
  
Short Abstract — There are a variety of methods that 

attempt to infer networks of positional correlations in proteins 
from multiple sequence data.  However, method accuracy is 
inconsistent from sequence alignment to sequence alignment, 
depends strongly on sequence preprocessing and method 
parameters, and the predicted networks from different 
methods show little overlap.  We use ensemble learning to 
combine the results of multiple scoring methods.  When tested 
on a large set of alignments, the ensemble method outperforms 
the individual scoring methods in the ensemble. 

I. INTRODUCTION 
MBEDDED in an evolving protein is a complex network 
of amino acid correlations.  The constraints induced by 

this network of correlated fluctuations drive residue 
substitutions at single sites.  Correlations can be strong even 
between pairs of residues widely separated in the folded 
structure because of allostery [1], charged interactions [2], or 
other forms of energetic coupling [3].  

In order to infer this correlation network from multiple 
sequence data, many methods under the names correlated 
substitution analysis have been developed.  The methods for 
scoring pairs of residues for high correlation include chi-
squared tests [4], explicit likelihood [5], variants of mutual 
information [6,7], and maximum entropy models [8]. 

Unfortunately, method accuracy – as assessed by 
comparison to protein contact maps – is inconsistent from 
sequence alignment to sequence alignment and can be 
strongly dependent on other preprocessing steps and scoring 
parameters.  In addition, predicted networks from different 
methods often show relatively poor overlap [9]. 

II. RESULTS 
In some machine learning problems, combining several 

models yields better results than can be achieved by any 
individual model [10]. We use an ensemble approach to 
blend the results of multiple correlated substitution scoring 
methods.  

We first convert the set of scores each method assigns into 
a set of ranks. The ranks are then aggregated, using a metric 
similar to those employed for web meta-search engines [11].   
We combined nine different scoring methods on a large (~ 
3500) set of high-quality protein alignments from the Pfam 

 
1Biomedical Engineering, University of Connecticut, Storrs, CT. E-mail: 

kevin.s.brown@uconn.edu 
2Palomidez, LLC.  E-mail: chris.al.brown@gmail.com 
 

database [12].  The methods used include both newer, more 
sophisticated methods [7,8,9] and older, simpler ones [4,6].  
The ensemble approach shows a marked improvement in 
scoring accuracy when compared to the individual ensemble 
members. 

III. CONCLUSION 
A large amount of effort in the field of correlated 

substitution analysis is directed towards developing ever 
more complicated, and hopefully more accurate, scoring 
methods.  Our mixture-of-experts results suggest that even 
older, relatively simple methods can still yield impressive 
predictions when properly blended.  Given that many 
scoring methods are derived from others, in the future it 
might be desirable to blend the models with a more 
sophisticated scheme [13].   
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