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Estimate the center of the PSF from the 
detection on the camera 

• Approaches: 
– Use center of mass from the intensity 
– Use a model based fitting approach 

 
• Image formation process: 

1. Photons arrive at camera 
2. Photons converted to electrons 
3. Electrons are readout and amplified 

 
– Poisson noise from photons & Gaussian noise from read-

out electronics. Need to use lowest possible readout 
noise => EM-CCD 
 

– Poisson noise is dominant part in practice! 

 
 



Theoretical Ideal Pixelated Ideal Gaussian 

~742nm 

Single Point Emitters Appear as Diffraction-Limited Blobs 

Point Spread Function (PSF) 



Fitting of Diffraction Limited Blobs 

~742nm 

In Focus Emitter with Noise (N=1000) Effective Fitting Resolution 

Numerical Aperture:  

Emission Wavelength:  

Localization precision:  

Number of photons:  



Problem: This only works when each emitter is spatially isolated 

? 



5 mm 

Blinking Fluorophores 

Huang et al, Biomedical Optics Express 2011 

What Does a Super-Resolution Image Look Like? 





Idea: Single Particle Tracking In Live Cells 



Single Particle Tracking 
• Try to keep density of fluorophores low so they are spatially separated 
• Track individual molecules over course of movie 
• Still will have problems whenever trajectories intersect 



Two-Color Single Particle Tracking 
Idea: If we had more than one color we could distinguish overlapping trajectories 
• EMCCD camera is Black-and-White 

• Color of capture is controlled with a filter 
• Use 2 different colors of emitters 
• Split CCD in half and allow for 2 different light-paths that have separate filter colors 



Poisson Distribution 

Discrete distribution --- Gives probability of 
observing k events over a fixed time period if 
mean emission rate over that period is lambda. 
 
Examples:  
• Number of packets arriving on a network 

connection 
• Number of radioactive decay events in a 

sample 
• Number of photons emitted from a 

fluorophore 



EMCCD cameras used in fluorescence microscopy are designed to be extremely 
sensitive to low intensity signals. 
• Operate at  -90℃ to reduce sensor noise 
• Every individual photon is important information! 
• Effectively black-and-white 
• Output is in 16-bit unsigned ADU (analog-to-digital-units) 
• Gain calibration converts: ADUs photon counts 

 

[Step 1] EMCCD Gain Calibration 



[Step 1] EMCCD Gain Calibration 
EMCCD cameras used in fluorescence microscopy are designed to be extremely 
sensitive to low intensity signals. 
• Operate at  -90℃ to reduce sensor noise 
• Every individual photon is important information! 
• Effectively black-and-white 
• Output is in 16-bit unsigned ADU (analog-to-digital-units) 
• Gain calibration converts: ADUs  photon counts 

 



[Step 2] Identify Likely Single Emitters Sub-regions 
Image Processing – Feature Detection 
• Spot or Blob detection 
• Apply filter of expected feature size to enhance desired features in image 
• Ideal filter is Laplacian of Gaussian (LoG) 

Laplacian of Gaussian (LoG) Filter 

Original LoG Filtered 



[Step 2] Identify Likely Single Emitters Sub-regions 
Image Processing – Feature Detection 
• LoG can be approximated by Difference of Gaussians (DoG) 
• DoG is more computationally efficient as it is separable across dimensions 
• Separability is important for hyperspectral (3D) data!  
• Note: There is a separable LoG implementation with 4-passes in 2D and 9-passes in 3D 

Gaussian is Separable 



[Step 2] Identify Likely Single Emitters Sub-regions 
Gain Corrected Image 



[Step 2] Identify Likely Single Emitters Sub-regions 
DoG Filtered Image 



[Step 2] Identify Likely Single Emitters Sub-regions 
Identify Local Maxima  

(Note: can be done with amortized 2 comparisons per pixel)  



[Step 2] Identify Likely Single Emitters Sub-regions 
Separate Signal from Background 

(Look for an “elbow” in the distribution of intensities of local maxima of filtered image)  



[Step 2] Identify Likely Single Emitters Sub-regions 

Selected Maxima (Green=Signal  Red=Noise) 



[Step 2] Identify Likely Single Emitters Sub-regions 

Draw Boxes to Identify Fitting Regions 



3D representation of all 
boxes over all frames for 

a 2D data set 



[Step 3] Point Emitter Localization 

Model Parameters:   

‣box size 

‣Point spread function 

width (pixels) 

Goal: Given image, predict: 

‣x-position (pixels) 

‣y-position (pixels) 

‣Intensity (photons) 

‣Background (photons/pixel) 

‣Apparent Gaussian sigma 



2D Gaussian Point Spread 

Function 

Can be separated into 2 1D Gaussian Point Spread Functions 



[Step 3] Point Emitter Localization 

Data: pixel photon counts 

Model: expected pixel 
photon counts 



Maximum Likelihood Estimation 



Parameter Estimation using Probability Models 



1D Root-finding 1D Optimization via Root finding for f’(x) 

nD Optimization  requires computing 
 the Hessian (2nd Derivative) 

Newton’s Method For Optimization 

(MAP Estimation) 



Cramer-Rao Lower Bound and Fisher 
Information 

Cramer-Rao Lower Bound Fisher Information:  Measures average curvature. 
A function of only the parameter value and not 
the data as we average over all possible data X. 



Tracking can be formulated as a combinatorial optimization problem 
First Step is Frame-to-Frame connection 

[Step 4] Tracking: Connecting Localizations into trajectories 

Frame: i Frame: i+1 

? 

Death 

Ambiguity 

Birth? 



Linear Assignment Problem 

Related: Stable Marriage Problem  

Linear Assignment Problem 
(Hungarian Algorithm) 
(aka. Kuhn-Munkres Algorithm) 

Transportation Problem 

Minimum Cost Flow Problem 

Linear Programming 
(Simplex Algorithm) 



32 

Localize Frame-to-Frame Gap Closing 
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[Step 4] Tracking: Connecting Localizations into trajectories 







Point Emitter Localization with 
MAPPEL 



MAPPEL: 

Maximum A-Posteriori Point Emitter Localization 

Mark J. Olah (mjo@cs.unm.edu) 

Department of Physics and Astronomy, University of New Mexico 

• MAPPEL is an object-oriented Matlab/C++ package for point emitter localization in 2D 

and 3D using a Gaussian PSF model and a Poisson noise model. 

• MAPPEL can be used directly from C++ or through a Matlab interface which presents an 

object-oriented class structure where each class works with a different model variant. 

• Designed to be extremely fast, numerically accurate, and robust for use with low S/N 

data. 

• Cross-platform [Win64, Linux, OSX (soon)]. 

• Uses OpenMP to parallelize large computations.  Does not currently rely on CUDA, so 

should run on any x86-64 machine without special hardware. 

• Uses Cmake for cross-platform building, and Mingw64 for windows cross-compiling from 

Linux. 

• Provides multiple maximization methods for MAP modes 

– Newton, Newton-Raphson, Quasi-Newton, etc,… 

• Provides full posterior estimation with MCMC Metropolis-Hastings algorithm. 

• Each MAPPEL object has methods that allow for the simulation of images computation of 

LLH and CRLB as well as emitter localization with MAP or Posterior methods. 

• Requirements: DIPImage (optional but useful).  Tested on Matlab 2013b+.  Note that 

DIPImage 2.7 is required for 2014b+ support. 



Basic Model Classes (probably you want one of these) 

• Gauss2DMLE  -  2D Model. Maximum Likelihood Estimation:  theta = [x y I bg] 

• Gauss2DsMLE  -  2D Model. Maximum Likelihood Estimation:  theta = [x y I bg sigma] 

• Gauss2DMAP  -  2D Model. Maximum a-posteriori Estimation:  theta = [x y I bg] 

• Gauss2DsMAP  -  2D Model. Maximum a-posteriori Estimation:  theta = [x y I bg sigma] 

 

Other Model Classes 

• Blink2DsMAP  -  2D Model. MAP Estimation for Line-scanning microscopy. 

• GaussHSMAP  -  Hyperspectral Model. MAP Estimation:  theta = [x y L I bg] 

• GaussHSsMAP  -  Hyperspectral Model. MAP Estimation:  theta = [x y L I bg sigma sigmaL] 

• BlinkHSsMAP  -  Hyperspectral Line-scanning  Model.  theta = [x y L I bg sigma sigmaL] 

 

MAPPEL Model Classes 

Useage: 
 g2d = Gauss2DMAP( imsize, psfsigma) 
[or] 
 g2d = Gauss2DsMAP( imsize, psfsigma) 
 
[ARGS] 
  imsize: [X Y] in pixels.  See slides on coordinate systems 
  psfsigma: [X Y] in pixels.  (or scalar value for symmetric PSF) 

NOTE: for the ‘s’ models that also estimate the apparent psf sigma as an extra theta parameter, the sigma value returned in 
parameter theta is a unit-less scaling that corresponds to this input psfsigma constant.  (i.e. the estimated sigma returned will 
be 1 if the emitter is exactly in focus and >1 if out-of-focus) 
 



IMPORTANT: Image Sizes and Coordinate System Reference 

Image pixel coordinates +Y 

+X 

(sizeY,0) 

(0,0) (0,sizeX) 

(sizeY,sizeX) 

0 
0 

sizeY-1 

sizeY 

sizeX-1 

1 

sizeX 1 

Image physical coordinates 

image(i,j) 

+X 

+Y 

j-1 j 

i-1 

i 

Single Pixel Coordinate System 

Matlab (1-based indexing) 

Pixel physical coordinates 

NOTE: This is different than GPUGaussMLE which is 

off by ½ pixel and switches the X, Y axes. 



>> g2d = Gauss2DMAP([7 15], [1,2]) 
g2d =  
  Gauss2DMAP with properties: 
 
                 Name: 'Gauss2DMAP' 
              nParams: 4 
           ParamNames: {'x'  'y'  'I'  'bg'} 
           ParamUnits: {'pixels'  'pixels'  '#'  '#'} 
     ParamDescription: {'x-position'  'y-position'  'Intensity'  'background'} 
         nHyperParams: 5 
      HyperParamNames: {'Beta_pos'  'Mean_I'  'Kappa_I'  'Mean_bg'  'Kappa_bg'} 
              MinSize: 4 
    EstimationMethods: {1x7 cell} 
               imsize: [7 15] 
            psf_sigma: [1 2] 

Example:  Make a  Gauss2DMAP model object  that works on 

images with 

• sizeX=7;  sizeY=15 
• psfSigmaX=1;  psfSigmaY=2 

Note: imsize and psf_sigma always use the [X Y] 
format.  Only the images appear in the opposite 
order. 



theta = [x-pos, y-pos, Intensity, bg] 

(pixels) (pixels) (photons) (photons/pixel) 

>> g2d.simulateDipImage([0, 0, 1000, 0]) 

Ex: Emitter at true coordinates X=0 Y=0 

g2d.imsize = [7, 15]    % [sizeX, sizeY]  

>> g2d.simulateDipImage([7, 0, 1000, 0]) 

Ex: Emitter at true coordinates X=7 Y=0 

>> g2d.simulateDipImage([0, 15, 1000, 0]) 

Ex: Emitter at true coordinates X=0 Y=15 

>> g2d.simulateDipImage([7, 15, 1000, 0]) 

Ex: Emitter at true coordinates X=7 Y=15 

>> g2d.simulateDipImage([3.5, 7.5, 1000, 0]) 

Ex: Emitter at true coordinates X=3.5 Y=7.5 

+X 

+Y 



Example:  Working with MAPPEL objects 

>> imsize=[8 8]; psfsigma=[1 1]; 
>> g2d=Gauss2DsMAP(imsize, psfsigma) 
g2d =  
  Gauss2DsMAP with properties: 
 
              nParams: 5 
         nHyperParams: 6 
                 Name: 'Gauss2DsMAP' 
           ParamNames: {'x'  'y'  'I'  'bg'  'sigma'} 
      HyperParamNames: {'Beta_pos'  'Mean_I'  'Kappa_I'  'Mean_bg'  'Kappa_bg'  'alpha_sigma'} 
           ParamUnits: {'pixels'  'pixels'  '#'  '#'} 
     ParamDescription: {1x5 cell} 
              MinSize: 4 
    EstimationMethods: {1x7 cell} 
               imsize: [8 8] 
            psf_sigma: [1 1] 

• Create a new model 

• Sample 1000 thetas from the prior distribution 

>> thetas=g2d.samplePrior(1000); 

• Generate the model images for each theta, which give the expected photon count. 

>> model_ims = g2d.modelImage(thetas) 

>> model_dip_ims = g2d.modelDipImage(thetas) 

or 

• Simulate images for each theta, which sample from the Poisson distribution with 

mean given by the model images 

>> sim_ims = g2d.simulateImage(thetas) 

>> sim_dip_ims = g2d.simulateDipImage(thetas) 

or 



Example:  Working with MAPPEL objects 

• Get the CRLB at each of the thetas 

>> crlb = g2d.CRLB(thetas); 

• Get the LLH of each a stack of images at their respective theta value 

>> llh = g2d.LLH(ims, theta); 

• Estimate the theta value for a stack of images using MAP with Newton’s method as 

default maximizer 

>> [etheta, crlb, llh, stats] = g2d.estimateMAP(ims); 

• Estimate the theta value for a stack of images using Posterior MCMC sampling 

>> [etheta, covariance] = g2d.estimatePosterior(ims); 

Plus lots of other methods for more detailed work with the 
model space and information measures.  See 
MappelBase.m for more documentation on other methods. 



Estimator Methods 
 MAPPEL provides the ability to do ordinary Maximum Likelihood estimation, or the 

Maximum a-posteriori estimation which is very similar operationally, but includes the 

influence of a prior distribution. 

• The Gauss2DMLE and Gauss2DsMLE classes will do ordinary maximum likelihood 

• The Gauss2DMAP and Gauss2DsMAP will do the Maximum a-posteriori estimation 

• All of the classes use the method  estimateMAP to do the estimation, but the MLE 

classes will ignore the prior settings, despite the MAP in the method name. 

• The estimateMAP method takes as an optional second argument a string giving a 

method for doing the estimation.  The most important methods are: 

• “Newton” – Uses the full Hessian (this is the default) 

• “NewtonRaphson” – A newton’s method that uses only the diagonal of the hessian 

matrix to compute the curvature of the objective function.  This is also a good 

choice.  It is slightly faster and sometimes gives better results for the “s” models 

that estimate sigma 

• “CGauss” – Uses the code from Smith et. al. Nature Methods. 2010.  The output is 

converted to the MAPPEL coordinate system.  This code has limitations and is slower 

than the other methods.  This is included for comparison. 

>> [etheta, crlb, llh, stats] = g2d.estimateMAP(sim_ims,'Newton'); 
>> [etheta, crlb, llh, stats] = g2d.estimateMAP(sim_ims,'NewtonRaphson'); 
>> [etheta, crlb, llh, stats] = g2d.estimateMAP(sim_ims,'CGauss'); 

Examples: 



Converting from existing code that uses CGaussMLE 

 MAPPEL can be viewed as a reimplementation of the mathematical description from 

Smith et. al. Nature Methods. 2010., as well as an extension to other estimation 

methods and models. 

 For users of the CGaussMLE or GPUGaussMLE codes from the Smith et.al. paper, a few 

points should be noted: 

 In CGaussMLE the different models are expressed as different “fit-types”.  There are modes to fit 

where the effective sigma is not fit (fit-type 1) and where it is fit (fit-type 2).  In MAPPEL the 

different fit types are different classes.  The Gauss2DMAP and Gauss2DMLE classes do the fit-

type=1 fitting where theta=[x y I  bg].  The Gauss2DsMAP and Gauss2DsMLE do the fit-type=2 

fitting where the apparent Gaussian sigma is estimated and theta=[x y I bg sigma].  Note that for 

MAPPEL, the sigma returned is a multiple of the PSF sigma, so when sigma=1 the emitter image 

Gaussian fit matches the PSF and the emitter is in focus.  When sigma>1 the emitter image 

Gaussian is bigger than the PSF. 

 The image coordinate systems are different.  See the slides on coordinate systems for details.  The 

net effect is that X an Y are interchanged and the origin is shifted by (0.5,0.5) pixels. 

 The CRLB estimates will be potentially different because we use a more numerically stable matrix 

inversion algorithm. 

 The LLH values will be slightly different because MAPPEL includes constant correction terms to 

sterling’s approximation that will more accurately approximate the mathematically true log-

likelihood values. 

 NOTE: In MAPPEL-1.1 GPUGaussMLE is a built-in estimation method.  Use estimator name 

‘GPUGauss’.  This method of calling through obj.estimateMAP automatically corrects for 

the image coordinate systems, and the results are consistent with the other estimators. 


