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We use large deviation methods to calculate rates of noise-induced transitions between states in multistable
genetic networks. We analyze a synthetic biochemical circuit, the toggle switch, and compare the results to
those obtained from a numerical solution of the master equation.
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Fluctuations in biomolecular networks have been the sub-
ject of much research activity recentlyf1g. Studies on noise
in gene expressionf2–7g, in signal transductionf8g, and in
biochemical oscillatorsf9–11g demonstrated that having a
small number of molecules affects, sometimes critically, the
behavior of cellular circuits. Stochastic aspects of the choice
between lytic and lysogenic developmental strategies of bac-
teriophage lambda virus infection inE. coli were studied in
an influential paper by Arkin, Ross, and McAdamsf12g.

One of the interesting aspects of developmental processes
is that one could get multiple heritable cell fates without
irreversible changes to the genetic information. Different
cells with the same DNA sequence, showing different phe-
notypes that are stably maintained through cell divisions,
namely epigenetic phenomena, have been represented as
multiple stable attractors in deterministic descriptions of the
biochemical dynamics. In this paper, we are concerned with
the robustness of such attractors against spontaneous fluctua-
tions which might induce transitions from one stable state to
another. Previous work in this area has modeled the effects
of fluctuations by adding Gaussian-distributed Langevin
forces to the deterministic equationsf13–15g. Although this
description is appropriate in describing typical fluctuations
when the number of molecules is sufficiently largef2,4,6,8g,
rare eventsinvolving occasional large departures from aver-
age behavior are typically outside the scope of the Langevin
treatmentsGaussian approximationd. The transition rate in a
simplified model of the phage lambda switch has been stud-
ied f14,16g in this approximation. We wish to compute the
transition rate using a more appropriate large deviation
theory with special focus on the attempt frequency. Of
course, one could get the transition rate from direct computer
simulations. However, direct simulations of rare events is,
obviously, time-consuming. Recent research in the lambda
switch suggests that the simplified model lacks one very im-
portant physical interaction between distant regions of the
lambda virus genome, changing dramatically the behavior of
the switchf17g. Applying our tools to that question, among
others, is the long-time goal of our research. However, we
wish to test our methods on a simpler system. We will con-
sider the artificially constructed toggle switchf18g. In this
example, we find that the contributions to the transition rate
coming from corrections to the Gaussian approximation can
change the overall rate by several orders of magnitude and,

therefore, are important for comparison with experimental
results.

The theory of transition rates is a well developed subject
sseef19g as well as references thereind. For a bistable system
like the genetic switch we are considering, the transition
probability from one stable point to the other is estimated by
computing the probability of reaching the saddle point be-
tween stable states, and, from there, by following the deter-
ministic trajectory to the other stable state rather than falling
back to the initial state. The transition rate is given by an
expression of the form

rate =
l+

2p
F detAfp

udetAspu
G1/2

p Psxf,xod, s1d

wherel+ is the positive eigenvalue of the matrix describing
the linearized equations of motion around the saddle point,
Afp andAsp are the inverses of covariance matrices appearing
in the quasistationary Gaussian approximation of the prob-
ability distribution in the starting stable point and in the
saddle point, respectively, andPsxf ,xod is the probability of
finding the system at the saddle point state in a quasistation-
ary distribution centered around the stable fixed pointxo.
Note thatAsp has one negative eigenvalue and the Gaussian
distribution around the saddle point is only a formal solution.
A more precise definition ofA appears later in the paper. For
derivations of a very similar formula, seef20g or Sec. VII.D
in the reviewf19g.

Much of the rest of the paper is devoted to the computa-
tion of Psxf ,xod by large deviation methods. There are two
related ways. In one approach, one keeps track of the trajec-
tories in the space of numbers of different molecules, distrib-
uted according to a state-dependent Poisson process, and
computes time-dependent transition probabilities as a sum of
the probabilities of all paths connecting the initial and final
points, which leads naturally to a path integral formulation of
the stochastic process. In this way, the transition probability
is evaluated as the exponential of the “action.” This action
can be computed in a perturbation expansionsusing the vol-
ume of the system as a parameterd, in which the leading-
order correction is the line integral along the path that mini-
mizes the actionsoptimal pathd of a Lagrangian function.
This calculation naturally gives rise to a Hamiltonian that
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corresponds to the evolution operator in the master equation
f21g, written in terms of numbers and raising and lowering
operators expressed as exponentials of the phase variables
conjugate to the numbers.

An alternative but exactly equivalent approach is to start
directly from the master equation and solve it in the Eikonal
approximationf22g. We will present our arguments in this
article using this approach, which is easier to explain math-
ematically, and provides an easier way to compute the next-
order correction in the volume expansion, a term which has
not been computed before in relation to these genetic
switches. As we will see, in the case of the toggle switch, the
next-order term in lnPsxf ,xod makes an important contribu-
tion to the overall rate of transition.

The general ideas are developed in the context of the
simple example of the toggle switch. This artificially realized
switch consists of two genes that repress each others’ expres-
sion, placed in a high copy plasmid inE. coli. Once ex-
pressed, each protein can bind particular DNA sites upstream
of the gene which codes for the other protein, thereby re-
pressing its transcription. If we denote theith protein con-
centration byxi, the deterministic system is described by the
equations

ẋ1 =
a1

1 + sx2/K2dn −
x1

t
, s2d

ẋ2 =
a2

1 + sx1/K1dm −
x2

t
. s3d

The constantsa1 anda2 incorporate all aspects of transcrip-
tion and translation reactions. The Hill exponents,m andn,
represent the degree of cooperative binding of proteins to
DNA, and t−1 is the protein degradation/dilution ratesas-
sumed equal for the two proteinsd. K1 is the effective disso-
ciation constant for binding of protein 1 in the promoter of
gene 2.K2 is the corresponding parameter for protein 2. For
some regions of parameter space, the system has three sta-
tionary points: two stable ones and a saddle pointf18g.

For the purposes of this discussion, we model the stochas-
tic evolution of the protein concentrations in the system by a
birth-death process in which proteini is made in short-lived
bursts of sizebi and proteins are diluted or degraded at a rate
t−1. A more detailed description involving proteins and RNA
will be published elsewhere. It is worth noting that, while
both the burst sizebi and the RNA production rate show up
as parameters in the stochastic modeling, only their product,
ai, shows up in the effective deterministic equationss2d for
the protein levels.

To compute the rate of transition from one fixed point to
the other, we must solve the master equationf21g, which
describes the time evolution of the probability distribution of
protein concentrations. The qualitative behavior of the sta-
tionary solution for the bistable system can be described in
simple intuitive terms: the solution displays two peaks cen-
tered around the stable points. If we start with probability 1
around one of the stable points, rare transitions lead to a long
tail which leaks into the domain of attraction of the other
stable point, in very much the same way in which the prob-

ability amplitude extends beyond the classically allowed re-
gion in quantum-mechanical tunneling through a barrier.
This analogy motivates the Eikonal approximation to the so-
lution of the master equationf22g. The master equation is
given by

]P

]t
= Vo

e

fWêsx − ê/VdPsx − ê/V,td − WêsxdPsx,tdg,

s4d

whereV is the volume of the system, andê/V=DxW is the
concentration change associated with individual reaction
events, the rate of which is given byVWêsxd. Assuming that
the distribution is quasistationary in the region of interest, we
consider solutions of the WKB form,

Psx,td = C expf− VSsxdg, Ssxod = 0, s5d

xo being the initial stable point. In the same way the wave
function in quantum mechanics is computed using an expan-
sion in powers of", it customary to find the probability
Psx ,td by expandingSsxd in powers of inverse volume,
which plays the same role as" in quantum mechanics, since
the bigger the volume, the less likely are fluctuations to hap-
pen. Then, to first order inV−1, we write

Ssxd = S0sxd + V−1S1sxd + OsV−2d.

Assuming that the scaled transition ratesWêsxd are smooth
functions of x, and expandingS to first order,Ssx− ê/Vd
=Ssxd−sêi /Vd ·s] /]xidSsxd, collecting the terms which do
not contain powers ofV, we have

]Psx,td
]t

= HPsx,td, s6d

Hsx,pd = o
ê

fWêsxdsesê·pd − 1dg, s7d

whereH is the Hamiltonian describing the time evolution of
the probability distribution, and we define the momentumpi
as

pi =
]

]xi
S0sxd. s8d

If we expand the Hamiltonians7d in p and keep terms up
to second order inp, we recover the Gaussian approach used
in f13,14g. Since we are considering a situation where the
transitions are so rare that the probability does not change
much in time, the Hamiltonian will be very small.

The main contribution to the transition probability is ob-
tained by evaluatingP along a particular trajectoryf22g. This
trajectory, called the optimal path, is the solution to Hamil-
ton’s equations derived from Eq.s7d,

ẋi =
]Hsx,pd

]pi
= o

ê

fêiWêsxdesêapadg, s9d

ṗi = −
]Hsx,pd

]xi
= − o

ê
F ]Wêsxd

]xi
sesêapad − 1dG . s10d
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For the toggle switch example we have fourêi’s describ-
ing jumps to the right, left, up, or down, given byb1x̂1,
−x̂1,b2x̂2, and −x̂2, respectively. The relevant Hamiltonian
defined on times long compared to the inverse binding/
unbinding rates of proteins at the two promoters is given by

H =
a1/b1

f1 + sx2/K1dng
seb1p1 − 1d +

x1

t
se−p1 − 1d

+
a2/b2

f1 + sx1/K2dmg
seb2p2 − 1d +

x2

t
se−p2 − 1d. s11d

As already mentioned above,K1,2 are the effective dissocia-
tion constants for binding of proteins 1,2 at the promoter of
gene 2,1, respectively,bi is the burst size of proteini, and the
ratio ai /bi is a measure of the RNA production rate associ-
ated with the transcription of the genei.

To extract the values of the burst size parameters, the
spontaneous transition rate has to be measured experimen-
tally for more than one condition. Since this has not yet been
done, we will compare the results of the Eikonal approxima-
tion to the solution obtained by direct diagonalization of the
Hamiltonians11d. For simplicity, we will set the parameters
Ki =1,bi =1.

The optimal path for the transition from one stable point
to the other starts near one stable point, proceeds to the
saddle point, and from there it follows the deterministic tra-
jectory to the other stable point. Thus we must first find
solutions of Eqs.s9d ands10d which start atsneard the initial
stable point and end at the saddle point. At the end points we
havep1=p2=0, andH=0. This also implies that if the sys-
tem is at the stable point, it will remain there. So, the optimal
path must instead start at a point very close to but not exactly
at the fixed point. In this case, the Hamiltonian will be a very
small numbersand constantd. In what follows, we will make
the approximationH=0. The initial conditions for the mo-
mentum equations can be obtained by approximating the
probability around the stable point by a Gaussian distribution
P=e−VSg with Sg= 1

2Aijdxidxj snote that we use summation
convention, i.e., repeated indices are summed overd. Then
pi =]So/]xi =Aijdxj, and we expand the equationH=0 around
the stable point to findAij . Then we have a two-point bound-
ary value problem which can be solved by various methods
f23g. The solution of the equations of motions9d ands10d for
a set of parameters, projected to concentration space, is
shown in Fig. 1. We integrate Eqs.s8d along the optimal path
C to obtainS0=eCpidxi.

The S1 factor can be viewed as a correction due to fluc-
tuations around the optimal path and could be calculated
following Refs.f24,25g. Collecting coefficients of powers of
V in the V−1 expansion, we derive an equation forS1,

o
ê
FWêêi

]S1

]xi
−

Wê

2
êiêj]ipj − êi]iWêGesêapad = 0. s12d

In turn, after using the equations of motion to rewrite the first
term as derivative along the optimal pathxopst8d, Eq. s12d
can be transformed into

d

dt8
S1 = o

ê

1

2
Wêsxdêiêj

]pj

]xi
eêipi + o

ê

êi

]Wêsxd

]xi
eêipi . s13d

To proceed, we need]pj /]xi along the path. From Hamil-
ton’s equationss9d it follows that dpstda=Mstdabdxstdb, and
thus we can use the components of the matrixM in place of
the derivative]pj /]xi in Eq. s12d. Moreover, Eq.s9d also
implies that

dẋa =
]2H

]pa]xi dxi +
]2H

]pa]pi
dpi , s14d

dṗa = −
]2H

]xa]xi dxi −
]2H

]xa]pi
dpi . s15d

Combining this together with the time derivative ofdpstd,

dṗ = Ṁdx + Mdẋ, s16d

leads to the following set of coupled differential equations
for M:

Ṁab + Mac
]2H

]xb]pc
+ Mac

]2H

]pc]pd
Mdb +

]2H

]xa]pc
Mcb

+
]2H

]xa]xb = 0 s17d

with initial conditions Mijst=0d=Aij fdefined below Eq.
s11dg. Finally, solving these equations together with Eqs.s9d
ands10d, we integrate Eq.s13d to obtainS1. Given the above
values ofS0 and S1, we compute the transition probability,
Psxf ,xod, from the starting stable point,xo, to the saddle
point, xf. Using Eq.s1d, we can, therefore, find the transition
rate for any large value ofV. We now compare this calcula-
tion to the direct estimation of transition rates as described
below.

From the master equations4d, it follows that the eigenval-
ues of H measure the decay rates of nonstationary states
corresponding to eigenvectors ofH with nonzero eigenval-

FIG. 1. Optimal path for the parameters,a1=156,a2=30, n=3,
m=1, K1=K2=1, b1=b2=1, andt=1. xi are dimensionless. The
ellipsoid indicates the orientation of the Gaussian spread around the
stable point. The size of the spread scales likeV−1/2.
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ues. The equilibrium state is represented by the “zero mode,”
i.e., the eigenvector ofH with zero eigenvalue, the existence
of which is guaranteed by the transition matrix character of
the Hamiltonian and conservation of probability. To compute
the eigenvalues of the Hamiltonian, we write the master
equation in discrete form, replacing the continuous concen-
tration variablessx1,x2d with a lattice with lattice parameter
1/V. Although the system displays infinitely many states,
typically, the gap between the real parts of the eigenvalues
for the first and second excited states is much larger than the
absolute value of the real part of the first eigenvalue. This is
because the gap between the first excited state and the second
or the third excited states is governed by the local relaxation
rate around the two fixed points, but the gap between the
ground state and the first excited state is governed by the
transition rate between the two stable fixed points. The local
relaxation rates are order 1 inV, whereas the transition rate
is exponentially small for largeV sin practice, we find the
ratios of the real parts to be about 103d. Thus an arbitrary
probability distribution rapidly decays into a linear combina-
tion of the stationary state and the first excited state. Equiva-
lently, the state could be described as a linear combination of
two states, each representing a quasistationary distribution
around a stable fixed point. From then on, we can project the
evolution to this two-state system. If we start with probabil-
ity po of being in the states1,0dT, then the Master equation
gives

d

dt
Spo

pf
D = S− r12 r21

r12 − r21
DSpo

pf
D .

The two-by-two effective transition matrix has columns
which sum to zero ensuring probability conservation. Also,
the trace 0+e1=r12+r21, wheree1 is the eigenvalue of the
first excited state. Therefore, the first excited eigenvalue will
be the sum of the forward and backward rates. In the case of
the asymmetric systems, one rate is usually far greater than
the other. Consequently, the larger rate amongr12 and r21
will be approximately given bye1, which we computed nu-
merically using theMATLAB routine “eigs” for sparse matri-
ces as well as by the Lanczos algorithmf26g. For a symmet-
ric choice of parameters for the two proteins, each rate is just
e1/2.

To explicitly extract theS0 andS1 contributions to the rate
from the Lanczos results, we rescale the volume of the sys-
tem V→nV, which, in turn, leads to a rescaling of rates of
individual reaction events asfsxd→nfsxd. As a function of
volume scale factor,n, the logarithm of the rate has the form
lnsrd=S0n+b, whereb includes bothS1 and the logarithm of
the prefactor ofPsxf ,xod in Eq. s1d. The results and compari-
son with the Eikonal approximation are shown in Fig. 2. The
dotted line is a fit to the data points obtained from calculation
of the eigenvalues, and we see that the slope and intercept

computed from Eqs.s1d and s5d are in good agreement with
these values. Note that, in this example,S1 and the prefactor
are significant contributions to the transition rate.

When we perform these calculations for the “standard”
model of the lambda switchf14,27g, we find a rate three
orders of magnitude higher than the observed rate of 10−7 per
generationf28g. In retrospect, it is clear that accounting for
the stability of the lysogenic state requires a more complex
model which should include the effect of DNA loopingf17g.
Whether the stability is due to suppression of fluctuation or
due to disappearance of the lytic “fixed” pointf29g remains
an open question.

Optimal path methods are routinely used for studying rare
events related to failure of communication networks modeled
as birth and death processesf30g. Such large deviation meth-
ods are likely to be important in the context of robustness
and adaptability of biological networks. This paper illustrates
the power of an approach to fluctuations based on the Eiko-
nal approximation to solutions of the master equation. The
scheme incorporates large deviations in a natural way and
provides a quantitative method scalable to large networks.
We also hope that beyond being an efficient computational
tool, this method will provide further insight into the stability
of epigenetic states of complex genetic networks.
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FIG. 2. Scaling with volume: estimates from direct computation
of eigenvalues areS0=2.63, S1+ lnsprefd=4.85, whereas optimal
path calculation givesS0=2.47, S1=3.5, lnsprefd=1.5. In this ex-
ample, the backward rate is 1000 times smaller than the forward
rate, so the lowest nonzero eigenvalue is very close to the rate of
switching.
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