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Optimal path to epigenetic switching
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We use large deviation methods to calculate rates of noise-induced transitions between states in multistable
genetic networks. We analyze a synthetic biochemical circuit, the toggle switch, and compare the results to
those obtained from a numerical solution of the master equation.
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Fluctuations in biomolecular networks have been the subtherefore, are important for comparison with experimental
ject of much research activity recenfly]. Studies on noise results.
in gene expressiof2—7], in signal transductiofi8], and in The theory of transition rates is a well developed subject
biochemical oscillator§9-11] demonstrated that having a (see[19] as well as references thergiffor a bistable system
small number of molecules affects, sometimes critically, thajke the genetic switch we are considering, the transition
behavior of_cellular circuits. Stochastic aspects of the ChOiC‘brobability from one stable point to the other is estimated by
between lytic and lysogenic developmental strategies of baGomputing the probability of reaching the saddle point be-
teriophage lambda virus infection B. coli were studied in  yeen stable states, and, from there, by following the deter-

an influential paper by Arkin, Ross, and McAdafi2]. ministic trajectory to the other stable state rather than falling
_ One of the interesting aspects of developmental processgs .\ 1 the initial state. The transition rate is given by an
is that one could get multiple heritable cell fates wnhoutexpression of the form

irreversible changes to the genetic information. Different

cells with the same DNA sequence, showing different phe- w [ deta. 122
notypes that are stably maintained through cell divisions, rate :-*{—fp—} # P(Xg,Xo) (1)
namely epigenetic phenomena, have been represented as 2m |detAsp|

multiple stable attractors in deterministic descriptions of the i . _ ) .
biochemical dynamics. In this paper, we are concerned with’h€re\. is the positive eigenvalue of the matrix describing
the robustness of such attractors against spontaneous fluctdfe linearized equations of motion around the saddle point,
tions which might induce transitions from one stable state td\p andAsp are the inverses of covariance matrices appearing
another. Previous work in this area has modeled the effect§ the quasistationary Gaussian approximation of the prob-
of fluctuations by adding Gaussian-distributed Langevinability distribution in the starting stable point and in the
forces to the deterministic equatiofis3—15. Although this ~ saddle point, respectively, arR(x;,X,) is the probability of
description is appropriate in describing typical fluctuationsfinding the system at the saddle point state in a quasistation-
when the number of molecules is sufficiently laf@e4,6,9, ary distribution centered around the stable fixed point
rare eventsnvolving occasional large departures from aver-Note thatAs, has one negative eigenvalue and the Gaussian
age behavior are typically outside the scope of the Langevinlistribution around the saddle point is only a formal solution.
treatment(Gaussian approximatignThe transition rate in a A more precise definition oA appears later in the paper. For
simplified model of the phage lambda switch has been studderivations of a very similar formula, s¢20] or Sec. VII.D

ied [14,16 in this approximation. We wish to compute the in the review[19].

transition rate using a more appropriate large deviation Much of the rest of the paper is devoted to the computa-
theory with special focus on the attempt frequency. Oftion of P(x¢,X,) by large deviation methods. There are two
course, one could get the transition rate from direct computerelated ways. In one approach, one keeps track of the trajec-
simulations. However, direct simulations of rare events istories in the space of numbers of different molecules, distrib-
obviously, time-consuming. Recent research in the lambdated according to a state-dependent Poisson process, and
switch suggests that the simplified model lacks one very imeomputes time-dependent transition probabilities as a sum of
portant physical interaction between distant regions of théhe probabilities of all paths connecting the initial and final
lambda virus genome, changing dramatically the behavior opoints, which leads naturally to a path integral formulation of
the switch[17]. Applying our tools to that question, among the stochastic process. In this way, the transition probability
others, is the long-time goal of our research. However, was evaluated as the exponential of the “action.” This action
wish to test our methods on a simpler system. We will con<can be computed in a perturbation expangiesing the vol-
sider the artificially constructed toggle swit¢h8]. In this  ume of the system as a paramgten which the leading-
example, we find that the contributions to the transition rateorder correction is the line integral along the path that mini-
coming from corrections to the Gaussian approximation camizes the actionoptimal path of a Lagrangian function.
change the overall rate by several orders of magnitude andhis calculation naturally gives rise to a Hamiltonian that
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corresponds to the evolution operator in the master equatioability amplitude extends beyond the classically allowed re-

[21], written in terms of numbers and raising and loweringgion in quantum-mechanical tunneling through a barrier.

operators expressed as exponentials of the phase variabl€kis analogy motivates the Eikonal approximation to the so-

conjugate to the numbers. lution of the master equatiof22]. The master equation is
An alternative but exactly equivalent approach is to stargiven by

directly from the master equation and solve it in the Eikonal

approximation[22]. We will present our arguments in this »_ QD [Wa(x = &/Q)P(x — &/Q,t) = Wa(x)P(x,1)],
article using this approach, which is easier to explain math-  dt e
ematically, and provides an easier way to compute the next- ()

order correction in the volume expansion, a term which has
not been computed before in relation to these genetizvhere() is the volume of the system, ar@Q=AX is the
switches. As we will see, in the case of the toggle switch, theeoncentration change associated with individual reaction
next-order term in IfP(x;,X,) makes an important contribu- events, the rate of which is given 3W,(x). Assuming that
tion to the overall rate of transition. the distribution is quasistationary in the region of interest, we
The general ideas are developed in the context of theonsider solutions of the WKB form,
simple example of the toggle switch. This artificially realized _ _
switch consists of two genes that repress each others’ expres- P(x,t) = Cexd- QSX)],  Sxo) =0, )
sion, placed in a high copy plasmid . coli. Once ex- x, being the initial stable point. In the same way the wave
pressed, each protein can bind particular DNA sites upstreafiinction in quantum mechanics is computed using an expan-
of the gene which codes for the other protein, thereby resion in powers of#, it customary to find the probability
pressing its transcription. If we denote titl protein con-  P(x,t) by expandingS(x) in powers of inverse volume,
centration byx;, the deterministic system is described by thewhich plays the same role d@sin quantum mechanics, since
equations the bigger the volume, the less likely are fluctuations to hap-
pen. Then, to first order if™%, we write

o aq !
T K 7 @ S0 = S(x) + QIS (x) + O(Q 7).
Assuming that the scaled transition raiés(x) are smooth
a, X functions of x, and expandingS to first order, S(x—&/()

3) =S(x)-(&/Q) (3l x)S(x), collecting the terms which do

not contain powers of), we have

Xp= —————— .
2 1+(X1/Kl)m T

The constants, anda, incorporate all aspects of transcrip-
tion and translation reactions. The Hill exponemtsandn, dP(x,1)

represent the degree of cooperative binding of proteins to =HP(Xx.D), (6)
DNA, and 7! is the protein degradation/dilution ratas-

sumed equal for the two proteink, is the effective disso- _ 5 @p) _

ciation constant for binding of protein 1 in the promoter of H(x.p) _g [We(x)(e DI, (@)

gene 2K, is the corresponding parameter for protein 2. For

some regions of parameter space, the system has three stghereH is the Hamiltonian describing the time evolution of

tionary points: two stable ones and a saddle pisi. the probability distribution, and we define the momentpm
For the purposes of this discussion, we model the stocha$&s

tic evolution of the protein concentrations in the system by a P

birth-death process in which proteiris made in short-lived pi=—S(X). (8)

bursts of sizéy; and proteins are diluted or degraded at a rate X

7 1. Amore detailed description involving proteins and RNA |t e expand the Hamiltoniafi7) in p and keep terms up

will be published elsewhere. It is worth noting that, while {5 second order i, we recover the Gaussian approach used

both the burst size; and the RNA production rate show Up in [13,14]. Since we are considering a situation where the

as parameters in the stochastic modeling, only their productransitions are so rare that the probability does not change

a;, shows up in the effective deterministic equati¢@sfor  mych in time, the Hamiltonian will be very small.

the protein levels. N ) _ The main contribution to the transition probability is ob-
To compute the rate of transition from one fixed point totzined by evaluating along a particular trajector22]. This

the other, we must solve the master equafiat], which  trajectory, called the optimal path, is the solution to Hamil-
describes the time evolution of the probability distribution of toy's equations derived from E¢),

protein concentrations. The qualitative behavior of the sta-

tionary solution for the bistable system can be described in i = JH(x,p) _ S [&Wa(x)e&Pa] 9
. . . . . : i~ - 14 %e '

simple intuitive terms: the solution displays two peaks cen- p; 2

tered around the stable points. If we start with probability 1

around one of the stable points, rare transitions lead to a long JH(x.p) Mia(X)
tail which leaks into the domain of attraction of the other pi=- AXp) -> {;(e(éapeo_ 1)] (10)
stable point, in very much the same way in which the prob- 2 B 24
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For the toggle switch example we have fajis describ-
ing jumps to the right, left, up, or down, given HyX,,
-%X1,b,%,, and %,, respectively. The relevant Hamiltonian
defined on times long compared to the inverse binding/
unbinding rates of proteins at the two promoters is given by

Optimal Path ——

ay/by b X1, - o
=== (eP1-1)+ F(eP1-1
Loy € DD
+ &(ebzpz — 1) + X_Z(e_pz — 1) (11)
[1+(x/K)™M] T .
As already mentioned abovk, , are the effective dissocia- 0 0 ' éo 4'0 6"0 8'0' ‘1;‘)0 1'20 s 160*::80

tion constants for binding of proteins 1,2 at the promoter of

gene 2,1, respectivelly, is the burst size of protein and the

ratio a;/b; is a measure of the RNA production rate associ- FIG. 1. Optimal path for the parametess =156, a,=30,n=3
R [ yap— y 1179,

ated with the transcription of the gene m=1, K;=K,=1, by=b,=1, and7=1. xi are dimensionless. The

To extract the \(qlues of the burst size parameters’, thQllipsoid indicates the orientation of the Gaussian spread around the
spontaneous transition rate has to be measured experimefzple point. The size of the spread scales (k&2

tally for more than one condition. Since this has not yet been
done, we will compare the results of the Eikonal approxima-

X1

tion to the solution obtained by direct diagonalization of the Ao s lvnaa®Pien,Sa MeX) &,
Hamiltonian(11). For simplicity, we will set the parameters dt’Sl % ZWE(X)e'eJ &xie Ee 9 e . (19
Kizl,bi:l.

The optimal path for the transition from one stable point To proceed, we neeép;/dx; along the path. From Hamil-
to the other starts near one stable point, proceeds to tHen's equationg9) it follows that 6p(t),=M(t)apdX(t)p, and
saddle point, and from there it follows the deterministic tra-thus we can use the components of the matiin place of
jectory to the other stable point. Thus we must first findthe derivativedp;/dx; in Eq. (12). Moreover, Eq.(9) also
solutions of Eqs(9) and(10) which start atnea) the initial ~ implies that

stable point and end at the saddle point. At the end points we PH . PH

havep;=p,=0, andH=0. This also implies that if the sys- = L OX + pi, (19
tem is at the stable point, it will remain there. So, the optimal IPadX IPadPi

path must instead start at a point very close to but not exactly 5 2

at the fixed point. In this case, the Hamiltonian will be a very o= oH i __9H ;. (15)
small numberand constant In what follows, we will make 2 XX axeap;

the approximatiorH=0. The initial conditions for the mo-
mentum equations can be obtained by approximating th
probability around the stable point by a Gaussian distribution = MX + M X, (16)
P=e% with §,=3A; 8 (note that we use summation . _ . _
convention, i.e., repeated indices are summed )oviten leads to the following set of coupled differential equations
pi=dS,/ 9% =A;; 8x;, and we expand the equatietv0 around for M:

the stable point to findy;. Then we have a two-point bound- : JPH PH PH

gombining this together with the time derivative f(t),

ary value problem which can be solved by various methods ~ Map* MacW + Mac& p Mgp + PP Mep

[23]. The solution of the equations of moti¢® and(10) for Pe PP X Pe

a set of parameters, projected to concentration space, is #H _

shown in Fig. 1. We integrate Eg®) along the optimal path + axaaxb 0 17

C to obtainS,=fcp;dx. o . )

The S, factor can be viewed as a correction due to fluc-With initial conditions M;;(t=0)=A; [defined below Eq.
tuations around the optimal path and could be calculate§ll)]. Finally, solving these equations together with E@s.
following Refs.[24,25. Collecting coefficients of powers of and(10), we integrate Eq(13) to obtainS,. Given the above

Q in the Q! expansion, we derive an equation values of§, and S;, we compute the transition probability,
P(x¢,x%,), from the starting stable point,, to the saddle

0s, W ) point, X;. Using Eq.(1), we can, therefore, find the transition
> lwa—- — &gap; —&dW, ePd =0, (12) rate for any large value dR. We now compare this calcula-
& a2 tion to the direct estimation of transition rates as described
below.
In turn, after using the equations of motion to rewrite the first  From the master equatid#), it follows that the eigenval-
term as derivative along the optimal patf(t’), Eq. (12) ues of H measure the decay rates of nonstationary states
can be transformed into corresponding to eigenvectors Hf with nonzero eigenval-
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ues. The equilibrium state is represented by the “zero mode,’ il - "~ data -
i.e., the eigenvector dfl with zero eigenvalue, the existence S -2.63v-4.85 -

of which is guaranteed by the transition matrix character of
the Hamiltonian and conservation of probability. To compute

the eigenvalues of the Hamiltonian, we write the master ! ' .
equation in discrete form, replacing the continuous concen-= .75 | .
tration variablegx;,x,) with a lattice with lattice parameter &

1/Q. Although the system displays infinitely many states, £ -8

typically, the gap between the real parts of the eigenvalues A

for the first and second excited states is much larger than the 85 .
absolute value of the real part of the first eigenvalue. This is 9l S
because the gap between the first excited state and the seco .
or the third excited states is governed by the local relaxation g s . . . .

rate around the two fixed points, but the gap between the 04 06 08 1 12 14 16 18
ground state and the first excited state is governed by the Volume scale factor (v)

transition rate between the two stable fixed points. The local

relaxation rates are order 1 {d, whereas the transition rate F_IG. 2. Scaling with volume: estimates from direct compgtation
is exponentially small for largé) (in practice, we find the ©f igenvalues ar&,=2.63, S;+In(pref)=4.85, whereas optimal
ratios of the real parts to be about®10Thus an arbitrary Path calculation give$,=2.47,$,=3.5, In(prefj=1.5. In this ex-
probability distribution rapidly decays into a linear combina- 2MP!e: the backward rate is 1000 times smaller than the forward
tion of the stationary state and the first excited state. Equivar-ate’ S0 the lowest nonzero eigenvalue is very close to the rate of

lently, the state could be described as a linear combination ost'tChmg'

two states, each representing a quasistationary distributio(gbr,nputed from Eqs(1) and (5) are in good agreement with

aroun(_j a stabl_e fixed point. From then on, we can project _thﬂwese values. Note that, in this exam@gand the prefactor
evolution to this two-state system. If we start with probabil- are significant contributions to the transition rate

ity p, of being in the staté1,0)", then the Master equation ™ \ypen e perform these calculations for the “standard”
gives model of the lambda switch14,27, we find a rate three
orders of magnitude higher than the observed rate of aér
E(po) _ <‘ re ro )(%)
dt\ ps Fi2 ~T21/ \Px
The two-by-two effective transition matrix has columns

generation{ 28]. In retrospect, it is clear that accounting for
the stability of the lysogenic state requires a more complex
which sum to zero ensuring probability conservation. Also
the trace O+;,=r,+ry;, Wheree; is the eigenvalue of the

Whether the stability is due to suppression of fluctuation or
'due to disappearance of the lytic “fixed” poir&9] remains
An open question.

model which should include the effect of DNA loopihg7].
first excited state. Therefore, the first excited eigenvalue wil

be the sum of the forward and backward rates. In the case of
the asymmetric systems, one rate is usually far greater thap

the other. Consequently, the larger rate amopgand ry;

will be approximately given by, which we computed nu-
merically using themATLAB routine “eigs” for sparse matri-
ces as well as by the Lanczos algorith26]. For a symmet-

ric choice of parameters for the two proteins, each rate is jusé

61/2.

To explicitly extract thes, andS; contributions to the rate
from the Lanczos results, we rescale the volume of the sy
tem Q) — v, which, in turn, leads to a rescaling of rates of

Optimal path methods are routinely used for studying rare
events related to failure of communication networks modeled
as birth and death procesg&€)]. Such large deviation meth-
ods are likely to be important in the context of robustness
and adaptability of biological networks. This paper illustrates
the power of an approach to fluctuations based on the Eiko-
nal approximation to solutions of the master equation. The
cheme incorporates large deviations in a natural way and
provides a quantitative method scalable to large networks.
We also hope that beyond being an efficient computational

St'ool, this method will provide further insight into the stability

of epigenetic states of complex genetic networks.

individual reaction events afx) — vf(x). As a function of
volume scale factor, the logarithm of the rate has the form A M.S. thanks John Little and John Reinitz for useful

In(r)=Sw+b, whereb includes bott, and the logarithm of  discussions. A.E.R. and A.M.S. acknowledge the hospitality
the prefactor oP(x¢,X,) in Eq. (1). The results and compari- of the Kavli Institute of Theoretical Physics and of Aspen

son with the Eikonal approximation are shown in Fig. 2. TheCenter for Physics while this work was being done. This
dotted line is a fit to the data points obtained from calculationwvork was supported in part by a NIH P20 Grant No.

of the eigenvalues, and we see that the slope and interce@M64375.
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