isotropic contraction within 
the actomyosin network, but is a stable morphology. In order 
to investigate ways of making the aster contraction dynamic, 
we performed a parametric analysis on the actomyosin 
biophysical parameters to identify key candidates in the 
regulation of aster emergence and disappearance. 

To investigate in silico results, we simulated cases where 
f-actin plus ends were tethered into a bar geometry, and 
where myosin II were tethered to a specific location within 
the domain. As a further way of determining the specificity 
of various actomyosin morphologies as they relate to stress 
fiber generation, for example, we introduced a population of 
non-motile motors to serve as actin cross-linking proteins. 
The crosslinkers were able to interrupt the aster morphology 
from forming, and instead resulted in a ring of actomyosin. 

III. FUTURE DIRECTIONS 
The model has multiple applications, some of which will 

be discussed in this poster. For example, understanding the 
role of signaling in actomyosin biophysical properties, and 
predicting organization of actomyosin based on externally 
applied forces. 

REFERENCES 
[1] Martin AC et al (2009) Pulsed contractions of an actin-myosin 

network drive apical constriction. Nature. 495-9 
[2] Zhou J et al(2009) Actomyosin stiffens the vertebrate embryo during 

crucial stages of elongation and neural tube closure. Development. 
136:677-88. 

[3] Zhou J et al(2015) Force production and mechanical adaptation during 
convergent extension. Development. 142:692-701 

[4] Kim HY, Davidson LA (2011) Punctuated actin contractions during 
convergent extension and their permissive regulation by the non-
canonical Wnt-signaling pathway. J Cell Sci. (4)635-56. 

[5] Skoglund P et al(2008) Convergence and extension at gastrulation 
require a myosin IIB-dependent cortical actin network. Development 
135(14)2435-44. 

[6] Falzone T et al(2012) Assembly kinetics determine the architecture of 
α-actinin cross linked f-actin networks. Nature Communications.3. 

[7] Reymann A-C et al (2012) Actin network architecture can determine 
myosin motor activity. Science 336:1310-4 

[8] Lenz M et al (2012) Requirements for contractility in disordered 
cytoskeletal bundles. New J Phys. 14(3) 

[9] Moore T et al (2014) Self-Organizing Actomyosin Patterns on the Cell 
Cortex at Epithelial Cell-Cell Junctions. Biophys J 107(11):2652-61 

[10] Miller C et al (2012) Rotational model for actin filament alignment by 
myosin. JTB 300:344-59 

Computational Model of Cortical Actomyosin   
Callie J Miller1,2, Demetrius Harris3, Robert Weaver1, G. Bard Ermentrout4, Lance A Davidson1, and 

Tim Elston2 

D 



  
Short Abstract — In signal transduction, cells propagate 

information in response to various stimuli by means of 
biochemical reaction networks. Positive feedback between two 
molecular species in a network can lead to bistability, and 
spontaneous fluctuations in numbers of molecules can lead to 
stochastic switching between the two states. In this work, we 
use stochastic simulations [1] to investigate the role of spatial 
confinement and diffusion on stochastic switching in a simple 
reaction network with positive feedback. Characteristics of the 
bistability and stochastic switching depend on system shape, 
reaction volume, and diffusion coefficients. 
 

Keywords — Bistability, positive feedback, stochastic 
switching, signal transduction 

I. PURPOSE 
 TOCHASTICITY and spatial organization can each 
play important roles in the emergent behavior of 

biochemical reaction networks with positive feedback. 
Fluctuation-induced transitions between stable steady states 
may occur in the bistable regime by a phenomenon known 
as stochastic switching. Unlike well-mixed systems, in a 
spatially resolved system, such transitions may occur by 
spatially inhomogeneous pathways. For example, 
fluctuations in the local concentration can nucleate a cluster 
of active molecules that then spreads in space [2]. Spatial 
clustering often leads to fast nucleation of active molecules 
and thus a rapid transition to the active steady state [3]. 
Biologically, we are interested in the difference between 
stochastic switching in the cytoplasm and stochastic 
switching in confined regions such as the membrane.  
 A simple and well-studied two-component reaction 
network that exhibits bistability by means of positive 
feedback can be described by the following reactions: 

A ↔ X 
A + 2X ↔3X 

Here, we say that X is the molecular species that prompts 
system activation and that a system with high X molecule 
concentration is in the active state. The rate constants allow 
for bistability under reasonable reaction conditions.  

II. RESULTS 
We utilize the Gillespie algorithm to generate many 

spatially resolved stochastic trajectories under various 
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conditions [1]. In the well-mixed case, the initial 
concentration of each species influences the distribution of 
steady states sampled within a fixed time window. In the 
spatially extended case, the molecular diffusion coefficients 
as well as the system size and shape also influence the 
distribution of stable steady states sampled within a fixed 
time window.  

In the well-mixed case, we observe unidirectional 
stochastic switching from the active to inactive state in cases 
in which the system is in the bistable regime near the 
bifurcation point. To gain insight into stochastic switching 
from the inactive to active state in the spatially resolved 
system, we perturb the system with a pulse of X molecules 
in a localized region. The probability that the system is in 
the active state at a given time depends on the diffusion 
coefficient, and it increases when the initial X distribution is 
spatially clustered rather than homogeneously distributed. In 
three dimensions, the system shape plays a key role in the 
emergent dynamics. Systems of equal volume that have 
small aspect ratios are more likely to switch to the active 
state. Faster diffusion also results in faster activation and a 
larger steady state value of X molecule population.  

III. CONCLUSION 
Faster diffusion and larger concentrations promote the 

active steady state in the positive feedback network 
considered in this work. In a spatially resolved system, 
stochastic switching from the inactive to the active state 
often occurs as a result of nucleation of clusters of X 
molecules. Such clusters can form naturally by means of 
localized fluctuations or artificially by implementation of a 
pulse of desired size and concentration.  
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Short Abstract — The high throughput experiments opened 

for the first time a possibility of inferring the cell signaling 
networks from data. Presence of extrinsic noise in a population 
as well as tonic signaling however offers a challenge for 
inference. Using a combination of Maximum Entropy based 
inference scheme and simulated annealing we have developed a 
method that is capable of constructing an effective linear 
description of the underlying biochemical network. We have 
validated our method for synthetic data acquired from linear 
and non-linear reaction cascades and used it to infer signaling 
networks for primary NK cells from multi parameter CyTOF 
data.  
 

Keywords —CyTOF data, Maximum Entropy, simulated 
annealing, data driven modeling, NK cell signaling 

I. PURPOSE 
he advent of high throughput measurements ushered in a 
new era in systems biology. The simultaneous 

monitoring of expression levels of different proteins at 
different time points for each single cell showed us that the 
time evolution of the proteins are highly co-regulated and 
opened the door for inferring the underlying network of 
interactions.  
       There are two major sources of noise [1] in a high 
throughput data. First, the presence of large amount of cell-
to-cell fluctuations in the protein copy numbers as well as 
fluctuations in the kinetic binding and unbinding rates 
(extrinsic noise). Second, the fluctuations those arise due to 
the inherent probabilistic nature of biochemical reactions 
(intrinsic noise). Even in the limit of large copy numbers of 
proteins (weak intrinsic noise), the presence of large 
extrinsic noise can pose a formidable challenge in inferring 
networks. It can dominate over the variations in time 
evolution of proteins coming exclusively from the internal 
network architecture and can potentially render the inference 
scheme ineffective. In addition, there can be a substantial 
amount activation present in the unstimulated cells due tonic 
or basal signaling which makes it difficult to separate out the 
changes in activation that truly occurred due to a signaling 
response to external stimuli. 
     The purpose of this work is to develop a method that can 
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identify and isolate the extrinsic noise and contribution from 
the tonic signaling from variations arising solely due to a 
signaling response and help us reverse engineer the directed 
causal architecture of the signaling network from the single 
cell time series data.  

II. METHOD 
  
We seek for an effective linear description of the real 
biochemical reaction cascade. To this end we sample for a 
linear module characterized by a corresponding M matrix 
given by ∂t C =MC , where C is the concentration vector, 
using simulated annealing [2] that minimizes the Euclidean 
distance between the moments generated by the sample and 
once calculated from the in-silico networks/experiments. 
The simulated annealing yields an effective linear 
description that is endowed with causal information. A 
Maximum Entropy based method is used to choose between 
different initial network topologies that are used in simulated 
annealing.  

III. CONCLUSION 
The method is very general; it probes the network 

architecture directly, it is insensitive towards extrinsic noise 
fluctuation, and separates out the contribution from basal 
signaling. We have validated the method against in-silico 
linear and non-linear reaction cascades. We have used this 
method for data acquired in CyTOF experiments performed 
at Lewis Lanier’s lab (UCSF) with Jurkat T cells and 
primary NK cells. The primary NK cells are stimulated with 
cognate ligands for NKG2D activating receptors and we use 
the combined computational and experimental method to 
search for hitherto unknown novel interactions in NK cell 
signaling.  
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Short Abstract — I'll describe an undergraduate course, for 

students in several science and engineering majors, that takes 
students from the rudiments of probability theory to the 
quantum character of light, including modern experimental 
methods like fluorescence imaging and Förster resonance 
energy transfer. After a digression into color vision, the course 
closes with the remarkable signaling cascade in our 
photoreceptors, and a glimpse of further processing beyond the 
first synapse. Course materials are available upon request. 
 

HE vertebrate eye is fantastically versatile instrument. 
Using eyes as a common thread helps motivate 

undergraduates to learn a lot of physics, both fundamental 
and applied to scientific imaging and neuroscience. I'll 
describe an undergraduate course, for students in several 
science and engineering majors who have taken one year of 
introductory physics and math. The course takes students 
from the rudiments of probability theory to the quantum 
character of light, including modern experimental methods 
like fluorescence imaging and Förster resonance energy 
transfer. After a digression into color vision, we then see 
how the Feynman principle explains the apparently wavelike 
phenomena associated to light, including applications like 
diffraction, subdiffraction imaging, total internal reflection 
and TIRF microscopy. Then we see how scientists 
documented the single-quantum sensitivity of the eye seven 
decades earlier than “ought” to have been possible, and 
finally close with the remarkable signaling cascade that 
delivers such outstanding performance. Course materials are 
available upon request. They are free-standing, independent 
of another recent book by the author [1]. Two separate 
resources are available that help students to acquire needed 
computer programming skills [2,3]. 
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Short Abstract — We present TroPyc, a python module 

integrated into the PySB modeling framework that performs 
automated reduction and hybridization of biological models. It 
allows identification of key driver interactions of these complex 
networks and the most important parameters at different time-
scales. Additionally, we validated this module with three 
different apoptosis models (EARM) and report the key species 
and parameters of these models. Importantly, this novel 
approach could find new targets for cancer drugs 
 

Keywords — Systems biology, model reduction, tropical 
algebra, network analysis. 

I. PURPOSE 
The extrinsic apoptosis reaction model (EARM), is a family 
of novel and previously published models of extrinsic 
apoptosis, focusing on variant hypotheses for how the Bcl-2 
protein family regulates mitochondrial outer membrane 
permeabilization (MOMP) [1]. These models possess 
distinct spatial and temporal dynamic behaviors as well as 
multiple molecular interactions molecules and interaction 
sites. Due to this complexity, large models are difficult to 
interpret yet they are necessary to understand the complexity 
of systems-level behaviors that lead to cell decision 
processes. In this work we develop an automated formalism 
employing algebraic geometry paradigms [2] to identify the 
important parameters as well as the time-dependent 
execution where multiple parameters commit a cell to 
apoptosis. We present the TroPyc Python module that 
interacts with our PySB modeling framework to perform 
tropical algebra transformations. TroPyc can hybridize and 
reduce large biochemical models like EARM into simpler 
models – also known as– dominant subsystems, that employ 
a quasi-steady state and quasi-equilibrium approximation to 
reduce the parameter space and therefore facilitate analysis. 
As shown in Figure 1, the tropicalization approach enables 
the extraction of signaling activity in a time-dependent 
manner, whereas this information is obscured in a typical 
chemical species dynamic plot.  
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Figure 1. Caspase 3 tropicalization. The red lines identifies 
the time points where there are sharp transitions between 
dominant subsystems. 

II. APPROACH 
Based on a theoretical analysis by Radulescu et al [3], we 

developed an automated tool to reduce network complexity 
within the open source PySB framework using tropical 
algebra. The method consists of a simplification step 
followed by a tropical algebra calculation step which yields 
the key driver interactions of a complex network, and the 
steady state modes that the network can occupy. In addition, 
state-change drivers can also be identified when comparing 
multiple network modes. We present validation of the 
automated algebra tool using three different EARM models: 
Embedded, direct and indirect [4]. For each model, we 
identified the driver species in the different time-scales and 
their related parameter of association or dissociation. Then 
we validated the relevance of this parameters by changing 
the parameter value at different time points. We found that 
when we changed the parameters in time points outside their 
dominant time-scale, there were no drastic changes in the 
dynamics of the model. On the other side, when the 
parameter were changed in time points within their 
dominance, small changes of the parameter value generated 
extreme changes in the dynamic behaviors. The results of 
this analysis could lead to discoveries of new targets for 
cancer drugs. 
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Short Abstract — Both skeletal muscle and cardiac muscle have 

the special ability to maintain energetic homeostasis in response to 
drastic elevations in energy expenditure. To meet this tremendous 
demand of ATP, mitochondrial oxidative phosphorylation has to 
increase in coordination.  A metabolic network requires 
coordinated changes in fluxes, leading to the `in parallel activation’ 
hypothesis. We propose a simple hypothesis that Ca2+ modulates 
mitochondrial energetic metabolism. We show that a mathematical 
model incorporating this hypothesis matches experimental data. 
 

Keywords — mitochondria, oxidative phosphorylation, 
calcium 

I. PURPOSE 
ITOCHONDRIAL oxidative phosphorylation supplies 
the vast majority of energy in metazoans. In humans, 
the change in ADP and Pi concentrations between 

exercising and resting muscle is small even though the ATP 
demand increases by almost an order of magnitude[1]. The 
canonical feedback regulation of energetic homeostasis by 
ADP and Pi is supported by some studies, but may not 
induce enough ATP production due to the minor changes in 
concentrations of metabolites. The `in parallel activation’ 
hypothesis due to Korzeniewski[2] suggests using activation 
factors for metabolic enzymes to achieve the required 
coordinated changes in fluxes via simultaneous activation. 
The exact mechanisms for such an activation remain unclear. 
Metabolic enzymes are associated with regulation at 
different levels, e.g. phosphorylation, but perhaps calcium is 
the most important and ubiquitous factor impacting 
metabolism. Ca2+ not only is needed for muscle contraction, 
but also directly regulates various key enzymes in 
mitochondria. Recently, Glancy et al. evaluated the effect of 
Ca2+ on mitochondrial respiration in situ[3]. Their study 
provided new evidence that inter-mitochondrial Ca2+ alone 
can stimulate the entire energetic pathway simultaneously 
with similar magnitudes. Therefore, mechanisms may exist 
to coordinately induce the activities of those enzymes in 
vivo, as seen, for example, in [4-6].  

II.  METHODS 
This hypothesis was incorporated into a published 
mathematical model of mitochondrial metabolism[7]. We 
assumed that the metabolic enzymes have two forms: a basal 
form or an active form in the absence or presence of Ca2+. 
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Ca2+ can activate reactions by inducing the conversion from 
the basal form to active form. This new model was validated 
to fit the steady-state Ca2+ -dependent responses of muscle 
mitochondrial respiration in State 4 or State 3. Model 
simulations were compared with experimental results from 
the creatine kinase clamp protocol.   

III.  RESULTS 
Model simulations match experimental data[3]. The 
metabolic responses in State 4 and State 3 are remarkably 
different. In the absence of Ca2+, oxygen consumption (JO2) 
in State 3 was almost three times that in State 4. With added 
Ca2+, oxygen consumption in State 4 was almost constant. In 
State 3, it increased and reached a plateau. In the absence of 
Ca2+, the fraction of NADH in total NAD+NADH 
(%NADH) was ~100% higher in State 4 than in State 3. 
With the addition of Ca2+, %NADH in both states increased 
with similar patterns. The membrane potential in State 4 was 
much higher than in State 3 in the absence of Ca2+. 
Compared with its effect on JO2 and %NADH, Ca2+ had 
negligible effect on membrane potential. JO2 is almost 
linearly related to ΔGATPe, and the slope in the presence of 
Ca2+ is greater than in its absence. With the increase of ADP, 
the increase of JO2 in the presence of Ca2+ was much larger 
than its increase in the absence of Ca2+. The Eadie-Hofstee 
plots of JO2 and ADP exhibit a near linear relationship. JO2 
is almost linearly related with membrane potential and the 
slope in the presence of Ca2+ is larger than in its absence.  

IV.  CONCLUSIONS 
In parallel activation modulated by calcium concentrations is 
a viable mechanism for the observed ability of muscle 
mitochondria to maintain almost unchanged concentrations 
of metabolites under large changes in energy demand.  
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Short Abstract — The T cell receptor (TCR) signal 

transduction pathway allows T cells to activate upon binding 
molecular signatures of pathogens. To gain insight into the T 
cell signaling network, we utilize in silico evolutionary 
algorithms to produce a variety of signaling profiles as a 
function of TCR-antigen binding strength. Repeated, 
independent in silico trials produce a variety of potential 
solutions for a given target signaling profile, and analysis of the 
data provides insight into relations between various reaction 
rates that produce the profile. 

I. INTRODUCTION 
ELLS have evolved an array of signal transduction 
pathways that allow them to detect and respond to their 

environments. T lymphocytes use the T cell receptor (TCR) 
signal transduction network to identify molecular signatures 
of pathogens. The pathway exhibits a sharp activation 
threshold as a function of the binding strength of the TCR 
with peptide-MHC (pMHC) ligands presented on other cells.  
Following pMHC binding, the cytoplasmic region of the 
TCR complex is phosphorylated by a kinase associated with 
coreceptors that also bind to the pMHC complex [1].  It has 
been shown that coreceptor-mediated recruitment of the 
kinase has a dramatic effect on the rate of TCR 
phosphorylation [2]. TCR phosphorylation is an important 
early signaling event that results in the recruitment of other 
proteins that promote downstream signaling. 
 The TCR network topology is the result of natural 
evolution. Novel signal transduction network topologies 
have also been produced through the use of in silico 
evolutionary algorithms (EA) [3-5]. EAs are a class of 
heuristic optimization techniques that utilize a selective 
pressure in order to discover a system that produces a 
desired output. In this work, we consider a fixed-topology 
network and allow kinetic rates to vary. The parameters are 
screened by evaluating them with a fitness function that 
measures the deviation of the actual output from the target 
output. Parameter sets with improved performance are 
selected for and then mutated and/or recombined with other 
desirable parameter sets to produce new networks. This 
process is repeated until a desired level of fitness is reached 
[6]. 
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II. MODEL AND METHODS 
We consider a deterministic, well-mixed model of the 

TCR signaling network [2] and utilize an in silico 
evolutionary algorithm to search for sets of kinetic 
parameters that give a variety of altered output responses as 
a function of the off rate between pMHC and TCR. With 
fixed network topology, we allow variation in all reaction 
rates in the model. The evolutionary algorithm can produce 
sets of reaction rates that shift the activation threshold 
typically observed for the TCR network to both higher and 
lower values of the TCR-pMHC off rate. Interestingly, we 
find that the TCR signaling network topology can achieve 
even more dramatic output profiles, such as an inversion of 
the activation pattern in which weak TCR-pMHC binding 
achieves activation and strong binding does not. 

By running multiple independent instances of the 
evolutionary algorithm for each desired output, we find 
many different sets of reaction rates consistent with the 
desired output. Distinct patterns of solutions become 
apparent when analyzing the resulting data sets using 
techniques such as k-means cluster analysis. 

III. CONCLUSION 
In silico evolutionary algorithms can be applied to 

existing biochemical network topologies to produce novel 
outputs not seen in nature. We demonstrate that through 
moderate adjustments of kinetic parameters, the TCR signal 
transduction network has the potential to produce a wide 
array of input-output relations. Such studies can help to shed 
insight into T cell signaling and may provide a means for 
designing artificial networks with desired signaling 
properties. 
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Why would a genotypically homogeneous population of cells 

live to different ages? We propose a mathematical model of 
cellular aging based on gene interaction network.  This model 
network is made of only non-aging components, and interactions 
among genes are inherently stochastic. Death of a cell occurs in 
the model when an essential gene loses all of its interactions. The 
key characteristic of aging, the exponential increase of mortality 
rate over time, can arise from this model network with non-aging 
components. Hence, cellular aging is an emergent property of this 
model network. The model predicts that the rate of aging, defined 
by the Gompertz coefficient, is proportional to the number of 
active interactions per gene and that stochastic heterogeneity is 
an important factor in shaping the dynamics of the aging process. 
Hence, the Gompertz parameter is a proxy of network robustness. 
Preliminary studies on how aging is influenced by power-law 
configuration, synthetic lethal interaction, and allelic interactions 
can be modeled. A general framework to study network aging as a 
quantitative trait has also been found, and the results has 
implication on missing heritability. Preprint for the basic model is 
available at http://arxiv.org/abs/1305.5784. 
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I. BACKGROUND OF OUR MODEL 
GING is a fundamental question in biology, yet its 
mechanism remains elusive.  Aging can be quantified 

by the normalized decline of viability (s) over time (t),  

€ 

m = −
1
s
ds
dt

= f (t) ,                            Eq. 1 

where, m is called the mortality rate, and f(t) is a function of 
time. It can be shown that change of mortality rate over time 
follows the Weibull model for homogenous systems like 
machiner and Gompertz model for heterogenous systems 
like organisms, using a model with serial connected-blocks 
with redundant components [1].  

Cellular aging is the basis of physiological aging. The 
unicellular eukaryotic organism, budding yeast 
Saccharomyces cerevisiae, is a model organism for cellular 
aging. Replicative lifespan of the budding yeast has been 
shown to follow the Gompertz model of aging [2].  

To provide a unifying theoretic framework on cellular 
aging, we proposed a mathematical model for cellular aging 
based on gene networks.  

In our probabilistic gene network model for cellular aging, 
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there are essential genes and non-essential genes (Figure 1). 
Genes are nodes, and gene interactions are edges. We 
assume the efficacy of each gene interaction is non-aging 
and that it declines with a constant mortality rate λ. Each 
gene interaction is active within cells with a probability of p. 
Each essential gene interacts with n number of non-essential 
genes. It can be shown that the mortality rate of the entire 
network, i.e. a cell, grows exponentially with time (age), 

II. APPLICATIONS OF OUR MODEL 
One important application of our model is to evaluate a 
hypothesis that the conserved mechanism of lifespan 
extension is through improving reliability of gene 
interactions. With the availability of replication lifespan 
measures of thousands of yeast single gene deletion mutants, 
we can fit our network model with these mutants, and 
compared the fitted network parameters.  
 
Another application is to use mixture distributions to model 
gene interactions with limiting effect on yeast lifespan.   
 
Our model also provides a mechanistic explanation for aging 
as a quantitative trait. By comparing our network model with 
linear models in quantitative genetics, we may answer the 
question of missing heritability.  
 

 
Figure 1. Network reliability model for cellular aging. 
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Short Abstract —Long lasting remodeling of dendritic spines 

induced by synaptic activity has been associated with learning 
and memory. Upon synaptic stimulation, the activity of the Rho 
GTPase Cdc42 localizes to the stimulated dendritic spine in a 
sustained manner. Long lasting activity localization occurs even 
though Cdc42 can rapidly diffuse in and out of the spine. Here 
we describe the spatiotemporal dynamics of Cdc42 activation at 
dendritic spines as the numerical solution of Reaction-Diffusion 
equations on spine-like geometries. We propose that positive 
feedback of activation together with the geometry of the spine 
can account for long lasting localization of Cdc42 activity. 

 
Keywords — Cdc42, dendritic spine, signaling localization, 

Reaction-Diffusion equations. 

I. INTRODUCTION 
YNAPTIC activity induces sustained structural 
remodeling of dendritic spines, the input site of most 

synapses, in a process associated with learning and memory. 
This long lasting remodeling is specific to the stimulated 
spine; neighbor spines not stimulated remain unchanged. 
The molecular basis of the specificity of sustained spine 
remodeling has not been fully elucidated, however, upon 
spine stimulation, the activity of Cdc42, a GTPase known to 
regulate dendritic spine structure, localizes at the membrane 
of the stimulated spine in a long lasting manner [1]. 
Interestingly, sustained localization of active Cdc42 occurs 
even though Cdc42 itself can rapidly diffuse in and out of 
the spine.  

Cdc42 also localizes in yeast, where it forms a cluster on 
the membrane that directs budding and mating. In this 
system a positive feedback of activation that recruits inactive 
Cdc42 from the cytosol has been shown to be necessary for 
clustering [2]. Furthermore, it is believed that depletion of a 
cytosolic substrate of the activation reaction [3, 4], is 
required to prevent the positive feedback from completely 
covering the membrane with Cdc42.  

Depletion of a cytosolic substrate is not likely to occur in 
dendritic spines as they are connected to the much larger 
dendrite. Taking this into consideration we propose a model 
for sustained localization of Cdc42 activity at dendritic 
spines that does not require the substrate depletion condition. 
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II. RESULTS 
A.   We describe the spatiotemporal dynamics of Cdc42 

activation at the dendritic-spine membrane as the numerical 
solution of Reaction-Diffusion equations on spine-like 
geometries. We use a model for positive feedback of Cdc42 
activation that describes the spread of Cdc42 activity as a 
traveling wave front [4].  In this scenario, membrane 
geometry results in sustained localization of active Cdc42 at 
dendritic spines without requiring depletion of cytosolic 
substrates such as inactive Cdc42.  

 
B.   Our simulations suggest that the width of the spine 

neck is a critical geometrical parameter that controls 
sustained localization of activity. Thin spine necks promote 
activity confinement, whereas thick spine necks result in 
activity spread. The simulations also show that higher 
diffusion coefficients of Cdc42 on the membrane promote 
confinement of activity, which seems counterintuitive. 
 

C.  The results of our simulations are in qualitative 
agreement with theoretical predictions of the effect of 
surface geometry on wave front dynamics. However, we 
observe quantitative differences between simulations and 
theory. In particular, the predicted critical values of 
parameters controlling localization of Cdc42 activity differ 
between simulations and theory. We investigate the cause of 
such discrepancy. 

III. CONCLUSION 
We propose that positive feedback of activation coupled 

with the unusual spine geometry can explain the sustained 
localization of active Cdc42 at dendritic spines upon 
synaptic activity.  
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Short Abstract — Translation is well understood, but few 

predictions at the whole cell level have been experimentally 
tested regarding ribosome collisions and stalling. In this work, 
we modify a TASEP model to account for the influence of rare 
codons on collective ribosomal dynamics. We test this model 
using a synthetic biology approach, where we are able to obtain 
quantitative data concerning the influence of ribosome 
collisions and stalling on translational output. 
 

Keywords — Ribosome Collisions, Ribosome Stalling, 
TASEP, Systems and Synthetic Biology, Monte-Carlo 

I. ABSTRACT 

HE fundamentals of translation are well established, but 
the cellular response to ribosomal stalling and collisions 

is poorly understood. Previous detailed models for 
translation, one of which is Totally Asymmetric Simple 
Exclusion Process (TASEP), predict that ribosomes naturally 
and frequently interact with each other [1-6]. However, 
TASEP and similar models typically do not consider the fact 
that each ribosome’s footprint spans many codons, that each 
ribosome moves along mRNA with a non-uniform rate, or 
that ribosomes can prematurely dissociate from mRNA. 
 To this end, we construct a detailed stochastic model for 
translation that extends earlier efforts [6].  This new model 
allows for ribosome collisions when their respective 
footprints overlap.  These collisions can then accelerate 
ribosome rescue, whereby ribosomes insert a fast 
degradation tag on partially completed peptides and then 
detach from mRNA.  The model also allows for ribosome 
rescue in the case of stalling, where a ribosome simply 
pauses at a rare codon.  Using this model, we explore the 
influence of ribosome collisions and stalling on translational 
output.  In the near future, this model will also include the 
influence of collisions and stalling on mRNA degradation. 

We then experimentally test our model predictions using a 
synthetic biology approach. This involves batch results (96-
well microplate experiments) and single cell results 
(microfluidics and microscopy) for a synthetic circuit in E. 
coli. We designed our synthetic circuit so that two adjacent 
coding regions for fluorescent proteins are under control of a 
 

Acknowledgements: This work was supported by funds from the 
National Science Foundation Division of Molecular and Cellular 
Biosciences, MCB-1330180.  

1Department of Biological Systems Engineering, Virginia Tech. 
jroth242@vt.edu. 
2Department of Physics, Virginia Tech. ncb@vt.edu, cogle@vt.edu, 
rkpzia@vt.edu, wmather@vt.edu.   
3Department of Biological Sciences, Virginia Tech. wmather@vt.edu. 

common inducible promoter. In between the coding region 
for these proteins is a region we call the “gate,” a potential 
bottleneck (or stalling site) of elongation. The gate consists 
of codons that are normally rare in E. coli.  We then 
synthetically control the cellular level of tRNA specific to 
these gate codons, and thus, we can vary these codons from 
rare to abundant. 

Measurement of the two fluorescent proteins provides 
insight into the influence of ribosome collisions and stalling 
on translational output.  By controlling the tRNA 
concentration corresponding to our gate, we can 
continuously transition the gate from an open to a closed 
state. If the gate is open, then there is a plentiful amount of 
the tRNA for the gate codons, and translation will continue 
at a fast pace for all fluorescent proteins. If the gate is closed 
or infrequently open due to minimal tRNA concentration, 
then translation of the downstream protein is either stalled or 
aborted. 

The advantage of using our synthetic approach is it allows 
for quantitative data for (1) rareness of codons related to 
tRNA levels, and (2) an in vivo analysis of ribosomal 
collisions and stalling. By combining experimental findings 
with TASEP simulation, it allows us to create a more 
accurate model of ribosomal interactions than previously 
possible.  
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Optimal feeding regulation in noisy environmental
conditions

Monika Scholz⇤‡ , Aaron R. Dinner⇤ , and David Biron⇤†

Short abstract—Any organism needs to respond to a spa-
tially and temporally dynamic environment and modulation of
behavior assists in favorably exploiting the environment. In the
case of simple eating behavior, performing eating motions and
obtaining nutrients represent a cost and a benefit, respectively,
and optimal exploitation is defined by the maximum of a cost-
benefit curve. Models of regulatory strategies can potentially
be tested using detailed experimental data and may assist in
conceptualizing the data in terms of an optimality principle.
Within this framework, the implications of limitations, such
as noisy sensory cues or imperfect memory, can be assessed.
Here, we introduce novel measurements and analysis tools
of eating behavior in the nematode C. elegans. We use the
observes statistics of eating to compare between models based
on different optimality criteria and assess the constraints that
could make particular strategies favorable.

Keywords—feeding behavior, optimal regulation, decision-
theory, information maximization

I. BACKGROUND

THE nematode C. elegans is a simple model system
with feasible genetics and easily quantifiable behaviors that
facilitate high-throughput assays. C. elegans feeding depends
on the action of a muscular pump, the pharynx. During
pharyngeal pumping the nematode sucks in bacterial food
and surrounding liquid, expels the liquid, and traps the food
[1]. The rate of pumping is thus the primary indicator of
food intake. he traditional pumping assay scores a mean rate
by counting the number of muscle contractions over short
intervals, typically 30-60 sec in duration [3].

To measure the statistics of pumping in detail, we use a
microfluidic device that enables continuous measurements
of pumping and control of the feeding conditions [2].
We can thus alter food concentrations precisely and assay
animals continuously for prolonged periods. In addition,
we developed a set of machine vision tools which enable
us to automatically obtain times series of pumping events
from the raw images. These developments allow us to
characterize pumping in a controlled environment and
obtain unprecedented quantitative information about the
dynamics of this process.
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II. RESULTS

We continuously measure feeding rates in the presence
of various concentrations of bacterial food for hour-long
periods (the optical density (OD) of the bacterial food ranges
between 0.5 and 5) and obtain a time-series of pumping
events for each animal. Under these conditions, the distri-
bution of intervals between pumps is approximately bimodal
and that brief periods of regular pumping are interspersed
with periods in which pumping appears irregular. Moreover,
the statistics of pumping depend on the availability of food.
Thus, a single mean rate fails to capture the richness of
pumping dynamics.

In our assays, the animal can ingest relatively small
numbers of (discrete) bacteria through each single pump,
such that shot noise can affect individual samples of the
environment. We hypothesize that there exists an optimal
pumping strategy given a fixed cost per pumping event,
a fixed benefit per bacterium, and the possible limitations
discussed above. We show that the simplistic approach of
memory-based thresholding (i.e., asking at each step if the
expected gain would be positive) does not describe the
experimental data. In contrast, an information-maximization
strategy [4] intrinsically reproduces experimentally observed
features such as switches between regular and irregular
pumping.

III. CONCLUSION

Novel tools allow the investigation of eating behavior in
more detail than was previously possible. These data can be
conceptualized in terms of optimal strategies for sensory-
based decision processes given various limitations.
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Short Abstract — Using recent modern imaging techniques, 

scientists have found evidence of collaboration between 
different types of stem cells (SCs), and proposed a bi-
compartmental organization of the stem cell niche. Here we 
create a class of stochastic models to simulate the dynamics of 
cells at the stem cell niche. We examine this model in the 
context of 2-hit mutant generation, which is a rate-limiting step 
in the development of many cancers. We discover that a 
cooperative pattern in the stem niche with two groups leads to 
a significantly smaller rate of double-hit mutant production 
compared with a homogeneous and one-compartmental SC 
niche. Furthermore, the optimal architecture (which minimizes 
the rate of 2-hit mutant production) requires a large 
proliferation rate of stem cells which are close to the transit 
amplifying (TA) cells along with a small, but non-zero, 
proliferation rate of the central stem cells. This result is 
remarkably similar to the niche structure described recently by 
several authors, where one of the two stem cell compartments 
was found more actively engaged in tissue homeostasis and 
turnover, while the other was characterized by higher levels of 
quiescence (but contributed strongly to injury recovery).  
 

Keywords — Stem cell niche, Mutation, Cancer, Tumor 
suppressor genes, Stochastic process, Moran process. 

I. PURPOSE 
natomical and molecular heterogeneity has been 
reported to be a common feature between mammalian 

SC niches across different tissues [1, 2, 3]. In [4], it was 
suggested that SCs in many tissues are characterized by a bi-
compartmental organization. One SC group engages more 
readily into new growth, while the other one contributes 
more to the long-term turnover and regeneration of the 
tissue. Such patterns have been identified in several adult SC 
niches, such as hair follicles, blood, intestine, and brain [4]. 
So SC populations exhibits a certain degree of complexity 
that cannot be captured by simple, one-compartment models. 
More details of the bi-compartmental niche structure were 
recently uncovered by [5]. Researchers were able to follow 
the fate of individual intestinal stem cells and their progeny 
over time in vivo. In particular, two distinct groups of SCs 
have been identified: the “border cells” located in the upper 
part of the niche at the interface with TAs, and “central 
cells” located at the crypt base. The proliferative potential of 
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the two groups was unequal and correlated with the cells' 
location (central or border). Further, it was reported that the 
central SCs could divide and migrate downstream replacing 
SCs in the border part. A similar dependence of self-renewal 
potential on proximity to the niche border was reported in 
the hair follicle, in an in vivo live-imaging study [6]. 

II. STOCHASTIC MODEL OF THE STEM CELL NICHE 

Here, we incorporate the bi-compartmental structure in our 
modeling approach, to see how this complexity might affect 
the evolutionary forces that shape the cells' division patterns. 
We focus on the stem cell niche and create several general 
models of the architecture, which include the model of [7] as 
a special case. Following evidences of collaboration 
between cells in the niche and their neighboring cells [5, 6], 
we divide SCs in the niche into two groups. One stem cell 
group S1 (the border cells) regulates the number of TAs and 
SCs, and the group S2 (the central cells), is only responsible 
for controlling the total number of SCs. We also include a 
possibility of migration of cells from one group to the other.  
In particular, we investigate which architecture type lead to 
the maximum delay in 2-hit mutant production. We obtain 
the optimal niche structure and the division patterns for each 
group, which minimize the rate of 2-hit mutant production.  

III. CONCLUSION 
We found that a certain pattern of cooperative stem cells 

in the bi-compartmental niche, along with symmetrically 
dividing SCs, leads to a significantly lower rate of two-hit 
mutant generation compared with the architecture that 
involves only one group of stem cells. In the optimal niche 
architecture, most divisions happen in the S1 group, with an 
occasional symmetric division in the S2 compartment 
followed by a S2 to S1 SC migration. 
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How to Achive Perfect Adaptation 
Wenjia Shi1, Wenzhe Ma2, Liyang Xiong3 and Chao Tang4 

 

Short Abstract —Understanding design principles of certain 
biological function is an amazing task. Adaptation is our best 
candidate to study. First, we analyzed and enumerated 
topologies for gene regulatory process with three regulatory 
rules to find those adaptive ones. Second, we evolutionally 
searched adaptive topologies with more than three nodes for 
enzymatic reactions. We found two kinds of three-node 
topologies are adaptive and they partly differ from that of 
enzymatic ones; 15 four-node topologies are adaptive, and a 
coherent feed-forward loop coupled with a negative feedback 
loop emerged as a totally new one. 
Our study may provide a design table for adaptive circuits for 
different network size and biologoical processes. 
 

Keywords — Design principle, Adaptation, Transcriptional 
regulation, Enzymatic reaction, Three node, Four node.   

I. INTRODUCTION 

N the quantitative era, with the huge accumulative 
experimental data. We need a simplified way to try to 

approach the underlying mechanism while every single 
perturbation may cause an inconvenient phenotype change 
of the complex biological networks. On one hand, a very 
exciting indication from previous studies really lightens 
the way [1]: There should be a limited group of network 
motifs to execute certain functions. On the other hand, 
small network is no doubt to achieve related function while 
its sufficiency to present complex biological system 
remains unclear due to the ignorance of many details and 
feature of the systems. So if we extend the small network  
to even one more node larger, will something new emerge? 
We chose adaptation as the best candidate function to study 
the network design principles because of its universality 
and clear mathematical definition. 

II. TOPOLOGIES FOR ADAPTATIVE PROCESSES 

First of all, despite the fact that enzymatic topologies 
for adaptation have been investigated systematically, the 
topologies for gene regulatory networks that are capable of 
adaptation are still unknown, due to the complexity of 
transcriptional regulations. For simplicity, we model 
transcription as a Hill function with three kinds of logics: 
AND logic(multiplied all the activation and repression 
terms); AND&Additive rule(taking he average effects of 
all the activation terms and multiplying the product of all 
repression terms); Competitive repression(the repressors 
merely decrease the effect of activators instead of blocking 
gene expression, and gene expression becomes weaker in 
the absence of repressors). From linear analysis and  
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simulation, we conclude that: 1) neither one- nor two-node 
(separate input and output nodes) topologies adapted 
perfectly; 2) three-node topologies that were capable of 
perfect adaptation fell into two classes, NFBLs(negative 
feedback loops) and IFFLs(incoherent feed-forward loops). 
However, some new skeletons emerged compared with 
enzymatic reactions, due to the consideration of complex 
regulatory rules and the degradation of gene products. 
Most important, all the NFBLs must have an 
auto-activation on buffer node B working in its linear 
region with Hill coefficient equals to 1. For the IFFLs, an 
inversed proportional mechanism breaks the necessity of 
proportional mechanism for enzymatic topologies and two 
new types of IFFLs are also feasible for perfect adaptation 
in gene regulatory networks. 

Next, we evolutionally[2] searched enzymatic 
topologies with more than three nodes that can adapt. We 
found a mechanism that when the output node is catalyzed 
by enzymes which are proportional to each other in their 
steady states, the output node will be independent of input 
signal and then achieve perfect adaptation. We then 
explored the simplest proportional network motifs, and 
used the motifs as blocks to build networks with more 
nodes in which such motifs are coupled. Primarily, we 
started to build four-node networks which can be 
analytically handled. We found 15 four-node adaptive 
networks, and a totally new one emerged: A coherent 
feed-forward loop does not achieve adaptation by itself, but 
it is capable with the help of a negative feedback loop. This 
new one works as an “anti-spring” -firstly transmitting 
signal synchronously with input, while then giving an 
anti-response and make the coherent feed-forward loop 
capable of adaptation with the help of a negative feedback 
loop.  

III. CONCLUSION 

In this study, we systematically approached the design 
principles of adaptive networks involving in gene 
regulations and enzymatic reactions with different network 
size. Through this kind of study, we can help synthetic 
biologist build the functional tools they want and get 
closer to a dream that we may make a biological machine 
as electronic industry developed. Meanwhile, there still are 
questions afterward our study: How does God design a 
complex system with multifunctional modules? Follow 
these studies, we may get a clear clue about how nature 
designs. 
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Models of biological systems typically include many 

parameters.  Furthermore, the model behavior often responds 
to changes in these parameters in highly nonlinear ways.  This 
nonlinear response is responsible for many of the unique 
emergent behaviors of biological systems.  We discuss how 
model nonlinearity can be both quantified and classified.  We 
consider the tensor of model second derivatives, i.e., the vector 
of Hessian matrices for each model prediction or alternatively 
the Jacobian of the Jacobian matrix.  We use a higher-order 
singular value decomposition to identify the principal 
parameter combinations exhibiting the greatest nonlinearity 
(generalizations of singular vectors) and quantify this 
nonlinearity using generalizations of singular values.  We 
further classify types of nonlinearity by decomposing the second 
derivative tensor into geometrically motivated components, 
including extrinsic, intrinsic, and parameter-effects 
nonlinearity.  We discuss applications to model interpretation as 
well as for numerical methods. 
 

ODELS of biological systems, such as those describing 
dynamics of protein signaling, gene regulation, and 

other cellular activity typically include a large number 
parameters.  In many cases these parameters are unknown 
and must be estimated from data.  The response of the model 
behavior to changes in these parameters is often highly 
nonlinear.  The nonlinearity in the model parameters leads to 
challenges for numerical methods, such as data fitting [1].  
Furthermore, parameter nonlinearity makes it difficult to 
interpret the model.  In particular, the nonlinearity makes it 
challenging to identify the particular parameter or parameter 
combination that controls a feature of the model behavior.  
Consequently, highly nonlinear models often exhibit 
nontrivial, emergent behavior that is obscured by this 
nonlinear parameter response [2].   

Understanding the role of parameter nonlinearity in 
models is important for a host of modeling activities 
including numerical algorithms (such as data fitting or 
Bayesian posterior sampling), model interpretation, model 
construction, and experimental design.  We present a 
theoretical and computational framework for understanding 
the effect of nonlinear parameters in complex biological 
models that uses techniques from differential geometry, 
information theory, and linear algebra. 

The response of a model to small changes in parameters 
can be studied using a local linearization of the model: 
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characterized by either a Jacobian matrix (derivatives of 
model predictions with respect to each parameter) or through 
the closely related Fisher Information Matrix (FIM).  
Considerable effort has been devoted to understanding how 
these objects characterize the model, including “sloppy” 
model research [3] with applications to experimental design 
and numerical methods.  

We extend these methods by considering the tensor of 
second derivatives, i.e., the Jacobian of the Jacobian matrix.  
We use the higher-order singular value decomposition [4] of 
this tensor to quantify the nonlinearity and identify the 
principal parameter directions corresponding to this 
nonlinearity.  We further construct other measure of 
nonlinearity motivated by the information geometric 
interpretation of the model, including intrinsic curvature, i.e., 
Riemann and Ricci tensors, extrinsic curvature, and 
parameter-effects curvature, i.e., the connection coefficients 
[5]. 

We find that for many systems biology models, most of 
the parameter nonlinearity is dominated by a few parameter 
combinations.  This result is analogous to “sloppy” models in 
which the Jacobian matrix has an exponential distribution of 
singular values.  The nonlinearity quantifies how principal 
parameter combinations “rotate” into one another and lead to 
compensatory effects.  Using this, we identify groups of 
parameters that act as effective control knobs for model 
behavior.  We compare these groups of parameters with the 
functional relationships identified by the manifold boundary 
approximation method [6] and discuss how these insights can 
guide the interpretation of the model and improve numerical 
methods for data fitting and posterior sampling. 
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Abstract — Genetic competence in the bacterial pathogen 

Streptococcus mutans is regulated by many environmental 
inputs, including two quorum-sensing molecules and pH. We 
are using microfluidics to control the environmental inputs and 
examine the output of the competence regulatory circuit at the 
single cell level. Our studies reveal that the composition and pH 
of the growth medium are key inputs; different combinations of 
these inputs can tune an internal feedback circuit to create a 
stochastic response that ranges from no response to 
bimodal/unimodal responses. Our findings suggest how cells 
incorporate environmental inputs to determine their behavior. 

  
Keywords — Stochastic genetic circuit, quorum sensing, 

bimodal, unimodal, positive feedback, microfluidics, 
Streptococcus mutans, competence, environmental inputs, pH. 

I. INTRODUCTION 
ENETIC competence is a transient physiological state 
during which a bacterial cell can internalize exogenous 

DNA from its environment. In the oral pathogen 
Streptococcus mutans, competence is important not only 
because it contributes to genetic diversity, but also because its 
regulation is closely intertwined with virulence-related 
behaviors [1, 2]. Early stages of S. mutans competence are 
governed in part through two secreted quorum-sensing signal 
molecules: CSP and XIP [1-3]. Interestingly, the activity of 
these signal molecules depends on environmental cues, 
including pH and medium composition, through mechanisms 
that are not well understood [4-6].  
Using planktonic or biofilm cultures it is difficult to unravel 
the separate regulatory effects of signal molecules and 
environmental conditions, because S. mutans continuously 
modifies its environment during growth, through acid 
production, generation of other signal molecules, etc. To 
precisely define environment and inputs to the competence 
system, we employed a two-layer microfluidic mixer device. 
Activation of competence genes was then studied at the single 
cell level using fluorescent protein reporters. We found that 
the composition and pH of the growth medium modulate 
activity of the ComR/ComS positive feedback system that 
controls S. mutans competence. This leads to diverse patterns 
of expression of key competence genes.  
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II. RESULTS 
A. Bimodal response to CSP vs. Unimodal response to XIP 
The two quorum signals CSP and XIP stimulate the 

competence genes in a very different manner: bimodally vs. 
unimodally, respectively. The data suggest that the bimodal 
activation by CSP is due to auto-activation of the 
ComR/ComS feedback loop. 

B. Composition of medium determines which quorum 
sensing molecules are active 
CSP stimulates competence in peptide-rich medium, but 

not in peptide-free medium. On the other hand, XIP 
stimulates competence in peptide-free medium, but not in 
peptide-rich medium. This effect of medium can be 
understood in terms of control of feedback strength. 

C. pH determines onset/offset of the competence phase 
Regardless of the growth stage of the cells, both CSP and 

XIP elicit a response only if the pH of medium is nearly 
neutral. Experiments and simulation suggest that extreme pH 
acts to hinder the positive feedback circuit. 

III. CONCLUSION 
Although S. mutans competence regulation is sensitive to 

many environmental inputs, its complex behavior can be 
understood in terms of simple tuning of parameters in the 
ComR/ComS positive feedback circuit. Our findings propose 
how S. mutans manages competence regulation and other 
virulence behaviors as it copes with environmental stresses in 
the human mouth. 
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Mechanistic analysis of reaction network models

José-Juan Tapia1, John A.P. Sekar2 and James R. Faeder3

Abstract— Chemical reaction networks have been used for a
long time to model biochemical systems. Rule-based modeling is
a newer graph-based approach that allows explicit consideration
of molecular structures and reaction configurations. We have
previously developed a tool called Atomizer that infers molecular
structures and interactions from reaction network models to gen-
erate rule-based representations. Here, we have atomized reaction
network models in the BioModels database and performed a
statistical analysis of their composition in terms of the five basic
graph operations that can occur in reactions.

I. BACKGROUND

RULE-BASED MODELING is an alternative approach to
building kinetic models, that explicitly encodes informa-

tion about structures and reaction mechanisms [1]. In the rule-
based framework, molecules and complexes are explicitly rep-
resented as graphs. Reactions, modeled as reaction rules, are
explicit graph rewritings using five basic operations: add and
delete molecules, add and remove bonds and change internal
states [2]. However, in the reaction network framework, each
reaction naı̈vely models the creation and deletion of structure-
less chemical species. Any structure present in the species has
to be manually encoded, either using annotations or using an
ad hoc labeling convention (e.g. A_B to represent a complex of
A and B). The Atomizer algorithm [4] attempts to learn these
conventions and extract this hidden structure from each RNM.
Using clues from reaction stoichiometry and common naming
conventions, the algorithm relearns the explicit mechanistic
interactions that were implicitly encoded in the reactions.

BioModels is a repository of user-submitted reaction net-
work models (RNMs) focusing on cellular biochemistry and
other biological processes [3]. It includes 540 models curated
by the BioModels group and 650 uncurated models. Here, we
use Atomizer to analyze the composition of RNMs in both
the curated and uncurated sets of the BioModels database and
compare this to a control set of rule-based models.

II. RESULTS

The balance of composition between bond and state
changes versus creation and deletion is indicative of the degree
to which mechanistic information can be extracted from a
particular reaction network. The fractional occurrence of a
particular graph operation within a model can be compared
across a whole suite of models. Figure 1 shows a histogram of
the fractional occurrence for each graph operation in three sets
of models: atomized curated BioModels, atomized non-curated
BioModels, and a control set of BioNetGen rule-based models.
The control set is predominantly composed of bond and
state changes, reflecting the explicit encoding involved in the
rule-based framework. The non-curated set is predominantly

1,2,3Department of Computational and Systems Biology, University of
Pittsburgh E-mail: {jjtapia1,jas2372,faeder3}@pitt.edu
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Fig. 1. Distribution in the fractional occurrence of three basic sets of graph
operations over the curated (blue) and non-curated (green) sections of the
BioModels database and a control set of rule-based models (red).

composed of molecule creation and deletion. These operations
do not provide information about the underlying structure of
the species involved and their extensive use in a model limits
the amount of structural information that can be recovered. The
curated set lies between the two, showing that manual curation
can, to some extent, be used to resolve molecular interactions.

III.CONCLUSION

The results of our analysis suggest that the network ap-
proach does not limit the use of explicit mechanisms, but
makes it harder to recapitulate or infer them after construction.
This is because the network abstraction is not optimal for
structured species, requiring manual encoding for each species
and reaction. On the other hand, the rule-based framework was
designed to be a more appropriate abstraction for hierarchically
structured biochemical entities such as proteins and signaling
complexes.
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Abstract — Self-assembly is a crucial component of nearly 

every cellular function, yet quantitative modeling of 
self-assembly remains primitive due to the experimental 
challenges of monitoring assembly reactions and the 
computational challenges of accurately and efficiently 
simulating them.  Coarse-grained rule-based models have made 
accurate and efficient sampling of reaction trajectories possible 
but learning parameters for real systems remains challenging 
given the limits of experimental assays of assembly progress.  
We describe advances in model inference, specifically exploring 
the potential of improved fitting algorithms and improved data 
sources to more accurately and efficiently learn correct 
assembly models from bulk experimental measures of assembly 
progress.  Exploration of simulated virus capsid assembly data 
suggests that better algorithms and better data sources can 
each independently lead to more accurate and precise model 
fits, although the advantage of better algorithms diminishes 
with richer data.   Application of the methods to real viral data 
provides novel insights into pathway selection in unprecedented 
detail as well as a platform for exploring the effects of changes 
to better mimic the cellular assembly environment versus the in 
vitro conditions under which kinetic data is gathered. 

Keywords — Self-Assembly, Virus Capsid, Stochastic 
Simulation, Rule-based Models Data Fitting, Optimization. 

I. MOTIVATION 
IRUS capsid assembly has long been a model system 
for general macromolecular assembly due to its high 

complexity and relative experimental tractability. 
Nonetheless, detailed quantitative understanding of 
subunit-level assembly pathways has remained elusive.  
There are no experimental methods to observe fine-scale 
assembly dynamics directly, only to monitor bulk assembly 
in vitro.  Simulation methods provide a window into the 
unobservable fine details of assembly, but are hindered by 
the huge potential pathway space of even small complexes.  
We have previously developed methods to simulate realistic 
scales and parameters ranges of capsid assembly through the 
use of coarse-grained, rule-based models [1] and their 
combination with fast stochastic sampling algorithms [2].  
We later addressed the lack of direct data through 
simulation-based model fitting to static light scattering 
(SLS) measurements of bulk assembly in vitro [3,4].  This 
approach made it possible for the first time to model 
subunit-level pathway space for real capsids and to explore 
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how pathway usage might vary in more realistic models of 
the intracellular environment [5].  Nonetheless, limited data 
sources and uncertain fit quality call into question the 
reliability of the model inferences. 

II. MODELING AND METHODS 
We develop local rule models for viral capsids and 

simulate them via stochastic sampling as in our prior work.  
We use these to explore three experimental assays in current 
use: SLS, time-resolved non-covalent mass spectrometry 
(NCMS), and dynamic light scattering (DLS).  We use 
simulated capsid models with artificially chosen rate 
parameters to simulate idealized data from each source.  We 
then fit model parameters to simulated data using either our 
prior gradient-based algorithms or variants on 
derivative-free optimization (DFO) to minimize root mean 
square deviation between the model and data.  We evaluate 
quality of fit by accuracy of inferred parameters and reaction 
trajectories.  We also apply the methods to real SLS data to 
assess fit quality and explore pathway space in real viruses. 

III. DISCUSSION 
Our results indicate that learning accurate models of 

complex assembly reaction networks is feasible via 
simulation-based data fitting. Richer data for monitoring 
bulk assembly can yield substantial improvements in fit 
quality over past work, although the best algorithms can 
learn generally accurate models even from older SLS data.  
Our results suggest that further work on experimental 
methods and algorithms is needed.  Nonetheless, they show 
that these approaches already have enormous and largely 
unappreciated potential for exploring a critical but still 
poorly handled aspect of cellular reaction networks. 
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Short Abstract — We have developed a discrete spatial 
stochastic model of cellular polarization during mating of 
Saccharomyces cerevisiae. Specifically we investigate the ability 
of yeast cells to sense a spatial gradient of mating pheromone 
and respond by forming a projection in the direction of the 
mating partner. Our results demonstrate that higher levels of 
stochastic noise result in increased robustness, giving support 
to a cellular model where noise and spatial heterogeneity 
combine to achieve robust biological function. This also 
highlights the importance of spatial stochastic modeling to 
reproduce experimental observations. 
 

Keywords — Spatial stochastic modeling, yeast polarization, 
cloud-computing, yeast mating. 

I. BACKGROUND 
HE importance of randomness (or stochasticity) in 
biological systems is well documented [1-2]. Within a 

cell, proteins critical to cell signaling pathways often exist in 
low copy numbers. Under these conditions, methods such as 
the stochastic simulation algorithm (SSA) [3] are a more 
accurate mathematical representation of the system 
compared to deterministic models, which rely on ordinary 
differential equations. Another important consideration is the 
spatial nature of many biological systems, which is not 
captured in a “well-mixed” description. Here we look 
specifically at the spatial polarization of proteins during the 
mating of yeast. 

The yeast Saccharomyces cervisiae exists in both a 
haploid and a diploid form. The haploid cells (of type a or α) 
can sense a spatial gradient of mating pheromone and 
respond by forming a projection in the direction of the 
mating partner. In [4] a combination of computational 
modeling and biological experiments showed that, in 
comparison to a deterministic model, a discrete spatial 
stochastic model can more robustly reproduce two key 
features of polarization observed in wild-type cells: a highly 
polarized phenotype via spatial stochastic amplification and 
the ability of the polarisome to track a moving pheromone 
input. This work demonstrated that stochasticity plays a 
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critical role in yeast polarization and provided the 
foundation for more detailed mechanistic models. 

II. CURRENT MODELING EFFORTS 
Although the model presented in [4] did provide novel 

insight into key features of the polarization system, there is 
still much to be understood. We are currently working to 
extend this model by adding additional pathways known to 
be involved in the polarization cascade. In particular, our 
current mechanistic model integrates three components of 
the polarization process: the heterotrimeric G-protein cycle 
activated by pheromone bound receptors, the focusing of a 
Cdc42 polarization cap, and the formation of the tight 
localization of proteins on the membrane known as the 
polarisome. Open questions to be addressed by this model, 
in combination with biological experiments, include the role 
of stochastically diffusing extracellular ligand, the effect of 
stochasticity on the yeast cell’s ability to form a localized 
Cdc42 cap, and what feedback mechanisms exist between 
the components of the polarization process. 

III. CONCLUSION 
We have developed a discrete spatial stochastic model of 

cellular polarization during yeast mating. Past work has 
demonstrated the necessity of spatial stochastic modeling to 
reproduce experimentally observed features of the 
polarization process. Our current model includes three 
components of the polarization process: the G-protein cycle, 
the focusing of Cdc42, and the formation of the polarisome. 
Due to the complexity of modeling these systems and the 
need for massive computational resources to simulate them, 
we have developed StochSS, an integrated development 
environment (IDE) for discrete stochastic simulations of 
biochemical networks with cloud-computing capabilities that 
easily allows for large-scale computational experiments. 
StochSS provides access to state-of-the-art algorithms, and 
supports a wide range of hardware from desktop 
workstations to high-performance clusters in the cloud. 
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A PROJECTION METHOD FOR SOLVING THE CHEMICAL MASTER
EQUATION

ROGER B. SIDJE AND HUY D. VO

Abstract. The mathematical framework of the chemical master equation (CME) uses a Markov
chain to model the biochemical reactions that are taking place within a biological cell. Computing
the probability distribution of this Markov chain allows us to track the composition of molecules
inside the cell over time, with important practical applications in a number of areas such as
molecular biology or medicine. However the CME is typically di�cult to solve, since the state
space involved can be very large or even countably infinite. This study investigates a numerical
method based on the stochastic simulation algorithm (SSA) to address this challenge. Supported
by NSF Grant 1320849

Extended Abstract

Models of cellular processes promise great

benefits in important fields such as molecular

biology or medicine. Within a cell , some key

regulatory molecules exist only in small num-

bers, in which case it becomes appropriate to

formulate the models in a discrete and stochastic

setting. The mathematical framework that un-

derpins this is a continuous-time, discrete-state,

Markov process, and computing its probabil-

ity distribution amounts to solving the chemical

master equation (CME).

While promising many insights, the CME is

di�cult to solve, especially for large models.

Consequently, researchers often resort to simu-

lating trajectories, using most notably Gillespie’s

stochastic simulation algorithm (SSA) [2] or its

improved variants, e.g., [1]. A direct approach to

the CME was the catalyst of the finite state pro-

jection (FSP) algorithm of Munsky and Kham-

mash [3] that truncated the state space to a more

tractable size. The e�ciency of the method de-

pends on how well one selects the truncated state

space.

We prototype a SSA-driven reduction that

builds on the principle that the CME aims

at computing a probability vector p =

(p1, . . . , pn)T 2 [0, 1]n, with components that

sum to one,

Pn
i=1 pi = 1. For very large prob-

lems, n � 1, the probability sum condition im-

plies that some of the components must neces-

sarily be zero or negligible, Dropping those neg-

ligible components allows us to reduce the size

dramatically. We tested the SSA-driven projec-

tion which is a central element, and early results

are quite promising.
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Short Abstract — The ability of biological systems to grow 

and survive depends upon the detection of specific 
environmental signals and the organization of adequate 
physiological responses. At the cellular level, information from 
the environment is processed using molecular networks that 
orchestrate an appropriate response, which often includes 
changes in gene expression. The high osmolarity glycerol 
(HOG) pathway in yeast serves as a prototype signaling system 
for eukaryotes. Its main function is to sense changes in osmotic 
pressure and coordinate a wide range of molecular processes 
that lead to the adaptation of cell volume. The signaling 
properties of the HOG pathway have been widely studied both 
experimentally and theoretically. An integrative framework, 
however, that connects the dynamic properties of the pathway 
with its Y-shaped structure and its ability to process 
information is still missing. Using novel microfluidic 
experiments and mathematical modeling, we are determining 
how the two branches of the HOG network combine to allow 
both a response at short times to enable survival and at longer 
times to enable adaptation in dynamic environments.  
 

Keywords — cell signaling, HOG pathway, microfluidics, 
mathematical modeling. 

I. INTRODUCTION 
he High Osmolarity Glycerol (HOG) pathway in yeast 
(Saccharomyces cerevisiae) serves as a prototype 

system for MAPK signaling in eukaryotes. Its main function 
is to respond to hyper-osmotic shocks by driving a wide 
range of molecular processes that lead to the adaptation of 
cellular volume. The pathway consists of two input branches 
(SLN1 and SHO1) that activate Pbs2 (MAPKK). Subsequent 
activation of Hog1 (MAPK) by Pbs2 enables regulation of 
glycerol levels in various ways; for example, activating 
regulatory enzymes in glycolysis but also up-regulating the 
expression of enzymes required for glycerol production 
(Gpd1) and glycerol import (Stl1). Although the signaling 
properties of the HOG pathway have been widely studied 
both experimentally and theoretically [1-4] an integrative 
framework that connects the dynamic properties of the HOG 
pathway to its ability to process information is still missing.  

II. RESULTS 
Using microfluidic experiments and mathematical 

modeling, we are determining how the two branches of the 
HOG network combine to allow cellular response both at 
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short times—to enable survival to severe shocks—but also at 
longer times—to enable better adaptation to dynamic 
environments. 

Using a novel design of the ALCATRAS microfluidic 
device [5] we measure single-cell signaling responses and 
fitness dynamics under various dynamic environments. We 
find that ste11 mutant cells (only SLN1 branch active) do 
better under sudden, step-like hyper-osmotic shocks, while, 
skk1 mutant cells (only SHO1 branch active) adapt better in 
slowly varying environments. Therefore, our results indicate 
that the SLN1 branch is essential when response speed is 
important, while the SHO1 branch allows precise cellular 
adaptation to gradually fluctuating environments. 
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Mathematical modeling of insulin secretion from a network of coupled islet E-cells via 
glucose-induced changes in membrane potential, intracellular calcium, and insulin 
granule dynamics  
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In this study we present a new mathematical model of the biphasic insulin secretion and E-cell 
mass.  It is built on two of our previous models: an inter-cellular Hodgkin-Huxley (H-H) type 
model of a hexagonally closed packed (HCP) network of electrically connected pancreatic islet 
E-cells (Plos One, 2007), and an intra-cellular model of glucose-induced insulin secretion based 
on insulin granule dynamics (J. Theo. Bio 2013).  In order to couple these two models we 
assume that the rate at which the primed and release-ready insulin granules fuse at the cell 
membrane increases with the intracellular calcium concentration, one of the variables in the HH 
model.  Moreover, by assuming that the fraction of free ܭ஺்௉ -channels decreases with 
increasing glucose concentration, we are able to take into account the effect of glucose dose on 
membrane potential and, indirectly via the effect on the potential, on intracellular calcium.  
Numerical analysis of our model shows that a single step increase in glucose concentration 
typically yields the characteristic biphasic insulin release often seen experimentally.  Our 
model’s biphasic response can be either oscillatory or non-oscillatory in nature depending on 
the glucose-concentration; at high concentrations the oscillations tend to vanish due to a 
constantly elevated membrane potential of the E-cells.  Furthermore, with increasing glucose 
dose, the area under the insulin curve increases, as does the plateau fraction (the time that the 
E-cells spend in their active firing phase).  To our knowledge our model is the first to explicitly 
connect insulin secretion from intracellular insulin granules to glucose-stimulated intercellular 
electrical activity within a network of coupled E-cells.   
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Short Abstract — Quasi steady-state enzyme kinetic models 

are commonly used in systems modelling. Current models 
require the reactant stationary assumption (also known as the 
low enzyme concentration assumption), which may not always 
be valid in vivo. We have developed the differential quasi-steady 
state approximation (dQSSA) kinetic model, which eliminates 
the reactant stationary assumption while only requiring two 
kinetic parameters to model irreversible enzyme action. We 
validated the dQSSA in silico and found that it is consistent 
with mass action kinetics and correctly replicated in vitro 
kinetics of the enzyme LDH. This presents an accurate method 
of modelling complex biological systems. 
 

Keywords — Systems Biology, Enzyme Kinetics, ODE 
Modelling, Biochemical Networks, Quasi-steady state 
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I. ENZYME KINETIC MODELS 
NZYME kinetic models are integral parts of chemical 
kinetic models as many biochemical networks are 

enzyme mediated [1]. However, modelling of large networks 
leads to a high dimensionality model of many unknown 
kinetic parameters, which increases the amount of data 
required to tune unambiguously [2]. As such, the Michaelis 
Menten model is commonly as it simplifies the mass action 
model by reducing the required parameter number by one per 
reaction [3]. However, this model requires two assumptions: 
the quasi-steady state assumption and the reactant stationary 
assumption. These may not always be satisfied in complex 
biochemical networks under in vivo conditions. 

The total quasi steady state approximation (tQSSA) model 
proposed by Tzafriri overcomes the reactant stationary 
assumption by using total concentrations as the state variable 
[4]. Which this approach is viable for the simplest 
biochemical networks, it becomes mathematically intractable 
to apply when an enzyme targets more than two substrates 
[5]. To address these issues, we set out develop an improved 
model that improves accuracy by overcoming the reactant 
stationary assumption [5]. 
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II. RESULTS 
  The new dQSSA enzyme kinetic model was derived by 

explicitly modelling the complex concentration as functions 
of its constituent substrate and enzymes. The evolution of the 
complex concentration was then determined using a 
linearized form of the differential equation to avoid the use 
of simultaneous equations. 

We found the dQSSA to replicate the mass action model 
when on a hypothetical complex network that includes 
negative feedbacks and substrates competitively targeted by 
multiple enzymes. Furthermore, we found the dQSSA and 
Michaelis Menten model to differ when predicting the 
kinetics of pyruvate to lactate reaction by LDH when NAD+ 

is present. It was found that the dQSSA made the correct 
prediction, thus showing that the dQSSA is a model that is 
accurate enough to be able to replicate kinetic behaviors in 
in vitro scenarios.  

III. CONCLUSION 
The dQSSA is an enzyme kinetic model that can model 
complex biochemical networks with improved accuracy of in 
vitro scenarios by overcoming the reactant stationary 
assumption. 
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Short Abstract — Cellular quiescence is a reversible non-

proliferative state that is critical to tissue homeostasis. 
Deregulation of the quiescent state can lead to a wide range of 
diseases. Control mechanisms of cellular quiescence are until 
now poorly understood. By combining modeling and single-cell 
measurements, we show that quiescent depth is determined by 
the activation threshold of an Rb-E2F bistable switch. We 
identified factors within the Rb-E2F pathway that modulate 
quiescent depth with different efficacy. We also show that 
Notch pathway and circadian rhythm pathway crosstalk with 
the Rb-E2F bistable switch and modulate the heterogeneous 
quiescent depth. 
 

Keywords — Quiescence, proliferation, heterogeneity, 
cellular state, Rb, E2F, bistable switch, activation threshold, 
Notch pathway, circadian rhythm. 

I. INTRODUCTION 
UIESCENCE is a non-proliferative state associated 
with many cell types (e.g., fibroblasts, lymphocytes, and 

stem cells) in the body. Distinct from other non-proliferative 
states that are irreversibly arrested such as senescence and 
terminal differentiation, the quiescent state is reversible. 
Reactivation of quiescent cells to enter the cell cycle under 
appropriate signals is fundamental to tissue repair and 
regeneration. Quiescence is often described as a “G0 phase” 
outside of the active cell cycle, but it is in fact not a single 
uniform state. Studies in the ’70s and ‘80s have shown that 
when lymphocytes and fibroblasts were kept quiescent for a 
prolonged duration, they moved progressively “deeper” into 
quiescence and underwent a longer pre-replicative phase 
when reentering the cell cycle [1, 2].  

Cells at an abnormally deeper or shallower quiescent state 
become hypo- or hyper-proliferative, respectively, which can 
lead to a wide range of diseases. It is therefore important to 
understand what controls the heterogeneous quiescent state 
and depth. Recently, Coller et al. compared the 
transcriptional profiles of human fibroblast cells that 
remained quiescent for different durations; they found that 
cells remaining quiescent for longer periods (at deeper 
quiescence) exhibited larger expression changes of a 
transcriptional "quiescence program” than cells remaining 
quiescent for shorter periods (at shallower quiescence) [3]. 
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The transcriptional quiescence program suggests a likely 
regulatory mechanism of quiescent depth. However, it 
remains to be determined what activities in the 
transcriptional program were causal, instead of correlative.  

II. SUMMARY OF RESULTS AND CONCLUSION 
Here we first show that as fibroblast cells go deeper into 

quiescent state (with prolonged serum starvation), they 
require stronger serum stimulation to reenter the cell cycle. 
On the other hand, these deep quiescent cells can still be 
reactivated to proliferate with sufficient serum stimulation, 
demonstrating that deep quiescence is distinct from 
senescence or cell death.  

We then show that the depth of cellular quiescence can be 
defined by the activation threshold of an Rb-E2F bistable 
switch. Previously, we showed that the Rb-E2F pathway 
functions as a bistable switch, converting graded and 
transient growth signals into a binary (ON or OFF) and long-
lasting E2F activity, which controls the quiescence-to-
proliferation transition [4]. Here by combining modeling and 
single-cell measurements, we show that the degree of 
difficulty (i.e., threshold) to activate the Rb-E2F bistable 
switch accounts for the degree of difficulty to exist 
quiescence (i.e., quiescent depth). We identified different 
cellular factors within the Rb-E2F pathway with different 
efficacy to modulate the Rb-E2F activation threshold using 
computer simulations. Such model predications were further 
validated in experiments. We found that deep quiescent cells 
feature a higher Rb-E2F activation threshold and a delayed 
commitment to quiescence exit and cell cycle entry.  

We further show that the Rb-E2F activation threshold can 
be modulated by the Notch pathway and circadian rhythm 
pathway. Such pathways crosstalk with the Rb-E2F pathway, 
affect the bistable region of the Rb-E2F switch, and 
modulate the heterogeneity of quiescence exit in response to 
growth signals. 
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Novel Single-Molecule Resolution Method for Spatio-Temporal Simulations of Protein Binding and 
Recruitment on the Membrane  

Osman N. Yogurtcu, Margaret E. Johnson. Department of Biophysics, Johns Hopkins University, Baltimore, 
MD, USA. 

In the early stages of clathrin-mediated endocytosis (CME), a variety of distinct proteins can bind to the 
membrane and engage in further interactions with proteins on the membrane and in solution. 
Understanding the dynamics of this process requires correctly accounting for the behavior of protein 
interactions while restricted to the 2D membrane surface, as it is fundamentally distinct from binding in 
solution due to changes in the dynamics of the proteins. Here we introduce the 2D Free-Propagator 
Reweighting (2D-FPR) method that accurately models the spatial and temporal dynamics of proteins as 
they are recruited to the membrane surface and as they interact with one another while bound to the 
membrane. In this method the position of each diffusing protein is tracked, and reactions between binding 
partners can occur upon collisions. Reaction probabilities are determined by the solution to the 2D 
Smoluchowski diffusion equation with reactive boundary conditions, allowing us to take large time steps. 
Molecule positions are propagated by free diffusion, but by using a trajectory reweighting approach we 
can recover the exact association rates for all reactive pairs. This approach is uniquely able to capture the 
changes in protein binding dynamics that can occur upon membrane binding because it accounts for both 
the diffusional motion of proteins and their binding reactions. These important details are absent from 
models that lack spatial resolution. We present our simulation results on modeling adaptor protein 
interaction dynamics, and discuss the effects of varying local protein concentration on both recruitment 
to the membrane and complex formation in the confined 2D geometry. 
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Short Abstract — Systematic investigation of the 

developmental stage from human embryonic stem cells (hESCs) 
to definitive endoderm (DE) may shed light on the underlying 
mechanisms of human liver development. Here, using two-
dimensional difference gel electrophoresis in conjunction with 
mass spectrometry, we identified two significantly inversely 
altered splicing-related gene products during the differentiation 
process, heteronuclear ribonucleoprotein A1 (hnRNP A1) and 
KH-type splicing regulatory protein (KHSRP). Combined 
bioinformatics and microRNA-Array data analysis suggests 
hnRNPA1 and KHSRP antagonizing each other through miR-
375 and miR-135a respectively. Further mathematical modeling 
analysis demonstrated that this motif could generate switch-like 
responses to the differentiation signal, which can serve as a 
noise filter to control hESCs self-renewal and differentiation. 
Simulations predicted that elevated hnRNP A1 or miRNA-375 
expression lead to rapid and efficient differentiation of hESCs 
into DE was further experimentally validated. Taken together, 
we revealed a potential mechanism which functions in post-
transcriptional level to regulate stem cell differentiation. 
 

Keywords — Stem cell differentiation, miRNA, post-
transcriptional regulation. 

I. INTRODUCTION  
uman embryonic stem cells (hESCs) can self-renew and 
differentiate into any cell type found in the three 
embryonic germ layers, making them an attractive 

source of cells for use in regenerative medicine. The ability 
to efficiently generate definitive endoderm (DE), the 
precursor cell type to the liver, pancreas, lungs, thyroid, and 
intestines, is of great clinical importance. However, 
differentiation of hESC towards DE is a complicated process 
and the underlying mechanism remain elusive. 
Directing embryonic stem cell differentiation towards 
definitive endoderm has been achieved by manipulating the 
Nodal and Wnt signaling pathways. Activin A, which 
activates the Nodal pathway, directs DE formation from 
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mesendoderm precursors in mouse and human ESCs. In 
human ESCs, synergistic activation of Nodal and Wnt–β-
catenin signaling promotes more efficient DE generation. 
While most previous studies in this area have focused on 
identifying gene expression and signaling pathways, we 
chose to investigate the key proteins associated with the 
differentiation process. Here, we report results of a 
comparative proteomic analysis on DE derived from hESCs 
in feeder layer-free conditions, using two-dimensional 
difference gel electrophoresis (2D-DIGE) and mass 
spectrometry (MS), followed by bioinformatics and 
mathematical modeling analysis on the function of identified 
regulatory motif. The identified post-transcriptional level 
motif may shed light on the underlying mechanism of hESC 
fate decision. 
 

II. CONCLUSION 
Combined experimental and modelling tools, we identify a 

possible post-transcriptional motif regulating DE 
differentiation. The newly identified motif could generate 
switch behavior corresponding to the differentiation. 
Perturbing the system with hnRNPA1 and miR375 could 
promote differentiation. The post-transcriptional level switch 
may serve as a noise filter for ESC differentiation regulation 
which may prevent inadvertent differentiation by random 
exogenous signal fluctuations.  
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Short Abstract — F-ATP synthase is an enzyme complex that 

synthesizes ATP using energy from the passage of protons 
down their electrochemical gradient across the membrane. 
People are familiar with its rotary mechanism and the complex 
structure. However, no literature has addressed what the 
advantages the rotary mechanism may have over the more 
common “transporter” mechanism. Two simplified model was 
made using BioNetGen to compare effectiveness of rotary and 
the alternating-access mechanisms. We found that (i) the peak 
operating conditions for both mechanisms, (ii) the superior 
performance of the rotary mechanism in two regimes, and (iii) 
the requirement for locally enhanced proton concentration 
near the FOF1 complex. 
 

Keywords — F-ATP synthase, rotary mechanism, 
quantitative modeling, elastic coupling, BioNetGen 
 

I. INTRODUCTION 
 -ATP synthase, or F-ATPase, is found in bacterial 
plasma membranes, in mitochondrial inner membranes 
and in chloroplast thylakoid membranes. It uses a proton 

gradient to drive ATP synthesis by allowing the passive flux 
of protons across the membrane down their electrochemical 
gradient [1]. In 1997, a Japanese group first observed how 
this protein works. It uses a rotary mechanism to carry out 
its cellular function of manufacturing ATP. After that FOF1 
is well known for its intricate rotary mechanism and the 
complex dual-ring structure [2-3]. F type is the only type 
that could both works as an ATP synthase and a proton 
pump that utilize the energy from ATP to maintain the 
proper pH difference across the membrane. 
     Many investigations have studied the rotation details, and 
advanced techniques allow people to observe how this 
machine works in a higher resolution [4-6]. But these 
experimental studies of necessity take the mechanism and 
structure for granted.  However, the literature does not 
appear to have addressed to what significant extent the basic 
advantage of a rotary mechanism over the more common 
alternating-access mechanism coupled to ATP 
hydrolysis/synthesis. In principle, an ATP-coupled 

 
Acknowledgements: This work was funded by China scholarship 

council. 
1School of Medicine, Tsinghua University. E-mail: ziz13@pitt.edu 
2Department of Computational & System biology, University of 

Pittsburgh. E-mail: ddmmzz@pitt.edu 
 
 
 

alternating-access transporter should be reversible under the 
same conditions that reverse the FOF1. 
!!!Here we use BioNetGen, a rule based modeling method to 
make two simple quantitative models to compare the 
effectiveness of rotary and alternating-access mechanisms 
for ATP synthesis [7].  Our approach allows the models to 
be identically matched in a thermodynamic sense, with only 
mechanistic differences.  

II. RESULTS AND CONCLUSIONS 
  A 180 mV potential across the membrane was set in all the 
system. The parameters were referenced from published 
literatures [8-10]. Although the simplicity of the models 
makes the results highly speculative, some findings appear 
to be robust: 
(i) The existence of peak operating conditions for both 
mechanisms. 
(ii) The superior performance of the rotary mechanism in 
two regimes. 
(iii) The requirement for locally enhanced proton 
concentrations near the FOF1 complex compared to bulk 
values implied by pH measurements. 
    These simple models are the first steps toward a 
longer-term goal of building a comprehensive modeling 
framework for both F and V-type ATPases with an arbitrary 
number of c subunits and with elastic coupling between FO 
and F1 sub-complexes. 
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Short Abstract — The molecular switch mechanism of 

apoptosis in Drosophila is studied for the first time by 
mathematical modeling. Enumeration of the elementary 
reactions in the model demonstrates that the molecular 
interactions among the signaling components are considerably 
different from their mammalian counterparts, despite the 
conserved apoptosis pathway. The model is calibrated by an 
experimental input-output relationship and the simulated 
trajectories exhibit all-or-none behavior. Bifurcation diagrams 
confirm that the model of Drosophila apoptotic switch possesses 
bistability. The bistable activation of the effector caspase to the 
apoptosome scaffolding protein is reversible, rather than 
irreversible as in mammals. Further analysis shows that the 
key to the systems property of reversibility lies in the double-
negative feedback from the effector caspase to the initiator 
caspase. 
 

Keywords — Drosophila, apoptosis, molecular switch, 
mathematical model, bistability, double-negative regulation 

I. INTRODUCTION 
POPTOSIS is an evolutionarily-conserved process of 
autonomous cell death [1]. In contrast to the intense 

theoretical modeling work on mammalian apoptosis 
pathways, the apoptotic signaling mechanisms in the fruit 
fly, Drosophila, have not been investigated theoretically, to 
our best knowledge. Previous theoretical studies from the 
viewpoint of systems theory suggest that the mechanistic 
property of bistability can achieve the switch-like behavior 
of apoptosis. Consensus exists that the models of apoptosis 
networks are necessarily bistable, with one discrete stable 
steady state (inactive effector caspase) corresponding to cell 
survival, and the other (active effector caspase) to cell death 
[2, 3]. We ask, for the conserved function of apoptosis, 
whether the cellular regulatory system in Drosophila 
behaves the same as that in mammals or not. 

II. RESULTS 

A. Modeling of the Drosophila apoptosis pathway 
We first identify the essential signaling components from 

literature, which all have mammalian homologs. However, 
although the schematic regulations along the Drosophila 
pathway resemble their mammalian counterparts, the 
underlying molecular reactions have substantial degree of 
distinction. The most-upstream signaling proteins are 
upregulated by extrinsic stimuli, making the model an 
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intrinsic-extrinsic hybrid type [4]. Moreover, the regulations 
of the initiator caspase DRONC is complicated, due to the 
combinatorial cleavage of two functional protein domains. A 
notable distinction in the network organization is the double-
negative feedback from the effector caspase to the initiator 
caspase, while mammals have a direct positive feedback [5]. 
The calibrated model presents all-or-none time trajectories. 

B. Reversible bistability and feedback topologies 
Bifurcation diagrams of the steady state of the effector 

caspase versus varying single parameters or pairs of 
parameters show that the model of Drosophila apoptosis 
pathway is bistable in an extended region surrounding the 
nominal parameter set. 

The bifurcation diagram of the response of effector 
caspase versus DARK input, the homolog of mammalian 
APAF1, shows that this essential bistable response is 
reversible. Further analysis of the Drosophila models 
containing different combinations of topologies, either with 
only the double-negative feedback, or with only the direct 
positive feedback, or with both feedback loops, demonstrate 
that the distinct double-negative feedback is the mechanism 
responsible for the reversible bistability in Drosophila. 

III. CONCLUSION 
The model of the Drosophila apoptosis pathway presents 
robust bistability. However, in contrast to the irreversible 
bistability of the caspase response to the APAF1 induction in 
mammals, the caspase activation elicited by DARK is 
reversibly bistable, which arises from the absence of the 
direct feedback activation of the initiator caspase by the 
effector caspase. Due to the essential role played by 
irreversibility in the robust apoptosis decision in mammals, 
our finding highlights an important mechanistic distinction 
between the apoptotic switch in flies and that in mammals.  
The results indicate plausible systems-level evolution of a 
conserved cellular function. 
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