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What if we don’t have a
complete kinetic description?

Modeling Metabolism
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Complete kinetics?

Subject them to governing
constraints

and

then analyze biological properties
within the applicable constraints

Approach to studying
behavior of defined

genotypes …
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Metabolic Constraints

Physicochemical factors

– Mass, energy, and redox balance

• Systemic stoichiometry

– osmotic pressure, electroneutrality, solvent
capacity, molecular diffusion, thermodynamics

– Non-adjustable constraints

System specific factors

– Capacity:

• Maximum fluxes

– Rates:

• Enzyme kinetics

– Gene Regulation

– Adjustable constraints



jsedwards@salud.unm.edu 4

What are the metabolic capabilities

Important question.

Genome sequencing projects were
hoped to answer this question.
– Becoming clear that cellular functions

are multigenic in nature.

– Capabilities can not be assessed by
cataloging of genes.

– Systems science must be applied to
study the systemic behavior of the
entire genotype.

– Flux-balance analysis (FBA) is a
method well-suited to answer many
questions.
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Metabolism

Metabolism is the “chemical
engine” that drives cellular
activities.
– Acts to convert raw materials (ie,

glucose) into energy and the building
blocks used to produce biological
structures

– Dynamic process

– Obeys the laws of physics and
chemistry

– limited by the physico-chemical
constraints

– regulatory mechanisms
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Description of metabolism

Metabolic reactions (catalyzed by
enzymes) are characterized by
stoichiometry and the rate of
conversion.
– Stoichiometry is the most reliable

information regarding metabolism.
• Sequence of reactions

We will discuss the mathematical
description of metabolic
stoichiometry
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Dynamic Description

Dynamic mass balances on each
metabolite
– Sum of rates of formation,

degradation, utilization, and transport

• Vtrans, uptake or secretion of metabolite
across the cell membrane

• Vsyn, Synthesis of the metabolite

• Vuse, consumption of cellular constituents or
maintenance  requirements

• Vdeg, degradation of metabolite

Vsyn
Vdeg

Vtrans

Vuse
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usetransdegsyn
i VVVV

dt

dX
+=

Dynamic Description

Typically, the uptake and secretion rates are known.

The growth and maintenance requirements are known.

More formally, one can write

Where vj is the jth reaction rate, Sij is the moles of
metabolite i produced in reaction j

This is typically written in matrix form

bVV
dt

dX
degsyn

i
=

ijij
i bvS

dt

dX
=

bvS
X

=
dt

d
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Dynamic Description

This is an important equation.
– Gives the rate of change of the

metabolite concentrations as a linear
combination of the reaction rates.

– The reaction rates are non-linear
functions of the metabolite
concentrations and a set of unknown
parameters.

– Thus, we have a very difficult equation to
solve!

bvS
X

=
dt

d

vi = f (c;p)
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Flux-Balance Analysis

Make simplifications based on the
properties of the system.

– Time constants for metabolic reactions are
very fast (sec - min) compared to cell growth
and culture fermentations (hrs)

– There is not a net accumulation of metabolites
in the cell over time.

One may thus consider the steady-state
approximation to answer many questions
regarding metabolism.

dX
dt

= S v b
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Removes the metabolite concentrations as a
variable in the equation.

Time is also not present in the equation.

We are left with a simple matrix equation that
contains:

– Stoichiometry: known

– Uptake rates, secretion rates, and
requirements: known

– Metabolic fluxes: Can be solved for!

We will discuss the steady-state behavior now,
and leave the dynamic description for later.

Flux-Balance Analysis

bvS =
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Stoichiometric Matrix

The matrix, S, is very important in
metabolic dynamics.

It maps the reaction rates into the
rates of change of metabolites.

mxn matrix.  The number of
columns n (reactions) often
exceeds the number of rows m
(metabolites)

– Will address this later
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FBA

There are 3 different situations
that can occur in the
stoichiometric matrix.

–Under-determined system (n>m)

–Determined system (n=m)

–Over-determined system (n<m)
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Determined System

Most systems are under-determined, but it is
sometimes possible to measure some fluxes and reduce
the matrix into a square matrix as follows

Sc must be non-singular
– Minimize the condition number of Sc

Fluxes in ve must be measurable

The experimentally determined fluxes are subject to experimental
errors.  Therefore, the condition number of Sc in important.  The
condition number is a measure of the possible error propagation in
computing the flux distributions
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You derive a system of linear equations using steady state mass

balances for a metabolic network.  You determine that you need to

make a few measurements so that you can calculate all the fluxes

in the system.   With some work, you are able to derive the

following system of equations:

S v = b

4.5 3.1

1.6 1.1
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v2
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b2

 

 
 

 

 
 

You measure b and determine it is:

b =
19.25

6.84

 

 
 

 

 
 

Using these numbers, you get the following result for the fluxes in

the system:

v =
2.9

2.0

 

 
 

 

 
 

Now, you decide to repeat the experiment and you make the

following measurement for b:

b =
19.24

6.85

 

 
 

 

 
 

This time you determine the fluxes in the system are:

v =
7.1

4.1
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Over-Determined System

When the system of flux-balance equations is over-determined, a least-
squares analysis in various forms is used to determine the best steady
state flux distribution.  Such regression finds the best fit of the data to
the flux balances, and therefore represents the best reconciliation and
consistency in the data.

Conditions similar to the determined system are required

Example.

Sc Se[ ] •
vc

ve

 

 
 

 

 
 = Scvc + Seve = b

ST Scvc = ST b Seve( )

vc = SC
T Sc( )

1
SC

T b Seve( ){ }
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Under-Determined System

All real metabolic systems fall into this category

Systems are moved into the other categories by measurement
of fluxes and additional assumptions.

Infinite feasible flux distributions, however, they fall into a
solution space defined by the convex polyhedral cone.

The actual flux distribution is determined by the cells
regulatory mechanisms.

It absence of kinetic information, we can estimate the
metabolic flux distribution by postulating objective functions
that underlie the cell’s behavior.

Within this framework, one can address questions related to
the capabilities of metabolic networks to perform functions
while constrained by stoichiometry, limited thermodynamic
information (reversibility), and physico-chemical constraints
(ie. uptake rates)
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Under-Determined System

A B

C

v1 v2 v3

v4 v5
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Under-Determined System

A B

C

v1 v2 v3

v4 v5

d
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Under-Determined System

A B

C

v1 v2 v3

v4 v5

If v1 = 1 and v3 = 1 (measured), what is
the relation between v2, v4 and v5?
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Under-Determined System

A B

C

v1 v2 v3

v4 v5

d

dt

A

B

C

 

 

 

 

 

 

 

 

 

 

=

1 1 0 1 0

0 1 1 0 1

0 0 0 1 1

 

 

 

 

 

 

 

 

 

 

v1

v2

v3

v4

v5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

0

0

0

 

 

 

 

 

 

 

 

 

 

v4 v5 = 0
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Under-Determined System

A B

C

v1 v2 v3

v4 v5

v4 = v5

v4

v2

1

1

v1=v3=1
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Under-Determined System

A B

C

v1 v2 v3

v4 v5

v4 = v5

v4

v2

1

1

v1=v3=1

If v4 is irreversible

If v2 is irreversible

v1   1
v3   1
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Under-Determined System

A B

C

v1 v2 v3

v4 v5

v4 = v5

v4

v2

1

1

v1=v3=1

If v4 is irreversible

If v2 is irreversible

v1   1
v3   1

ATP

Growth

Maximal ATP Production

Maximal Growth
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Flux Balance Analysis
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FBA - Linear Program

A linear programming problem is formulated
where one finds a solution to the eq. While
minimizing an objective function.

– Minimize (Z)

– Z = (c.v)

For growth, define a growth flux:

Constraints to the LP problem:

bvS =

dm

allM

M
vgrowth
    biomass

ii

iii

i

Xv

v

v

=

=

0

bvS
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Precursors to cell growth

How to define the growth function.

– The biomass composition has been
determined for several cells, E. coli and B.
subtilis.

• This can be included in a complete metabolic
network

– However, only the catabolic network can be
considered that degrades the carbon source
into the 12 biosynthetic precursors and
generates the 3 energy and redox cofactors.
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Applicability of FBA
Stoichiometry is well-known

Limited thermodynamic information is required

– reversibility vs. irreversibility

Experimental knowledge can be incorporated in to
the problem formulation

Linear optimization allows the identification of the
reaction pathways used to fulfil the goals of the
cell if it is operating in an optimal manner.

The relative value of the metabolites can be
determined

Flux distribution for the production of a
commercial metabolite can be identified.  Genetic
Engineering candidates
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Constraints

• Incomplete constraints
– Physicochemical constraints

– Feasible set is a region of flux 

space 

• contains flux vectors that 

satisfy the constraints

• defines the metabolic 

capabilities

• Complete Knowledge
– System specific constraints

• Enzyme kinetics, gene 

regulation

– Initial conditions

– Feasible set single point

F
lu

xA

Flux
B

F
lu

xC

F
lu

xA

Flux
B

F
lu

xC
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Defining the constraints

Mass, energy, and redox balance constraints

– Stoichiometry based

• “hardwired”

• well known

v=  Internal Flux

b= Exchange Flux

Metabolic Reaction Network Dynamic mass balances

Steady State Conditions

S - stoichiometric matrix (m x n)
v - flux distribution vector (n x 1)

A B

System Boundary

v1 v2

v3

v5

v6

v7

C

D

E

Extra-

cellular
E D2 + Biomass

v4

vgrowth

Intra-

cellular

b1
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Defining the constraints

Identify a specific point within the applicable
constraints under any given condition

Linear programming - Determine the optimal
utilization of the metabolic network, subject to
the P/C constraints, to maximize the growth of
the cell

F
lu

x A Flux
B

F
lu

x
C Assumption:

The cell has found the optimal solution by

adjusting the system specific constraints

(enzyme kinetics and gene regulation)

through evolution and natural selection.

I will find the optimal solution by linear

programming
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Flux balance analysis:

Quantitative Analysis
of the Metabolic Flux

Map Check
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Acetate Carbon Source

Experimental reconstruction
of the flux cone
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Acetate-Oxygen PhPP

Acetate Uptake Rate
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Acetate-Oxygen PhPP

Acetate Uptake Rate
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Acetate-Oxygen PhPP

Acetate Uptake Rate

O
x
y
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Growth Rate
Increases
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Acetate-Oxygen PhPP

Acetate Uptake Rate

O
x
y
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e 
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a
te

Hypothesis:

Metabolic regulation will drive the

operation of the metabolic network

toward the line of optimality
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Experimental program

to test the in silico derived
hypothesis
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Methods
Batch E. coli K12 on acetate M9 media at 37oC.

Titration of the initial acetate concentration to
control the acetate uptake rate (0.3 – 4 g/L)

Simultaneously measured the parameters to
reconstruct the phenotype phase plane
– Acetate uptake rate

• HPLC

– Oxygen uptake rate

• Mass transfer measurement,Respirometer, Gas
analyzer

– Growth rate

• Turbidity (A600 & A420) and Cell counts
(Coulter Counter)

– By-product production (Only CO2 – Not measured)
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Acetate Data

y = 0.91x + 2.94

R2 = 0.92
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Acetate 3-D PhPP
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Predictive Capability
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Succinate

Experimental reconstruction
of the phenotype phase plane
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Flux balance analysis:

What if we are wrong?

Map Check
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Always valid?

FBA and linear optimization does
not always correctly predict the
behavior of E. coli

Why???

How can we test the FBA
framework???
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We are wrong
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But we are also right!!!
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Testing our predictions

Map Check
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Mutant Analysis

Using flux balance analysis
to study the effect of

gene deletions
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Prediction Accuracy
Experimental/Predictions

Edwards and Palsson (2000) PNAS

Gene Glucose Glycerol SuccinateAcetate Gene Glucose Glycerol SuccinateAcetate

aceEF -/+ pgl +/+

aceA -/- pntAB +/+ +/+ +/+ +/+

aceB -/- glk +/+

ackA +/+ ppc +/+ -/+ +/+ +/+

acs +/+ pta +/+

acn -/- -/- -/- -/- pts +/+

cyd +/+ pyk +/+

cyo +/+ rpi -/- -/- -/- -/-

eno -/+ -/+ -/- -/- sdhABCD+/+

fba  -/+ tpi  -/+ -/- -/- -/-

fbp +/+ -/- -/- -/- unc +/+ +/+ -/-

gap -/- -/- -/- -/- zwf +/+

gltA -/- -/- -/- -/- sucAD +/+

gnd +/+ zwf, pnt +/+

idh -/- -/- -/- -/- pck, mez -/- -/-

ndh +/+ +/+ pck, pps -/- -/-

nuo +/+ +/+ pgi, zwf -/-

pfk -/+ pgi, gnd -/-

pgi +/+ +/+ pta,acs -/-

pgk -/- -/- -/- -/- tktA, tktB -/-
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Testing our predictions:

High throughput analysis
of FBA gene deletion
results

Map Check
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Gene deletion analysis

Badarinarayana, V., Estep, P.W., 3rd, Shendure, J.,
Edwards, J., Tavazoie, S., Lam, F. and Church,
G.M. (2001) Selection analyses of insertional
mutants using subgenic-resolution arrays.
Nat Biotechnol, 19, 1060-1065.
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Gene deletion analysis

Test the FBA predictions for mutant growth
rate for ALL gene mutants at one time.

Random, high-density, tagged insertional
mutagenesis of the E. coli genome.

Negative selection on the library of mutants.

Read-out to determine population-wide
changes in representation... Under a specific
negative selection, disruption of which
genomic sequences results in reduced
growth rates?
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Transposon mutagenesis

No Selection Selection 1

Gene X

Km

Gene X

KmKm

Km

Gene X

KmKm

Gene X

Gene X

Km

Gene X

KmKm

Cells lost under selection

Outgrowth
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Gene deletion analysis

“suicide” vector (R6K -ori; pir-strain restricted)

Encodes variant of the Tn10 transposase with reduced
specificity for hot spots.

transposon element carries kan marker & MCS.

T7 promoter

IS10R         MCS                      kan               IS10R

R6K ori           amp       tnp* (Ptac) lacIq

T7    B2

Badarinarayana, et al. (2001) Nat Biotechnol
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Labeling the DNA

Isolated Genomic

DNA

Tn

Restriction Site

Tn

Ligate Y-linker

No Amplification

Exponential Amplification

PCR

T7

In vitro

Transcription

RNA

Reverse Transcription

with Cy5-dUTP

Hybridize to

Microarray

Badarinarayana, et al. (2001) Nat Biotechnol
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Gene deletion analysis

Badarinarayana, et al. (2001) Nat Biotechnol
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Gene Deletions and FBA

Badarinarayana, et al. (2001) Nat Biotechnol
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Suboptimal mutants

Mutants will not behave
optimally

Regulatory constraints can be
adjusted to optimize the system
subject to the physicochemical
constraints

Predictions of the initial behavior
of mutants
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Improved Growth Predictions

Segre, et al. (2002) PNAS
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Improved Growth Predictions

Segre, et al. (2002) PNAS


