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Three Campuses:
Albuguergue, NM (July 6-21)
San Diego, CA (July 13-28)
Fort Collins, CO (July 13-28)

Eight Focus Areas:

Stochastic Gene Regulation
Cancer Dynamics

Complex Biological Dynamics
Cell signaling

Viral dynamics

Biomolecular simulations
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The 2015 g-bio Summer School
(Albuquerque, San Diego, Fort Collins)

Applications are now being accepted for the Ninth Annual g-bio Summer School. Applications will be due
on Monday, February 16 at 11:59pm (MST). Submitted applications may be revised until that time.

To apply now, please visit the application website: https://www.openconf.org/gbioss2015/openconf.php
Scholarships are available.

The 2015 g-bio Summer School will be held on different dates at three different campuses

1) July 6-21, 2015 at the Colorado State University in Fort Collins, CO
2) July 13-28, 2015 at the University of New Mexico in Albuquerque, NM
3) July 13-28, 2015 at the University of California in San Diego, CA.

School Overview:

The g-bio Summer School is an annual event intended to advance predictive modeling of cellular
regulatory systems by exposing participants to a survey of work in quantitative biology and by providing
in-depth instruction in selected techniques, with an emphasis on techniques useful for modeling cellular
regulatory networks. Certain data analysis techniques and experimental methods will also be covered.

Lectures will be offered at three campuses. At the San Diego campus, the focus will be on synthetic
biology. At the Albuquerque and Fort Collins campuses, the focus will be on different aspects of
systems biology. Students will each work on a mentored project. Participants will attend daily core
lectures, project-specific lectures, journal clubs, and computer and experimental labs. The summer
school is designed for graduate students, postdocs, or anyone with a quantitative background who is
new to modeling cellular regulatory systems/networks.

At the School students will attend 20-25 hours of core lectures, 20-25 hours of course-specific lectures,
10-15 hours of computational and experimental labs, and 10-15 hours of student presentations. There
will also be 20-30 hours of mentored project work, which may include some simple experiments,
theoretical developments and/or real data analyses.

The main topics of the 2015 summer school are:

Biomolecular Simulations (Albuquerque, NM), Cell Signaling (Albuquerque, NM), Membrane Biology
(Albuguerque, NM), Viral Dynamics (Albuquerque, NM), Cancer Dynamics (Fort Collins, CO), Stochastic
Gene Regulation (Fort Collins, CO), Complex Biological Dynamics (Fort Collins, CO), Experimental
Synthetic Biology (San Diego, CA), and Computational Synthetic Biology (San Diego, CA)

Organizers:
S. Gnanakaran, New Mexico Consortium, Los Alamos, Jeff M. Hasty, University of California, San Diego,
William S. Hlavacek, New Mexico Consortium, Los Alamos, Marek Kimmel, Rice University, Houston,

Brian Munsky, Colorado State University, Fort Collins, Ashok Prasad, Colorado State University, Fort )
Collins, Douglas Shepherd, University of Colorado, Denver, Patrick Shipman, Colorado State University,
Fort Collins, Mara P. Steinkamp, University of New Mexico, Albuguerque, Lev S. Tsimring, University of "y
California, San Diego

For inquiries about the scientific content at the summer school, please contact:
Brian Munsky (Fort Collins Campus): munsky@engr.colostate.edu

Bill Hlavacek (Albuguerque Campus): wshlavacek@gmail.com

Lev Tsimring (San Diego Campus): Itsimring@ucsd.edu

Point of Contact:
Shannan Yeager, g-bio Program Manager, syeager@newmexicoconsortium.org

For more information, please visit the school wiki at:
http://q-bio.org/wiki/The_Ninth_qg-bio_Summer_School
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1. Introduction - Information from transcript fluctuation
2. Measuring and modeling single-cell and single-molecule responses
3. Case studies:
. Kinase-activated gene transcription in budding yeast. |
. Kinase-activated gene transcription in human cells.
4. Concluding remarks




Information in fluctuation

Colorado State University
System X System Y System Z
Different systems (species, inputs, ﬁ ﬁ
mechanisms, ...) may express genes at
equal average levels. 0
\U

Single-cell measurements may reveal
hidden response differences. O

Collective responses can exhibit

2 |

& 0.03- 4 |
T : = | 1 1
distinctive “fluctuation %aoe . .
fingerprints”. a 001 :
il _ 0 S 100 1% 200 0 50 100 1% 200 0 80 100 180 200
mRNA copy number

Munsky et al, Science 2012



Fluctuations may indicate gene regulation mechanisms

Colorado State University

 Consider the bursting gene
expression model: Expression ‘Noise’ versus parameters

A =75

kon In
O
. ko £
* Compute the expression mean and S
variability as functions of all "'C')
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Munsky et al, Science 2012



Fluctuations may indicate gene regulation mechanisms

Colorado State University

Consider the bursting gene
expression model: Expression ‘Noise’ versus parameters

A =75

kon dy
@ ]ﬁoff 0 w
. k. o 2
Compute the expression mean and On O
variability as functions of all L
parameters. %
: : L
Tuning Koff or Kon can increase
expression, but:
Tuning Kkosr increases variability.
Tuning kon decreases variability. B
>
%
Qa
0 r T - T + r - v
e [_. 0 &S50 100 150 200 0 50 100 180 2000 B0 100 150 200

mRNA copy number

Munsky et al, Science 2012
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1. Introduction - Information from transcript fluctuation

2. MEASURING and modeling single-cell and single-molecule
responses
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Experimental tools for single-cell analyses

Colorado State University

0 uM Iptg 0.1 pM Ipt 1 pM Iptg 5 uM Iptg 10 uM Iptg
Flow Cytometry ' |

- Measure expression with fluorescent D D A L LM
proteins or antibody labels for

thousands of cells per second. m_ l.& m_ l_A_ _A_

10° 10° 10* 10° 10° 10* 10° 10° 10* 10° 10° 10* 10° 10° 10*
GFP (molecules/cel)

Probability

Lou, et al, Nature Biotechnology, 2012‘

Time Lapse Fluorescence Microscopy

- Measure spatial and temporal

properties of fluorescent protein
responses.

(Neuert, Munsky, et al, 2013)
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Single-Molecule FISH (smFISH)

Colorado State University

: ; 48 (20bp) probes/mRNA,
“neogEels nENeld Tetramethylrhodamine (TMR )

labeled with single molecule
Fluorescence in situ Hybridization

(smFISH--Femino, 1998, Raj, 2008).

- Many probes (~50) are attached to
endogenous mRNA.

- High signal-to-noise ratio enables
single-molecule detection.

(Neuert, Munsky, et al, 2013)
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- Endogenous mRNA’s can be
labeled with single molecule
Fluorescence in situ Hybridization
(smFISH--Femino, 1998, Raj, 2008).

- Many probes (~50) are attached to
endogenous mRNA.

- High signal-to-noise ratio enables
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- Spatial localization enable inter- and
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Single-Molecule FISH (smFISH)

Colorado State University

- Endogenous mRNA’s can be
labeled with single molecule
Fluorescence in situ Hybridization
(smFISH--Femino, 1998, Raj, 2008).

- Many probes (~50) are attached to
endogenous mRNA.

- High signal-to-noise ratio enables
single-molecule detection.

- Spatial localization enable inter- and

Intra-nuclear detection.

(Neuert, Munsky, et al, 2013)

 Fast time resolution (1-2 min).




Single-Molecule FISH (smFISH)

Colorado State University

O min 4 min

- Endogenous mRNA’s can be
labeled with single molecule
Fluorescence in situ Hybridization
(smFISH--Femino, 1998, Raj, 2008).

- Many probes (~50) are attached to
endogenous mRNA.

- High signal-to-noise ratio enables

| . 0.0
single-molecule detection. > |
- Spatial localization enable inter- and 3 {\ \
intra-nuclear detection. ‘;O% W\ /
- Fast time resolution (1-2 min). g |10 minjje0min| SO mn
(a1
Statistics are repeatable and therefore predictable! 05 80 L

-— — mRNA copy humber —
A S— ) Experimental replicates

(Neuert, Munsky, et al, 2013)



Single-Molecule FISH (smFISH)

Colorado State University

STI1 mRNAn Ysr35 sRNA in Yersinia Traf6 mRNA in THP1 cells c-Fos mRNA (green) and
Saccharomyces Pseudotuberculosis (339nt) -D. Shepherd (CU Denver)  p-p38 kinase (red) in
cerevisiae (budding -D. Shepherd (CU Denver) U20S cells

yeast)

-A. Senecal (CNRS)
-G. Neuert (VU)

sSmFISH has been applied to many different
RNA in many different organisms
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A Markov description of single-cell gene regulation

Colorado State University

At any time, the state of the system is defined by its integer
population vector: x & 7 N

« Reactions are transitions from one state to another:

[10, 15]

# species 1

[11, 14] [12, 14]

L L



A Markov description of single-cell gene regulation

Colorado State Llniversity

At any time, the state of the system is defined by its integer
population vector: X € 7N

Reactions are transitions from one state to another.

These reactions are random, others could have occurred:

[9, 15] [10, 15]

—

- - g VHZ, VE
L L Tl '




A Markov description of single-cell gene regulation

Colorado State University

Or others...

].>

lglil
9
rvs

.mwgwmwu
]

We wish to compute the probability distribution for
each state at all times.




The finite state projection approach

Colorado State University

The Full System The Projected System (FSP)

Full Master Equation FSP Master Equation
P, | [ Ay Ay P;(t) PESP | A; 0 ][ PSP
PJ/ e A.J/J AJ/ } [ PJ/(t) ] 9 B —].TA.J 0 €(t)
Dimension = #(J) + #(J') = Infinite Dimension = #(J) +1=7
P;(t) > PT57(1) anc
The FSP Theorem Py;t) | | PYOP() — ()
(Munsky, JCP ‘06) P 0 .
L L. Software and tutorial available at:

http://www.engr.colostate.edu/~munsky/Software.html




Inferring parameters from single-cell measurements.

Colorado State University

Although single-cell reactions may be Stochastic, their statistics
follow a Deterministic set of ODE’s (i.e., the CME).

0.09
> Omin {4 min [ 6 min || 10 min| 0 min |30 min
—— 2 Experimental =
— replicates IS
o)
— Model fit a W
0

o

80

MRNA copy number
We can fit and potentially predict these statistics.

Fitting metrics:
Low cell counts --> maximum |Ike|lh00d )

log L({n; }HA) = Zlogpn = Z m; log p;(A)
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1. Introduction - Information from transcript fluctuation
2. Measuring and Modeling single-cell and single-molecule responses

3. Case Studies:

I. Predicting kinase-activated gene regulation dynamics in
Saccharomyces cerevisiae (budding yeast)

il. Quantitative modeling for c-Fos mRNA burst dynamics in
U20S cells.
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Signal-activated gene regulation

(Osmotic shock response in yeast) Colorado State University

« 0.2M NaCl is added at t=0.
» Hog1 (red) activates in 1-2 min.
* ... and remains active for ~12 min.

Osmostress

..... Osmosensors
~lon Glycerol
transport transport

W Cytoplasmic
L ;P responses

Translation/ Others
l S
=
E
/ \ g
QP §°
g 0
Nuclear zZ ,
Cell cycle responses $
Gene
progressprr)_’/ expression / Others/

Osmotic-Adaptation, Activation
and Localization of Hog1p, v 0-20 minutes after 0.2M NaCl shock

(Saito, Posas, Genetics, 2012) (Neuert, Munsky, et al, 2013)



Signal-activated gene regulation

(Osmotic shock response in yeast) Colorado State University

0.2M NaCl is added at t=0.

Hog1 (red) activates in 1-2 min.

... and remains active for ~12 min.

St/IT mRNA appear at 4 min.

... and are gone by 25 min.

Hog1 Nudear Enrichment [AU] B

a0 e e
0-20 minutes after 0.2M NaCl shock
(Neuert, Munsky, et al, 2013)




Signal-activated gene regulation

(Osmotic shock response in yeast) Colorado State University

0.2M NaCl is added at t=0.

Hog1 (red) activates in 1-2 min.

... and remains active for ~12 min.
St/IT mRNA appear at 4 min.

... and are gone by 25 min.
StI1-GFP appear at ~30 min.

Hog1 Nudear Enrichment [AU] B

0-60 minutes after 0.2M NaCl shock
(Neuert, Munsky, et al, 2013)




Signal-activated gene regulation

(Osmotic shock response in yeast) ColoradoStatellrﬁversity
STL1T mRNA
0.09
0 min 4 min 6 min
>
g = o L . M;‘n\
u 0.
StreSS _) § ¢ STL1 _) '§ 10 min 20 min 30 min
P o

i\

0 80
— mRNA copy number —

Our goal is to identify the mechanisms
and parameters of | g7y 4




Possible model structures:

The Hog1 kinase ( ) activates STL1, but how? Colorado State University

Is it the first of a cascade
of activation events? .

i
...the last activation event? | =
——

Does it repress a |
deactivation event?

Are there multiple effects? |

How many states are
needed? |:|=2|—_|:|> |:|12|—_[—|:=£-> :l#l:t;zﬂ:ﬂ:r




Each structure defines a hidden Markov Model

Colorado State University

HIDDEN: N ={2,3,...} possible gene states

k12(t) k23(t) 0 un Fv-1v()
51,00 |[=»[s20 |=»  =»|sn0)
m) lﬁz(z) kN’N(‘E
OBSERVABLE: AV:. AV ANV,
Integer number s So0) > =[N
of mMRNA ’ l-()_ ’ < < ’
27**]67“1 2’7** er = 27** kTN
s1.2) = [se2 |=»  =P»[sn2
<« €« €

State-transition rates may vary in
time, with experimental conditions,
and/or with genetic mutations.

kij = kij(Hogl) = ki; (1)

L L .

Hog1 Nudear Enrichment [AU]

20
Time [min]



Evaluating model structures of varying complexity

Colorado State Llniversity

We fit different 2-, 3-, 4- and 5- state model structures to wild-type data at
0.4M osmotic shock.

More states (and parameters) yield better fits,...

-
(-
©
> 5
C =
=T
e
C
$ S
C O
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:':'“clJ
L O

L L B _

state

Kin)
4-state
5-state

Complexity



Evaluating model structures of varying complexity

Colorado State University

We fit different 2-, 3-, 4- and 5- state model structures to wild-type data at
0.4M osmotic shock.

More states (and parameters) yield better fits,...

but they also give rise to o) too
greater uncertainty. - simple
4 S Y
~ S
=2 QO
E= Tk
..g — too
8 O it complex
C 46 E JSUEEEEEEEEEEEEEEEEE®N,
D Gl YN
= D
I T S
L . > X 9 HX X BX 9 P
e N wT P T < s ¥ ok

Complexity



Evaluating model structures of varying complexity

Colorado State University

Overly-simple models m—)p Inaccurate predictions
cannot match the data. ; |

Overly-complex models are —)  |Mprecise predictions.
poorly constrained.

© N AEREENEE RN Cross-validation
S i [ o | analysis provides an
=0 p \B—q i1 complex|: excellent a priori
S0\ hmeftee is—o—g! estimate of predictive
g S 4 power.
C O FoTs . g
2B : :
-'_:\ 9 L] .:
T PR TRl X

¢ ¢ £ 2 2c-c ¢ 2 9

5 8% % g8y gy § ¢

A HT o T 48 IS 35

Complexity



Fits and predictions for STL1 regulation

Colorado State University

Fit at 0.4M NaCl shock

0.09
0 min 4 min 6 min 10 min 20 min 30 min 40 min
i 0 m
; 0 80
= Prediction at 0.2M NaCl shock
% 0.09
-8 0 min 4 min 6 min 10 min 20 min 30 min 40 min
a

o P




The model can capture and predict WT mRNA
dynamics for STL1

0.4M NaCl
Stress

—

Hog1 Nudear Enrichment [AU]
°© © o o

20
Time [min]

STLT

"

0.2M NaCl
Stress

—

Hog1 Nudear Enrichment [AU]
o (=} o o

Time [min]

STLT

What about other genes?

Omin 4min 6 min 10 min 20 min 30 min

B

Fraction of cells [0 - 0.1]

\

| || PrEDICTION |

Fraction of cells [0 - 0.1]

31



The model can capture and predict WT mRNA

STLT

dynamics for STL1, CTT1 and HSP12

Omin 4min 6 min 10 min 20 min 30 min

0.4M NaCl
Stress

—

CIT7

\

Hog1 Nudear Enrichment [AU]

8

© o o ©
o 0 -
-
o
=
N
EO
2

—_—

HSP12

|

STLT

\

0.2M NaCl
Stress

—

CrT1

\

Hog1 Nudear Enrichment [AU]

1 ' ' ' '
038
0.6
0.4
0.
10
Time [min

HSP12

|

What about mutant strains?

S _1r ol \
T LN AN A
- | || PreDICTION |
@ | PREDICTION ||
()}
‘gT’ \ \, I’NL lk \\_
.é PREDICTION |
S k |l

No. of mMRNA

' 32



The model can capture and predict WT mRNA
dynamics for STL1, CTT1 and HSP12

It also captures STLT mRNA dynamics in Wild Type,
Hot1 over expression and Arp8 or GecnS deletion strains

Omin 4min 6 min 10 min 20 min 30 min

0.4M NaCl N = L N N N 7, N
St —> e _ STL7 §c.> ~4+—> L L
ress .%o . S CI) g "
£ a . - T ’ '
Mutations: 5 g L L |
i 58 1
5x Hot1 3 <‘t\ l\ WK
-Arp8 T o_ , ,
-Genb 0 L l\
Q
° LI M

0 80
What about new combinations of
different genes and mutant strains?

Munsky Slide: 33



STL7
(WT)

STL7
(Hot7p Sx)

STL7
(GCOCNSA)

STL7
(ARPS8A)

25

<40 45

55

CTT7
(WT)

= J— -
©

HSP T2
(WT)

STL17
(WT)

™

CTT1
(WT)

o~ Probability |

-

HSP12
(WT)

CTT1
(Hot71p 5x%)

Diff. | Different
genes | mutants

New
conditions

CTT1
(ARP5A)

CTT1
(GCN5A)

HSP12
(Hot1p 5x%)

HSP12
(ARP5A)

Y 1 T —

o)
©

HSP12
(GCN5A)

[P ‘rv“k

K

mMmMRNA Number

New gene/mutant

combinations

Fits

Predictions

: 34



Fitting and Predicting the Probability of ON Cells

Three Different Genes

STL1

CTT1 HSP12

WT
0.2M NaCl

. 6 ~~.'

WGO'OOQ'OOQO_ DCQFQE)OO-DC@'O-»O;

WT
0.4M NaCl

Hot1p 5x
0.4M NaCl

GCN5A
0.4M NaCl

ARPS8A
0.4M NaCl

SR ¢ | [ =To 7 1e); JU—

Predictions

- Time (Min) -----====———====—————-

with NO Free Parameters

Five Different Conditions

Munsky Slide: 35
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1. Introduction - Information from transcript fluctuation
2. Measuring and Modeling single-cell and single-molecule responses

3. Case Studies:
I. Predicting kinase-activated gene regulation dynamics in
Saccharomyces cerevisiae (budding yeast)
ii. Quantitative modeling for c-Fos mRNA burst dynamics in
U20S cells.
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A glance at the activation of c-Fos

Colorado State University

Serum, stress

Chain of events:
- Serum (zinc stress) activates
P phosphorylation of ERK (p38).
Cytoplasm P - ERK/p38 translocate to nucleus

& phosphorlyate Elk1.

- Elk1 and serum response factor
(SRF) bind to serum response

Q ' element (SRE).
- The activated promoter now

B @ transcribes c-Fos mRNA.
- c-Fos affects differentiation,

c-Fos

6

proliferation, survival, ...




Dynamics of MAPK Signal Induction

Colorado State University

Erk and p38 phosphorylation following stimulus

0 minutes 10 minutes
serum induction OuM ZnSO4  75uM ZnSO4 4h  125uM ZnSO4
Serum induction o T :
5200 §0.8 Zinc induction
3 4800 2
S % 0.6
— 4400 Q
4000 2 0.4
Q.
X 3600 2051
Ui 32001 e
2800 , : , : : , % 0.0 - . :
0 20 40 60 80 100 120 o0 0 25 50 75 100 125 150

Time (min) [ZnSO4] (M)

i -




Measuring c-Fos Activity at the Single Transcript Level

Colorado State University

T77P7Y

DNA probe

-

Individual
mature mRNA

Active site of transcription:
Nascent mRNA




Signaling Affects Transcription Site Activation

Colorado State Llniversity

The number of ATS’s varies randomly from cell to cell.
The average number of ATS’s tracks MAPK induction dynamics.

Serum induction ) [ Zinc induction ®
5200 1202 o 0-8 — 100 5
. =
= 4400 0.80 % S =
3 4000 0.60 ¢ 304 090 5
X 3600- 0.40% 202 0.25 &
W 3200 0205 o @
y 500 000 @ .% 0.0 T . 0.00 &
: , : : : F 0.00 S 0 25 50 75 100 125 150 I
0 20 40 60 80 100 120 = [ZnSO4] (uM)

Time (min)

Serum activation Zinc activation




Signaling Affects Number of Mature mRNA.

Colorado State University
CI’—) 1.0
The average number of ATS’s tracks MAPK %% gi‘
induction dynamics. 55 o ii
> O
< £ o2 ii
=
< 1
p38 -P
250
<Zt 200
The average number of mature mRNA tracks 'Ec.: 150
MAPK induction dynamics. 5 ':’(‘)’ i
"
p38 -P

41



Signaling does not affect Nascent mRNA numbers!

Colorado State University

U) .
28 .
The average number of ATS’s tracks MAPK %% | . |
induction dynamics. R T l
> O
< g o2 _ BB
- -
=z T
p38-P
5 0.
* ':: ‘
The average number of nascent mRNA per Q 8~ A
ATS is independent of MAPK. S § :z: ;
I E
p38-P
| e
-~

The average number of mature mRNA tracks
MAPK induction dynamics.

)
i)
-
() -
)

Total mMRNA
1

p38-P »‘

42



Models for c-Fos burst behavior

Colorado State Un i\"ersity

Transcription Factors (bind and unbind) Kon Kott

& D

SRE




Models for c-Fos burst behavior

Colorado State University

Transcription Factors (bind and unbind) Kon Tkoﬂ-’

& D

SRE

RNA Polymerase Il (initiate Kinit
and elongate)

+ nascent

lTelong

+ mature

Mature mRNA (complete and degrade) l v
0l




Trajectories from Alternate c-Fos Burst Models

Colorado State University

# Active TS Nascent mRNA per TS *Mature mRNA
1) Rare 4 400 _— .
Isolated Z-H S ﬂ_ 200} ﬂ ﬂ - N
oursts 0 20 4 6 8 10 | % oo m m w am | % 0 @0 e 8 10

4 50

2) Frequent
Merging |
bursts 0 20 40 60 8 10| % 0 e 80 10 T T, |
3) Rare 4 ] o 20
Saturated 2l 1n‘"~"‘"“ FJ! gl Z oo
bursts o w0 w s 0 | % % 080 80 10

*All models tuned to produce an average of 100 mature mRNA at equilibrium.
Representative trajectories from Stochastic Simulation Algorithm (Gillespie, 1976).

L. )

45




Distributions from Alternate c-Fos Burst Models

Colorado State Un iversity

Active TS Nascent mRNA Mature mRNA
1) Rare 1 0015 0.02
Isolated o s 0.01L
0.005¢t

bursts

o e ——— % 500 % 200 400 600

1 0.1 0.02 |
2) Frequent |
Merging 0.5 1 0.05 0.01}
bursts . .

0 1 5 3 7 0 0 200 400 600

3) Rare
Saturated
bursts

1 2 3 4

20

T
| /\

20

Experimental
Data

e

Nascent RNA

Average = 4.6 |

‘&

ozL |

200 400 600




Quantitative fits to signal-activated transcription dynamics

Colorado State University

* Burst saturation model accurately captures c-Fos dynamics.

- Activation of TS
0.3 O Data

— Fit 2-state

Kinase Signal > — Fit 3-state
5900 Serum induction _ k k E 0.2 ‘
54800- T / on off «
%’4400- + | O 0.1
3 4000 B o
X 36001 -
U 3200- ' 0
(

<2800 : : : , : : : . _

0O 20 40 60 80 100 120 0 50 100
Time (min) . .

Time (min)

kinit Distribution of Nascent RNA

Distribution of Mature RNA

10 min 20 min ) 0.0.8" 0 min 10 min 20 min
. 0.01 + nascent \ ! oo
. -g 0.04
; . Telong =002
0 120 240 0 120 240 1
: : " 30 min 45 min 90 min
0.01 30 min 90 min \ 008
0.02 + m atU re DI' 0.06
7 0.02 i‘Mmm
0 0 2 e — % 20

10 20 O 10 20 0 10
0 120 240 0 120 240 Number of Nascent RNA per TS




Transcription Factor Modification of Burst Dynamics

Colorado State Un iversity

* Transcription Factor (TF) properties orr]
alter burst dynamics. . lTk
ON.

* We probe these changes using the
transcription activator-like effector (TALE)
approach (Perez-Pinera et al, 2013)

kinit
A Serum, Zinc
NH2 -l DNA binding domain | IMINABE COOH 'lr + nascent
‘l . \ : [SRE] . [ > Telong
D C B A c-Fos
-500bp -250bp

4xVP16

| K
0.4 0.3 0.2 Kon 1" 2),
| 5 | — B
0.2 ' 0.1} off
0.1
0 0 ' 0
0 5 10 15 0 5 10 15 0 5 10 15
Single weak TF Single strong TF Multiple weak TF’s
Small isolated bursts Larger isolated bursts Longer saturated bursts

The same model captures all TF activators with only one parameter change.
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Saccharomyces cerevisiae (budding yeast)

i. Quantitative modeling for c-Fos mRNA burst dynamics in U20S
cells.

4. Conclusions

L L B



Summary and Conclusions

Colorado State University

Stochastic, temporal, and spatial fluctuations affect single-cell dynamics
These complicate modeling and disrupt transcription control.

But statistics of these fluctuations follow deterministic rules:
Cells exhibit distinct, measurable fluctuation fingerprints’.
Can reveal subtle gene regulation mechanisms & parameters.
Can be predicted with high accuracy and precision.

Uncertainty Quantification reveals when models are too simple, too complex,
or just right (i.e., the Goldilocks Model).

We have identified predictive quantitative models of transcription regulation
for many natural and synthetic genes in several organisms.

Prediction is the first step toward design, optimization and control.
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q-bio Summer School

Three Campuses:
Albuguergue, NM (July 6-21)
San Diego, CA (July 13-28)
Fort Collins, CO (July 13-28)

Eight Focus Areas:

Stochastic Gene Regulation
Cancer Dynamics

Complex Biological Dynamics
Cell signaling

Viral dynamics

Biomolecular simulations
Membrane biology
Computational Synthetic Biology
Experimental Synthetic Biology

Visit us at online at:
http:/g-bio.org
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The 2015 g-bio Summer School
(Albuquerque, San Diego, Fort Collins)

Applications are now being accepted for the Ninth Annual g-bio Summer School. Applications will be due
on Monday, February 16 at 11:59pm (MST). Submitted applications may be revised until that time.

To apply now, please visit the application website: https://www.openconf.org/gbioss2015/openconf.php
Scholarships are available.

The 2015 g-bio Summer School will be held on different dates at three different campuses

1) July 6-21, 2015 at the Colorado State University in Fort Collins, CO
2) July 13-28, 2015 at the University of New Mexico in Albuquerque, NM
3) July 13-28, 2015 at the University of California in San Diego, CA.

School Overview:

The g-bio Summer School is an annual event intended to advance predictive modeling of cellular
regulatory systems by exposing participants to a survey of work in quantitative biology and by providing
in-depth instruction in selected techniques, with an emphasis on techniques useful for modeling cellular
regulatory networks. Certain data analysis techniques and experimental methods will also be covered.

Lectures will be offered at three campuses. At the San Diego campus, the focus will be on synthetic
biology. At the Albuquerque and Fort Collins campuses, the focus will be on different aspects of
systems biology. Students will each work on a mentored project. Participants will attend daily core
lectures, project-specific lectures, journal clubs, and computer and experimental labs. The summer
school is designed for graduate students, postdocs, or anyone with a quantitative background who is
new to modeling cellular regulatory systems/networks.

At the School students will attend 20-25 hours of core lectures, 20-25 hours of course-specific lectures,
10-15 hours of computational and experimental labs, and 10-15 hours of student presentations. There
will also be 20-30 hours of mentored project work, which may include some simple experiments,
theoretical developments and/or real data analyses.

The main topics of the 2015 summer school are:

Biomolecular Simulations (Albuquerque, NM), Cell Signaling (Albuquerque, NM), Membrane Biology
(Albuguerque, NM), Viral Dynamics (Albuquerque, NM), Cancer Dynamics (Fort Collins, CO), Stochastic
Gene Regulation (Fort Collins, CO), Complex Biological Dynamics (Fort Collins, CO), Experimental
Synthetic Biology (San Diego, CA), and Computational Synthetic Biology (San Diego, CA)

Organizers:
S. Gnanakaran, New Mexico Consortium, Los Alamos, Jeff M. Hasty, University of California, San Diego,
William S. Hlavacek, New Mexico Consortium, Los Alamos, Marek Kimmel, Rice University, Houston,

Brian Munsky, Colorado State University, Fort Collins, Ashok Prasad, Colorado State University, Fort )
Collins, Douglas Shepherd, University of Colorado, Denver, Patrick Shipman, Colorado State University,
Fort Collins, Mara P. Steinkamp, University of New Mexico, Albuguerque, Lev S. Tsimring, University of "y
California, San Diego

For inquiries about the scientific content at the summer school, please contact:
Brian Munsky (Fort Collins Campus): munsky@engr.colostate.edu

Bill Hlavacek (Albuguerque Campus): wshlavacek@gmail.com

Lev Tsimring (San Diego Campus): Itsimring@ucsd.edu

Point of Contact:
Shannan Yeager, g-bio Program Manager, syeager@newmexicoconsortium.org

For more information, please visit the school wiki at:
http://q-bio.org/wiki/The_Ninth_qg-bio_Summer_School
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