
  
Short Abstract —We present a method for obtaining 

analytical solutions for a large class of MEs that are relevant to 
gene regulatory networks. Our method provides the time-
dependent solution as well as the stationary distribution, and it 
can be applied to networks of arbitrary size that fulfill a certain 
set of broad conditions. We also demonstrate an equivalence 
between stochastic reaction rates, non-exponential waiting 
times and memory kernels, thereby extending a classic result 
by Montroll and Weiss [1]. This result is helpful when 
analyzing different types of experimental data and for the 
biological interpretation of non-linear reaction rates and 
waiting times. 
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I. INTRODUCTION 
OST cellular processes are orchestrated by complex 
gene networks, which are subject to significant 

expression noise. Recent experiments in eukaryotes [2-4] 
and prokaryotes [5-7] have shown that mRNA and protein 
levels can vary by several orders of magnitude, and 
fluctuations can have an auto-correlation time that is of at 
least the same order of magnitude as the cell-cycle, even 
between genetically identical cells in a homogeneous 
environment [8,9]. 

Despite an ever-increasing amount of evidence suggesting 
that cells possess strategies to regulate the noise levels in 
different gene networks, the precise sources of variability, 
how the noise is harnessed and the possible functional roles 
for noise remain poorly understood. 

II. RESULTS 
 The most rigorous stochastic models are based on the 
Master Equation (ME), but solving the ME is very 
challenging and exact solutions exist for only a handful of 
systems [10-13]. We present full analytical solutions for 
separable MEs, the class of MEs where the creation and 
degradation rates can be arbitrary functions of time but do 
not depend directly on the state of the ME. 
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 An important example of non-linear separable MEs that 
can be solved using our framework are mixture models, 
where the reaction rates are modeled as stochastic processes. 
We demonstrate how these types of non-linearities can be 
represented as non-exponential waiting times and/or 
memory kernels. 
 Importantly, the availability of the full solution to the ME 
allows us to directly compare different models of gene 
regulation in an unbiased manner. We present several 
different models, and we find that the best fits for single-cell 
RT-qPCR data and genome-wide single-cell RNA-Seq data 
[13] are obtained for a Poisson-Jacobi (PJ) model, a model 
that generalizes previous results [14]. Furthermore, we 
derive a generic scaling law, demonstrating that the 
magnitude of the noise is proportional to the square root of 
the time-scale of the fluctuations for both mRNAs and 
proteins. We also find that this scaling is supported by 
fluorescent protein time-series data [9].  
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