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The$2015$q*bio$Summer$School$
(Albuquerque,$San$Diego,$Fort$Collins)$

Applications are now being accepted for the Ninth Annual q-bio Summer School. Applications will be due 
on Monday, February 16 at 11:59pm (MST). Submitted applications may be revised until that time.  
To apply now, please visit the application website: https://www.openconf.org/qbioss2015/openconf.php 
Scholarships are available.   
 
The 2015 q-bio Summer School will be held on different dates at three different campuses 
 

1) July 6-21, 2015 at the Colorado State University in Fort Collins, CO 
2) July 13-28, 2015 at the University of New Mexico in Albuquerque, NM  
3) July 13-28, 2015 at the University of California in San Diego, CA. 

 
School Overview:  
The q-bio Summer School is an annual event intended to advance predictive modeling of cellular 
regulatory systems by exposing participants to a survey of work in quantitative biology and by providing 
in-depth instruction in selected techniques, with an emphasis on techniques useful for modeling cellular 
regulatory networks. Certain data analysis techniques and experimental methods will also be covered.  
 
Lectures will be offered at three campuses. At the San Diego campus, the focus will be on synthetic 
biology. At the Albuquerque and Fort Collins campuses, the focus will be on different aspects of 
systems biology. Students will each work on a mentored project. Participants will attend daily core 
lectures, project-specific lectures, journal clubs, and computer and experimental labs. The summer 
school is designed for graduate students, postdocs, or anyone with a quantitative background who is 
new to modeling cellular regulatory systems/networks.  
 
At the School students will attend 20-25 hours of core lectures, 20-25 hours of course-specific lectures, 
10-15 hours of computational and experimental labs, and 10-15 hours of student presentations. There 
will also be 20-30 hours of mentored project work, which may include some simple experiments, 
theoretical developments and/or real data analyses.   
 
The main topics of the 2015 summer school are:   
Biomolecular Simulations (Albuquerque, NM), Cell Signaling (Albuquerque, NM), Membrane Biology 
(Albuquerque, NM), Viral Dynamics (Albuquerque, NM), Cancer Dynamics (Fort Collins, CO), Stochastic 
Gene Regulation (Fort Collins, CO), Complex Biological Dynamics (Fort Collins, CO), Experimental 
Synthetic Biology (San Diego, CA), and Computational Synthetic Biology (San Diego, CA) 
 
Organizers:  
S. Gnanakaran, New Mexico Consortium, Los Alamos, Jeff M. Hasty, University of California, San Diego, 
William S. Hlavacek, New Mexico Consortium, Los Alamos, Marek Kimmel, Rice University, Houston, 
Brian Munsky, Colorado State University, Fort Collins, Ashok Prasad, Colorado State University, Fort 
Collins, Douglas Shepherd, University of Colorado, Denver, Patrick Shipman, Colorado State University, 
Fort Collins, Mara P. Steinkamp, University of New Mexico, Albuquerque, Lev S. Tsimring, University of 
California, San Diego 
 
For inquiries about the scientific content at the summer school, please contact: 
Brian Munsky (Fort Collins Campus): munsky@engr.colostate.edu 
Bill Hlavacek (Albuquerque Campus):!wshlavacek@gmail.com 
Lev Tsimring (San Diego Campus):!ltsimring@ucsd.edu 
 
Point of Contact:  
Shannan Yeager, q-bio Program Manager, syeager@newmexicoconsortium.org 
 
For more information, please visit the school wiki at:  
http://q-bio.org/wiki/The_Ninth_q-bio_Summer_School 

q-bio Summer School

Three Campuses:
Albuquerque, NM (July 6-21) 
San Diego, CA (July 13-28) 
Fort Collins, CO (July 13-28)

Eight Focus Areas:

Visit us at online at:
 http://q-bio.org

Stochastic Gene Regulation 
Cancer Dynamics 
Complex Biological Dynamics  
Cell signaling 
Viral dynamics 
Biomolecular simulations 
Membrane biology  
Computational Synthetic Biology 
Experimental Synthetic Biology 

http://q-bio.org


1. Introduction - Information from transcript fluctuation 
2. Measuring and modeling single-cell and single-molecule responses 
3. Case studies: 

i. Kinase-activated gene transcription in budding yeast. 
ii. Kinase-activated gene transcription in human cells. 

4. Concluding remarks

Outline
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Information in fluctuation 

Different systems (species, inputs, 
mechanisms, …) may express genes at 
equal average levels.

Single-cell measurements may reveal 
hidden response differences.

System X System Y System Z

Collective responses can exhibit 
distinctive “fluctuation 
fingerprints”.

Munsky et al, Science 2012 4



Variability versus parameters.

Expression ‘Noise’ versus parameters
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Fluctuations may indicate gene regulation mechanisms
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• Consider the bursting gene 
expression model:

• Compute the expression mean and 
variability as functions of all 
parameters. 

Munsky et al, Science 2012



• Consider the bursting gene 
expression model:

• Compute the expression mean and 
variability as functions of all 
parameters. 

• Tuning kOff or kOn can increase 
expression, but:

• Tuning kOff increases variability.

• Tuning kOn decreases variability.
Variability versus parameters.
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1. Introduction - Information from transcript fluctuation

2. MEASURING and modeling single-cell and single-molecule 

responses

Outline
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Flow Cytometry 
• Measure expression with fluorescent 

proteins or antibody labels for 
thousands of cells per second.

0 µM Iptg 1 µM Iptg0.1 µM Iptg 5 µM Iptg 10 µM Iptg

30 µM Iptg 40 µM Iptg 50 µM Iptg 70 µM Iptg 100 µM Iptg

Time Lapse Fluorescence Microscopy 
• Measure spatial and temporal 

properties of fluorescent protein 
responses.

Experimental tools for single-cell analyses

Lou, et al, Nature Biotechnology, 2012

(Neuert, Munsky, et al, 2013)
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• Endogenous mRNA’s can be 
labeled with single molecule 
Fluorescence in situ Hybridization 
(smFISH--Femino, 1998, Raj, 2008).


• Many probes (~50) are attached to 
endogenous mRNA.


• High signal-to-noise ratio enables 
single-molecule detection.

48 (20bp) probes/mRNA, 
Tetramethylrhodamine (TMR )

Single-Molecule FISH (smFISH)

9(Neuert, Munsky, et al, 2013)



• Endogenous mRNA’s can be 
labeled with single molecule 
Fluorescence in situ Hybridization 
(smFISH--Femino, 1998, Raj, 2008).


• Many probes (~50) are attached to 
endogenous mRNA.


• High signal-to-noise ratio enables 
single-molecule detection.


• Spatial localization enable inter- and 
intra-nuclear detection.
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Single-Molecule FISH (smFISH)

(Neuert, Munsky, et al, 2013)



• Endogenous mRNA’s can be 
labeled with single molecule 
Fluorescence in situ Hybridization 
(smFISH--Femino, 1998, Raj, 2008).


• Many probes (~50) are attached to 
endogenous mRNA.


• High signal-to-noise ratio enables 
single-molecule detection.


• Spatial localization enable inter- and 
intra-nuclear detection.


• Fast time resolution (1-2 min).
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Single-Molecule FISH (smFISH)

(Neuert, Munsky, et al, 2013)



• Endogenous mRNA’s can be 
labeled with single molecule 
Fluorescence in situ Hybridization 
(smFISH--Femino, 1998, Raj, 2008).


• Many probes (~50) are attached to 
endogenous mRNA.


• High signal-to-noise ratio enables 
single-molecule detection.


• Spatial localization enable inter- and 
intra-nuclear detection.


• Fast time resolution (1-2 min).

Statistics are repeatable and therefore predictable!

2 Experimental replicates
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smFISH has been applied to many different 
RNA in many different organisms 

13

Single-Molecule FISH (smFISH)

STl1 mRNA in 
Saccharomyces 
cerevisiae (budding 
yeast)  
-G. Neuert (VU)

Traf6 mRNA in THP1 cells
-D. Shepherd (CU Denver)

Ysr35 sRNA in Yersinia 
Pseudotuberculosis (339nt)
-D. Shepherd (CU Denver)
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1. Introduction - Information from transcript fluctuation

2. Measuring and MODELING single-cell and single-molecule 

responses

Outline
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[10, 15]

# species 1 # species 2

[11, 15]

[11, 14] [12, 14]

A Markov description of single-cell gene regulation

• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:
x ∈ Z

N

15



[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]
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A Markov description of single-cell gene regulation

• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another.
• These reactions are random, others could have occurred:

x ∈ Z
N



Or others...

We wish to compute the probability distribution for 
each state at all times. 

17

A Markov description of single-cell gene regulation
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The Full System
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Full Master Equation
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ṖFSP
J

ε̇

]

=

[

AJ 0

−1T AJ 0

] [

PFSP
J

(t)
ε(t)

]

The Projected System (FSP)

x1 x2 x3

x5 x6 x7

Dimension =             = 7         

FSP Master Equation

#(J) + 1

ε(t)

The finite state projection approach

Software and tutorial available at: 
 http://www.engr.colostate.edu/~munsky/Software.html



Inferring parameters from single-cell measurements.

Although single-cell reactions may be Stochastic, their statistics 
follow a Deterministic set of ODE’s (i.e., the CME).

Low cell counts  --> maximum likelihood.*
Fitting metrics:

We can fit and potentially predict these statistics.

19
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1. Introduction - Information from transcript fluctuation 
2. Measuring and Modeling single-cell and single-molecule responses 
3. Case Studies: 

i. Predicting kinase-activated gene regulation dynamics in 
Saccharomyces cerevisiae (budding yeast) 

ii. Quantitative modeling for c-Fos mRNA burst dynamics in 
U2OS cells.

Outline
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Signal-activated gene regulation 

0-20 minutes after 0.2M NaCl shock 
(Neuert, Munsky, et al, 2013)

Osmotic-Adaptation, Activation 
and Localization of Hog1p, 
(Saito, Posas, Genetics, 2012)

(Osmotic shock response in yeast)

• 0.2M NaCl is added at t=0. 

• Hog1 (red) activates in 1-2 min.

• ... and remains active for ~12 min.



• 0.2M NaCl is added at t=0. 

• Hog1 (red) activates in 1-2 min.

• ... and remains active for ~12 min.

• Stl1 mRNA appear at 4 min.

• ... and are gone by 25 min.

Signal-activated gene regulation 
(Osmotic shock response in yeast)

0-20 minutes after 0.2M NaCl shock 
(Neuert, Munsky, et al, 2013)



• 0.2M NaCl is added at t=0. 

• Hog1 (red) activates in 1-2 min.

• ... and remains active for ~12 min.

• Stl1 mRNA appear at 4 min.

• ... and are gone by 25 min.

• Stl1-GFP appear at ~30 min.

0-60 minutes after 0.2M NaCl shock 
(Neuert, Munsky, et al, 2013)

Signal-activated gene regulation 
(Osmotic shock response in yeast)



Stress STL1
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Our goal is to identify the mechanisms 
and parameters of STL1

24

Signal-activated gene regulation 
(Osmotic shock response in yeast)



The Hog1 kinase (      ) activates STL1, but how?

Possible model structures:

Is it the first of a cascade 
of activation events?

...the last activation event?

Does it repress a 
deactivation event?

Are there multiple effects?

How many states are 
needed?

25



Each structure defines a hidden Markov Model

State-transition rates may vary in 
time, with experimental conditions, 
and/or with genetic mutations.

kij = kij(Hog1) = kij(t)

HIDDEN: N ={2,3,...} possible gene states

OBSERVABLE:
Integer number 
of mRNA
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...
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S(N,2)... ... ...

�

2�

�

2�

�

2�

kr1(t) kr2(t) krN (t)

kr1(t) kr2(t) krN (t)

26



Evaluating model structures of varying complexity

Complexity
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We fit different 2-, 3-, 4- and 5- state model structures to wild-type data at 
0.4M osmotic shock. 
More states (and parameters) yield better fits,...
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We fit different 2-, 3-, 4- and 5- state model structures to wild-type data at 
0.4M osmotic shock. 
More states (and parameters) yield better fits,...

Evaluating model structures of varying complexity

but they also give rise to 
greater uncertainty.

too 
simple

too 
complex



Inaccurate predictions.Overly-simple models  
cannot match the data.
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Evaluating model structures of varying complexity
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Munsky Slide: 

The model can capture and predict WT mRNA 
dynamics for STL1, CTT1 and HSP12

0.4M NaCl 
Stress

0.2M NaCl 
Stress

STL1

HSP12

CTT1

STL1

HSP12

CTT1

What about other genes? 31



Munsky Slide: 

The model can capture and predict WT mRNA 
dynamics for STL1, CTT1 and HSP12

0.4M NaCl 
Stress

0.2M NaCl 
Stress

STL1

HSP12

CTT1

STL1

HSP12

CTT1

What about mutant strains?
32



Munsky Slide: 

The model can capture and predict WT mRNA 
dynamics for STL1, CTT1 and HSP12

It also captures STL1 mRNA dynamics in Wild Type, 
Hot1 over expression and Arp8 or Gcn5 deletion strains 

0.4M NaCl 
Stress

Mutations: 
WT 

5x Hot1 
-Arp8 
-Gcn5

STL1

What about new combinations of 
different genes and mutant strains? 33



Munsky Slide: 
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Munsky Slide: 

Fitting and Predicting the Probability of ON Cells 

Three Different Genes
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1. Introduction - Information from transcript fluctuation 
2. Measuring and Modeling single-cell and single-molecule responses 
3. Case Studies: 

i. Predicting kinase-activated gene regulation dynamics in 
Saccharomyces cerevisiae (budding yeast) 

ii. Quantitative modeling for c-Fos mRNA burst dynamics in 
U2OS cells.
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A glance at the activation of c-Fos

37
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Serum,	
  stress
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Chain of events: 
• Serum (zinc stress) activates 

phosphorylation of ERK (p38). 
• ERK/p38 translocate to nucleus 

& phosphorlyate Elk1. 
• Elk1 and serum response factor 

(SRF) bind to serum response 
element (SRE). 

• The activated promoter now 
transcribes c-Fos mRNA. 

• c-Fos affects differentiation, 
proliferation, survival, …
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Dynamics of MAPK Signal Induction

38

Erk	
  and	
  p38	
  phosphoryla;on	
  following	
  s;mulus

0µM	
  ZnSO4	
   75µM	
  ZnSO4	
  4h 125µM	
  ZnSO4	
  

Figure 1. Quantification of c-Fos Transcriptional Response after Different Stimuli
(A) smFISH in U2OS 30 min after serum induction. Signal in proximity of the transcription sites (TSs) appears only saturated due to scaling to show individual

mature mRNA. Scale bars, 10 mm in all figures. Surface plot (not to scale) for area indicated with red dashed line. Detected mature mRNAs shown as green spots

over DAPI image.

(B) Average mature mRNA levels at different time points after serum induction (left) and zinc concentration (right) by smFISH (red line) and qRT-PCR (blue line).

Error bars are 95% CI obtained by bootstrap for smFISH and SD for qRT-PCR (three independent experiments).

(C) Selected histograms of smFISH measurement from (B). Cells containing less than 20 mRNAs are show in orange and other cells in green.

(D) Number of active TS after serum (left) or zinc induction (right). Cells containing no active TS are not shown. Inset shows average number of active TS per cell.

(E) Immunofluorescence (IF) against p-ERK or p-p38 (red) for indicated induction condition and nuclei visualized with DAPI (blue). Note that only one cell has

elevated p-p38 levels in the 50 mM picture.

(F) Average p-ERK levels (red) and average number of active TS per cell (blue line) after serum induction.

(G) Proportion of cells with elevated p-p38 signal (red line) and average number of active TS per cell (blue line).

See also Figure S1 and Movie S1.

Cell Reports 8, 1–9, July 10, 2014 ª2014 The Authors 3

Please cite this article in press as: Senecal et al., Transcription Factors Modulate c-Fos Transcriptional Bursts, Cell Reports (2014), http://dx.doi.org/
10.1016/j.celrep.2014.05.053
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Measuring c-Fos Activity at the Single Transcript Level



Signaling Affects Transcription Site Activation

40

The	
  number	
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  ATS’s	
  varies	
  randomly	
  from	
  cell	
  to	
  cell.	
  
The	
  average	
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Signaling Affects Number of Mature mRNA.
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Signaling does not affect Nascent mRNA numbers!
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Trajectories from Alternate c-Fos Burst Models
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1) Rare 
Isolated 
bursts

2) Frequent 
Merging 
bursts

3) Rare 
Saturated 
bursts

# Active TS *Mature mRNANascent mRNA per TS

*All models tuned to produce an average of 100 mature mRNA at equilibrium.
Representative trajectories from Stochastic Simulation Algorithm (Gillespie, 1976).
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Distributions from Alternate c-Fos Burst Models
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Figure 1. Quantification of c-Fos Transcriptional Response after Different Stimuli
(A) smFISH in U2OS 30 min after serum induction. Signal in proximity of the transcription sites (TSs) appears only saturated due to scaling to show individual

mature mRNA. Scale bars, 10 mm in all figures. Surface plot (not to scale) for area indicated with red dashed line. Detected mature mRNAs shown as green spots

over DAPI image.

(B) Average mature mRNA levels at different time points after serum induction (left) and zinc concentration (right) by smFISH (red line) and qRT-PCR (blue line).

Error bars are 95% CI obtained by bootstrap for smFISH and SD for qRT-PCR (three independent experiments).

(C) Selected histograms of smFISH measurement from (B). Cells containing less than 20 mRNAs are show in orange and other cells in green.

(D) Number of active TS after serum (left) or zinc induction (right). Cells containing no active TS are not shown. Inset shows average number of active TS per cell.

(E) Immunofluorescence (IF) against p-ERK or p-p38 (red) for indicated induction condition and nuclei visualized with DAPI (blue). Note that only one cell has

elevated p-p38 levels in the 50 mM picture.

(F) Average p-ERK levels (red) and average number of active TS per cell (blue line) after serum induction.

(G) Proportion of cells with elevated p-p38 signal (red line) and average number of active TS per cell (blue line).

See also Figure S1 and Movie S1.
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Quantitative fits to signal-activated transcription dynamics

• Burst saturation model accurately captures c-Fos dynamics.

transcription activator-like effector (TALE) approach (Perez-
Pinera et al., 2013) (Figure 4A). We fused these constructs with
activator domains of different strengths (VP16 or VP64) to
generate synthetic TFs.

First, we investigated the mature mRNA levels by exposing
cells to these synthetic TFs. As a control, we transfected cells
with a TALEwithout an activator domain and found no activation.

When transfecting with one TALE-VP16, we observed an in-
crease in the averagematuremRNAnumber from4 to 28 (Figures
S4A and S4B). The mature mRNA levels increased even further
after transfectingwithoneTALEwith the stronger VP64activation
domain (52 mature mRNAs), or all four different TALE-VP16 (70
mature mRNAs) (Figure S4B). We also analyzed the nascent
mRNA distribution at active TSs. For one TALE-VP16, we

Figure 3. Mathematical Modeling of Transcriptional Response of c-Fos after Serum Induction
(A) Cartoons illustrating concept of burst saturation limit. For short bursts below the saturation limit (upper plot), mRNA attached to all the loaded polymerases can
be observed. For burst in the saturation limit (lower plot), only the mRNA produced by the currently loaded polymerases can be detected.
(B) Impact of burst duration on nascent mRNA distribution. Curves share same initiation rate (five mRNA/minute) and burst frequency (0.1 burst/minute) but differ
in burst duration as indicated in figure legend. Values in parenthesis indicate average number of mRNAs produced per burst, i.e., the burst amplitude.
(C) Histogram of pooled nascent mRNA numbers from all induction condition (serum and zinc) except identified outliers in Figure S3C. Fit with Poisson distribution
(pink solid line; log-likelihood of fit = !536) and truncated geometric distribution (dashed blue line; log-likelihood of fit = !705).
(D) Two-state model of transcription. Gene can switch between inactive (OFF) and active (ON) state. Transitions are described by rate constants kon and koff.
Transcripts are produced duringON states as a Poisson process with fixed rate, kinit (vertical green bars in lower plot). EachmRNA undergoes a production period
modeled as an irreversible process with fixed completion time, tprod and mature mRNA degrades as a first-order reaction with the constant gD.
(E–G) Fit with two-state model (Parameters from fit L2-8 in Table S1). (E) Fit of nascent mRNA data (green histogram) with two-state model (red line). Insets show
cumulative histograms. (F) Probability for one TS to be active (black squares) together with prediction of two-state (red) and three-state model (blue). (G) Fit of
mature mRNA data (green histogram) with two-state model (red line).
(H) Three-state model of transcription. A second ON state with a higher initiation frequency can be reached from the first ON state.
(I) Fits of nascent mRNA data (green histogram) with three-state model (red lines). Each line represents an individual fit with parameters defined in Table S2. Insets
show cumulative histograms.

See also Figure S3.
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(A) Cartoons illustrating concept of burst saturation limit. For short bursts below the saturation limit (upper plot), mRNA attached to all the loaded polymerases can

be observed. For burst in the saturation limit (lower plot), only the mRNA produced by the currently loaded polymerases can be detected.

(B) Impact of burst duration on nascent mRNA distribution. Curves share same initiation rate (five mRNA/minute) and burst frequency (0.1 burst/minute) but differ

in burst duration as indicated in figure legend. Values in parenthesis indicate average number of mRNAs produced per burst, i.e., the burst amplitude.

(C) Histogram of pooled nascent mRNA numbers from all induction condition (serum and zinc) except identified outliers in Figure S3C. Fit with Poisson distribution

(pink solid line; log-likelihood of fit = !536) and truncated geometric distribution (dashed blue line; log-likelihood of fit = !705).

(D) Two-state model of transcription. Gene can switch between inactive (OFF) and active (ON) state. Transitions are described by rate constants kon and koff.

Transcripts are produced duringON states as a Poisson process with fixed rate, kinit (vertical green bars in lower plot). EachmRNA undergoes a production period

modeled as an irreversible process with fixed completion time, tprod and mature mRNA degrades as a first-order reaction with the constant gD.

(E–G) Fit with two-state model (Parameters from fit L2-8 in Table S1). (E) Fit of nascent mRNA data (green histogram) with two-state model (red line). Insets show

cumulative histograms. (F) Probability for one TS to be active (black squares) together with prediction of two-state (red) and three-state model (blue). (G) Fit of

mature mRNA data (green histogram) with two-state model (red line).

(H) Three-state model of transcription. A second ON state with a higher initiation frequency can be reached from the first ON state.

(I) Fits of nascent mRNA data (green histogram) with three-state model (red lines). Each line represents an individual fit with parameters defined in Table S2. Insets

show cumulative histograms.

See also Figure S3.
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Transcription Factor Modification of Burst Dynamics

• Transcription Factor (TF) properties 
alter burst dynamics. 
• We probe these changes using the 

transcription activator-like effector (TALE) 
approach (Perez-Pinera et al, 2013)

detected on average three nascent mRNAs per active TS. The
obtained distribution resembled a geometric distribution indica-
tive of a short burst duration compared to the retention time (Fig-
ures 4B and 3B). The TALE-VP64 construct yielded increased
nascent mRNA levels (average of four) but still resembled a geo-
metric distribution. This change is in agreement with a model
where the stronger activator domain leads to higher initiation
rate but does not affect the burst duration (Figures 4B and 3B).
When transfecting all four different TALE-VP16, the nascent
mRNA number per active TS increased further (average of five).
Furthermore, the shape of the distribution also changed to
resemble a Poisson distribution (Figure 4B). This is in agreement
with an increase of the burst duration beyond burst saturation
(Figure 3B). Finally, we tested if the observed changes could be
reproduced with the two-state model. By changing only one
parameter in themodel,wecould generate theobserveddistribu-
tions and the respective transitions: changing the initiation rate
reproduced the difference from one TALE-VP16 to one TALE-
VP64, while changing the burst duration yielded the change
observed when activating with one TALE-VP16 compared to
four TALE-VP16 (Figure 4B and Table S3).
Taken together, these data suggest two additional potential

key determinants for transcriptional bursts. The initiation rate
could be controlled by the strength of the activator domain,
whereas the burst duration could be controlled by the lifetime
of the TF on the promoter (Figure 5).

DISCUSSION

Frequency Modulation as a Simple but Versatile
Mechanism for c-Fos Transcription
Wedeterminedhowc-FosmRNA levels are regulatedafter serum
or zinc induction by smFISH. We found that transcription
following MAPK induction occurs in discontinuous bursts where
predominately the burst frequency, but not the measured ampli-
tude, ismodulated by the TF concentration. To gain amore quan-
titative understanding of the bursting mechanism, we analyzed
the serum induction data with a stochastic gene expression
model. This model revealed that c-Fos mRNA production occurs
in relatively isolated bursts of several minutes, which is in agree-

Figure 4. Activation of c-Fos with Synthetic
Transcription Factors
(A) c-Fos promoter with different synthetic TFs

(TALE) binding sites indicated by letters A–D. SRE,

serum response element. Different activator

domain (AD, in red) were fused to the TALE: VP16

or VP64.

(B) Histogram of nascent c-Fos mRNA levels after

transfection with one TALE-VP16, one TALE-

VP64, or four TALE-VP16. Red lines are model

curves (Table S3). Curves for VP64 and 4xVP16

are obtained by changing only one parameter

indicated in red in cartoon compared to VP16.

See also Figure S4.

ment with a study also suggesting large
bursts for c-Fos (Shah and Tyagi, 2013)
and another study estimating comparable

bursting timescales (Suter et al., 2011b). The model further
showed that the measured burst amplitude by smFISH is sub-
stantially smaller than the total number of mRNAs produced dur-
ing oneburst. Last, we could determine that during bursts several
transcripts are initiated per minute and are produced in approxi-
mately 1 min. The latter suggests that elongation and maturation
are both fast processes for c-Fos.
Taken together, this suggests a rather simple but effective and

versatile system to activate c-Fos under different conditions.
Cells control principally the burst frequency—and hence the total
mRNA levels—by adjusting the nuclear concentration of TFs.
High TF concentrations mean an increased likelihood for activa-
tion and highmRNA levels; low TF concentrations give the oppo-
site response. Although this rather simple mechanism explained
most of the tested c-Fos activation conditions, additional burst
amplitude regulation also occurs at peak induction.

Role of TFs in Modulating c-Fos Bursts
We found that at peak induction—20min after serum induction—
the addition of a secondON state with an increased initiation rate
could explain the data better than the simple two-state model.
Similar needs for multistate activation processes have been
reported in the literature (Dar et al., 2012; Neuert et al., 2013).
Initiation frequency modulation could be attributed to several
molecular events ranging from preinitiation complex (PIC) forma-
tion and stability to promoter escape, and it will be important
to investigate this regulation in future studies.
We found that c-Fos burst characteristics can be altered

more profoundly by targeting its promoter with synthetic TFs.
Using activation domains of different strengths led to different
polymerase initiation frequencies. Targeting the promoter with
multiple TFs led to longer bursts suggesting a relationship be-
tween the TF-promoter binding time and the burst duration. This
is compatible with previous observations of synergetic effect of
multiple TFs acting on the same promoter (Carey et al., 1990;
Perez-Pinera et al., 2013). We therefore propose a possible link
between PIC stability and simultaneous binding of multiple TFs.
Taken together, our study establishes that TFs play a major

role in affecting c-Fos bursting (Figure 5). TF concentrations
can be changed rapidly to change the burst frequency. The
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bursts for c-Fos (Shah and Tyagi, 2013)
and another study estimating comparable

bursting timescales (Suter et al., 2011b). The model further
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stantially smaller than the total number of mRNAs produced dur-
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mately 1 min. The latter suggests that elongation and maturation
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High TF concentrations mean an increased likelihood for activa-
tion and highmRNA levels; low TF concentrations give the oppo-
site response. Although this rather simple mechanism explained
most of the tested c-Fos activation conditions, additional burst
amplitude regulation also occurs at peak induction.
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We found that at peak induction—20min after serum induction—
the addition of a secondON state with an increased initiation rate
could explain the data better than the simple two-state model.
Similar needs for multistate activation processes have been
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molecular events ranging from preinitiation complex (PIC) forma-
tion and stability to promoter escape, and it will be important
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multiple TFs led to longer bursts suggesting a relationship be-
tween the TF-promoter binding time and the burst duration. This
is compatible with previous observations of synergetic effect of
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ures 4B and 3B). The TALE-VP64 construct yielded increased
nascent mRNA levels (average of four) but still resembled a geo-
metric distribution. This change is in agreement with a model
where the stronger activator domain leads to higher initiation
rate but does not affect the burst duration (Figures 4B and 3B).
When transfecting all four different TALE-VP16, the nascent
mRNA number per active TS increased further (average of five).
Furthermore, the shape of the distribution also changed to
resemble a Poisson distribution (Figure 4B). This is in agreement
with an increase of the burst duration beyond burst saturation
(Figure 3B). Finally, we tested if the observed changes could be
reproduced with the two-state model. By changing only one
parameter in themodel,wecould generate theobserveddistribu-
tions and the respective transitions: changing the initiation rate
reproduced the difference from one TALE-VP16 to one TALE-
VP64, while changing the burst duration yielded the change
observed when activating with one TALE-VP16 compared to
four TALE-VP16 (Figure 4B and Table S3).
Taken together, these data suggest two additional potential

key determinants for transcriptional bursts. The initiation rate
could be controlled by the strength of the activator domain,
whereas the burst duration could be controlled by the lifetime
of the TF on the promoter (Figure 5).

DISCUSSION

Frequency Modulation as a Simple but Versatile
Mechanism for c-Fos Transcription
Wedeterminedhowc-FosmRNA levels are regulatedafter serum
or zinc induction by smFISH. We found that transcription
following MAPK induction occurs in discontinuous bursts where
predominately the burst frequency, but not the measured ampli-
tude, ismodulated by the TF concentration. To gain amore quan-
titative understanding of the bursting mechanism, we analyzed
the serum induction data with a stochastic gene expression
model. This model revealed that c-Fos mRNA production occurs
in relatively isolated bursts of several minutes, which is in agree-

Figure 4. Activation of c-Fos with Synthetic
Transcription Factors
(A) c-Fos promoter with different synthetic TFs

(TALE) binding sites indicated by letters A–D. SRE,

serum response element. Different activator

domain (AD, in red) were fused to the TALE: VP16

or VP64.

(B) Histogram of nascent c-Fos mRNA levels after

transfection with one TALE-VP16, one TALE-

VP64, or four TALE-VP16. Red lines are model

curves (Table S3). Curves for VP64 and 4xVP16
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indicated in red in cartoon compared to VP16.

See also Figure S4.

ment with a study also suggesting large
bursts for c-Fos (Shah and Tyagi, 2013)
and another study estimating comparable

bursting timescales (Suter et al., 2011b). The model further
showed that the measured burst amplitude by smFISH is sub-
stantially smaller than the total number of mRNAs produced dur-
ing oneburst. Last, we could determine that during bursts several
transcripts are initiated per minute and are produced in approxi-
mately 1 min. The latter suggests that elongation and maturation
are both fast processes for c-Fos.
Taken together, this suggests a rather simple but effective and

versatile system to activate c-Fos under different conditions.
Cells control principally the burst frequency—and hence the total
mRNA levels—by adjusting the nuclear concentration of TFs.
High TF concentrations mean an increased likelihood for activa-
tion and highmRNA levels; low TF concentrations give the oppo-
site response. Although this rather simple mechanism explained
most of the tested c-Fos activation conditions, additional burst
amplitude regulation also occurs at peak induction.

Role of TFs in Modulating c-Fos Bursts
We found that at peak induction—20min after serum induction—
the addition of a secondON state with an increased initiation rate
could explain the data better than the simple two-state model.
Similar needs for multistate activation processes have been
reported in the literature (Dar et al., 2012; Neuert et al., 2013).
Initiation frequency modulation could be attributed to several
molecular events ranging from preinitiation complex (PIC) forma-
tion and stability to promoter escape, and it will be important
to investigate this regulation in future studies.
We found that c-Fos burst characteristics can be altered

more profoundly by targeting its promoter with synthetic TFs.
Using activation domains of different strengths led to different
polymerase initiation frequencies. Targeting the promoter with
multiple TFs led to longer bursts suggesting a relationship be-
tween the TF-promoter binding time and the burst duration. This
is compatible with previous observations of synergetic effect of
multiple TFs acting on the same promoter (Carey et al., 1990;
Perez-Pinera et al., 2013). We therefore propose a possible link
between PIC stability and simultaneous binding of multiple TFs.
Taken together, our study establishes that TFs play a major

role in affecting c-Fos bursting (Figure 5). TF concentrations
can be changed rapidly to change the burst frequency. The
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The same model captures all TF activators with only one parameter change.
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1. Introduction - Information from transcript fluctuation 
2. Measuring and Modeling single-cell and single-molecule responses 
3. Case Studies: 

i. Predicting kinase-activated gene regulation dynamics in 
Saccharomyces cerevisiae (budding yeast) 

ii. Quantitative modeling for c-Fos mRNA burst dynamics in U2OS 
cells. 

4. Conclusions

Outline



Stochastic, temporal, and spatial fluctuations affect single-cell dynamics
These complicate modeling and disrupt transcription control.

But statistics of these fluctuations follow deterministic rules:  
Cells exhibit distinct, measurable `fluctuation fingerprints’.

Can reveal subtle gene regulation mechanisms & parameters.
Can be predicted with high accuracy and precision.

Uncertainty Quantification reveals when models are too simple, too complex, 
or just right (i.e., the Goldilocks Model).

We have identified predictive quantitative models of transcription regulation 
for many natural and synthetic genes in several organisms.

Prediction is the first step toward design, optimization and control.

Summary and Conclusions
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…wherein dynamic stimuli and single-cell measurements reveal 
gene regulation mechanisms
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The$2015$q*bio$Summer$School$
(Albuquerque,$San$Diego,$Fort$Collins)$

Applications are now being accepted for the Ninth Annual q-bio Summer School. Applications will be due 
on Monday, February 16 at 11:59pm (MST). Submitted applications may be revised until that time.  
To apply now, please visit the application website: https://www.openconf.org/qbioss2015/openconf.php 
Scholarships are available.   
 
The 2015 q-bio Summer School will be held on different dates at three different campuses 
 

1) July 6-21, 2015 at the Colorado State University in Fort Collins, CO 
2) July 13-28, 2015 at the University of New Mexico in Albuquerque, NM  
3) July 13-28, 2015 at the University of California in San Diego, CA. 

 
School Overview:  
The q-bio Summer School is an annual event intended to advance predictive modeling of cellular 
regulatory systems by exposing participants to a survey of work in quantitative biology and by providing 
in-depth instruction in selected techniques, with an emphasis on techniques useful for modeling cellular 
regulatory networks. Certain data analysis techniques and experimental methods will also be covered.  
 
Lectures will be offered at three campuses. At the San Diego campus, the focus will be on synthetic 
biology. At the Albuquerque and Fort Collins campuses, the focus will be on different aspects of 
systems biology. Students will each work on a mentored project. Participants will attend daily core 
lectures, project-specific lectures, journal clubs, and computer and experimental labs. The summer 
school is designed for graduate students, postdocs, or anyone with a quantitative background who is 
new to modeling cellular regulatory systems/networks.  
 
At the School students will attend 20-25 hours of core lectures, 20-25 hours of course-specific lectures, 
10-15 hours of computational and experimental labs, and 10-15 hours of student presentations. There 
will also be 20-30 hours of mentored project work, which may include some simple experiments, 
theoretical developments and/or real data analyses.   
 
The main topics of the 2015 summer school are:   
Biomolecular Simulations (Albuquerque, NM), Cell Signaling (Albuquerque, NM), Membrane Biology 
(Albuquerque, NM), Viral Dynamics (Albuquerque, NM), Cancer Dynamics (Fort Collins, CO), Stochastic 
Gene Regulation (Fort Collins, CO), Complex Biological Dynamics (Fort Collins, CO), Experimental 
Synthetic Biology (San Diego, CA), and Computational Synthetic Biology (San Diego, CA) 
 
Organizers:  
S. Gnanakaran, New Mexico Consortium, Los Alamos, Jeff M. Hasty, University of California, San Diego, 
William S. Hlavacek, New Mexico Consortium, Los Alamos, Marek Kimmel, Rice University, Houston, 
Brian Munsky, Colorado State University, Fort Collins, Ashok Prasad, Colorado State University, Fort 
Collins, Douglas Shepherd, University of Colorado, Denver, Patrick Shipman, Colorado State University, 
Fort Collins, Mara P. Steinkamp, University of New Mexico, Albuquerque, Lev S. Tsimring, University of 
California, San Diego 
 
For inquiries about the scientific content at the summer school, please contact: 
Brian Munsky (Fort Collins Campus): munsky@engr.colostate.edu 
Bill Hlavacek (Albuquerque Campus):!wshlavacek@gmail.com 
Lev Tsimring (San Diego Campus):!ltsimring@ucsd.edu 
 
Point of Contact:  
Shannan Yeager, q-bio Program Manager, syeager@newmexicoconsortium.org 
 
For more information, please visit the school wiki at:  
http://q-bio.org/wiki/The_Ninth_q-bio_Summer_School 

q-bio Summer School

Three Campuses:
Albuquerque, NM (July 6-21) 
San Diego, CA (July 13-28) 
Fort Collins, CO (July 13-28)

Eight Focus Areas:

Visit us at online at:
 http://q-bio.org

Stochastic Gene Regulation 
Cancer Dynamics 
Complex Biological Dynamics  
Cell signaling 
Viral dynamics 
Biomolecular simulations 
Membrane biology  
Computational Synthetic Biology 
Experimental Synthetic Biology 

http://q-bio.org

