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Outline

• Introduction: Cell cycles, genetic regulatory networks, and 
phenotypic development

• Phenotypes, mutations, and genetic variation. The canalization 
concept

• Representations of genetic logic: Boolean network models
• Cell type and cycle length in Kauffman network models
• Mapping of the gene strategy tables to Ising hypercubes
• Group theoretic concepts (brief review)
• Symmetry properties of strategies for combinatoric enumeration
• Preserving the phenotype through network interactions
• Summary



  

Cell cycle in Saccharomyces cerevisiae 



  

The brain of yeast 



  

Gene-gene interactions

Gene 1
• Produces protein A
• Activated by protein C
• Suppressed by protein B

Gene 2
• Activated by protein A
• Suppressed by protein C
• Produces protein B

Gene 3
• Activated by protein B
• Suppressed by protein A
• Produces protein C

A B

C

Current state of cell



  

Gene-gene interaction network

1 - A 2 - B

3 - C

Cell cycle (temporal)

1 2

3

Interaction network (logical)



  

Genetic regulation of S. cerevisiae

H.-C. Chen et al, Bioinformatics 20, 1914 (2004)

Temporal states
and logical network
both shown



  

Gene regulation in Escherichia coli

M.M. Babu et al, Nucl. Acid Res. 31, 1234 (2003)

Logical network



  

What about multicellular organisms?

Strongylocentrotus
purpuratus 
(Purple sea urchin)



  

Genetic logic for multiple cells

D.A. Kleinjan et al.
Am. J. Hum. Genet.
76, 8 (2005)



  

Tissue differentiation: Phenotype expression

Development of the sea
urchin embryo from a mass 
of undifferentiated cells 
(blastula)

Each cell type has its own
genetic regulatory cycle

The DNA must contain one
possible cycle per cell type

More complex organisms =
More complex DNA



  

Genetic regulation during development

Endomesoderm
genetic regulatory 
network for S. Purpuratus

W.J.R. Longabaugh et al,
Dev. Biol. 283, 1 (2005)



  

Xenopus laevis (African clawed frog)

Mesodermal genetic regulatory
network
T. Koide et al, PNAS 102, 4943
(2005)



  

Arabadopsis thaliana 

C. Espinosa-Soto et al, Plant Cell 16, 2923 (2004)



  

Resistance to phenotype mutation

J.M. Rendel, Evolution 13, 425 (1959). 
C.D. Meiklejohn, D.L. Hartl, Trends Ecol. Evol. 
17, 468 (2002). 

Drosophila sp.



  

Canalization: A biologist’s view

C.H. Waddington, Nature 150, 563 (1942).
“Canalization and the inheritance of acquired characters”

“Once the developmental path has been canalized, it is to be 
expected that many different agents, including a number of mutations 
available in the germplasm of the species, will be able to switch 
development into it.  By such a series of steps, then, it is possible that 
an adaptive response can be fixed without waiting for the occurrence 
of a mutation.”

Canalization is mediated by “developmental 
reactions [that] are adjusted so as to bring 
about one definite end result regardless of 
minor variations in conditions during the 
course of the reaction.”



  

Canalization: Allowing evolution to work offline?

Active Inactive

Expression of new phenotype due to changing conditions

Mating display (Lethal) Camouflage Better hunting ?

Fixed phenotype

ActiveInactive



  

Genetic interactions in the eyes of a physicist

I. Shmulevich et al, Proc. IEEE 90, 1778 (2002)



  

Kauffman’s genetic logic model

S.A. Kauffman, “Metabolic stability and epigenesis in randomly 
constructed genetic nets,” J. Theor. Biol. 22, 437 (1969)

• Replace each gene with a 
Boolean logic element having 
two states, “off (0)” and “on (1)”
• Genes are randomly 
connected to k other input 
genes in a network 
• The response of each gene to 
its k inputs is given by a 
randomly chosen Boolean 
strategy table

i1

i2

i3

i

k=3
0

0

1

1



  

100

Gene-gene interaction network

1 - A 2 - B

3 - C

Cell cycle (temporal)

1 2

3

Interaction network (logical)

001

010

Current state of system

00  0
01  0
10  1
11  0

in  out

100 -> 010 -> 001 -> 100



  

Cycles in a random Boolean network

N=5, k=3

1

2

34

5



  

Cycles in a random Boolean network

I. Shmulevich et al, Proc. IEEE 90, 1778 (2002)

Kauffman: Each attractor corresponds to a cell type



  

Internal homogeneity

B. Luque et al, Physica A 284, 33 (2000)

Avg period increases exponentially with N in 
chaotic regime; as a power of N in the ordered 
regime; intermediate at boundary.

p=0.5
00 1
01 0
10 1
11 0

p=0.75
00 0
01 0
10 1
11 0

p=0.75
00 1
01 1
10 1
11 0

p=1.0
00 1
01 1
10 1
11 1



  

Values of k in real genetic networks: E. coli

H.W. Ma et al, BMC Bioinformatics
5, 199 (2004)

H.W. Ma et al, Nucl. Acids Res.
32, 6643 (2004)



  

Small values of k and much autoregulation

Yeast transcription regulatory network structure
R. Dobrin et al, BMC Bioinformatics 5, 10 (2004)



  

Classifying strategies

Number of strategies: 22k

k  Ns 
2 2
3 16
4 256
5 65536
6 4294967296
7 18446744073709551616
8 Much larger than Avogadro’s number

Due to combinatoric explosion, it is not 
possible to reach k=10 by direct inspection



  

Classifying k=2 strategies

V. Kaufman et al, PRE 72, 046124 (2005)

Sensitive to
only one input

Sensitive to 
one state
of one input

Fixed Sensitive to
both inputs

(Acts like k=1)

p=1 p=0.5 p=0.75 p=0.5



  

Minority game for an evolving N-K network

K.E. Bassler, C. Lee, Y. Lee, PRL 93, 038101 (2004)

•System of N nodes is initialized with fixed K.  All nodes are assigned 
an unbiased strategy (equal number of 0s and 1s). 

•Repeatedly update the network until the attractor is reached.

•For each update on the attractor, determine whether “0” or “1” is the 
output of the majority of the nodes.
•Assign a “point” +1 to all nodes in the majority on each update.
•The node which is in the majority most often (has the most “points”) 
loses the game and is assigned a new randomly chosen unbiased 
strategy.  This completes an “epoch.”

•Repeat the procedure for the new network.



  

Fourteen k=3 classes of strategies with equal 
evolutionary advantage

K.E. Bassler, C. Lee, Y. Lee, PRL 93, 038101 (2004)



  

Classifying k=3 strategies

K.E. Bassler, C. Lee, Y. Lee, PRL 93, 038101 (2004)

p

Strategies in the same class have the same evolutionary
advantage when the network is allowed to evolve under 
some rule.

How to identify classes?  What about k>3?



  

Map strategies to Ising k-hypercubes

k=2 k=3

k=4



  

Example: k=2

10 11
00 01

Each strategy group contains all objects in a particular group 
orbit of the Ising hypercube symmetry group plus parity



  

Counting strategy classes

k  Ns 
2 2
3 16
4 256
5 65536
6 4294967296
7 18446744073709551616

All strategies correspond to all states of the k-hypercube.

We can identify the total number of strategy classes by 
counting the number of group orbits that exist for the k-
hypercube.

Nc

-
4
14



  

Permutations and Cyclic Decomposition

Given an ordered set of elements, a permutation is a reordering of 
that set where each element occurs only once.

“game”     “emag”     “ameg”   “eagm”
{1,2,3,4}  {4,3,2,1}   {2,3,4,1}  {4,2,1,3}

Cyclic decomposition: Consider the permutation {4,2,1,3} of 
{1,2,3,4}.  Repeated applications of this permutation result in a 
cycle:
game -> eagm -> maeg -> game

The permutation can be written in terms of cycles of elements:
(2)(143)



  

Basic Group Theory



  

Orbit-counting theorem

Counting the number of classes for higher k:
•Identify the symmetry operators of the k-hypercube with parity
•Write these symmetry operators in terms of cycles
•Find the number of fixed points for each symmetry operator

Total number of classes PG

|G|: number of symmetry operators (generators) g
Xg: the set of elements in X that are left invariant by g

The symmetry group for the k-hypercube is isomorphic to the hyperoctahedral 
group On with n=k, which has n!2n symmetry operations



  

Example: k=2

(1)(2)(3)(4) E
(1243) E
(3421) E
(14)(23) E
(12)(34) E
(13)(24) E
(14)(2)(3) E
(23)(1)(4) E

(1)(2)(3)(4) P
(1243) P
(3421) P
(14)(23) P
(12)(34) P
(13)(24) P
(14)(2)(3) P
(23)(1)(4) P

24

2
2
22

22

22

23

23

0
2
2
22

22

22

0
0

48/16 = 4 classes
Identifying generators by inspection is difficult for k>3

•Identify the symmetry operators of the k-hypercube with parity
•Write these symmetry operators in terms of cycles
•Find the number of fixed points for each symmetry operator

k!2k = 8 for k=2



  

Arbitrarily high k: Cycle representation of the 
Zyklenzeiger group

M.A. Harrison, J. SIAM 11, 806 (1963)



  

Example: k=2

(1)(2)(3)(4) E
(1243) E
(3421) E
(14)(23) E
(12)(34) E
(13)(24) E
(14)(2)(3) E
(23)(1)(4) E

(1)(2)(3)(4) P
(1243) P
(3421) P
(14)(23) P
(12)(34) P
(13)(24) P
(14)(2)(3) P
(23)(1)(4) P

24

2
2
22

22

22

23

23

0
2
2
22

22

22

0
0

x1
4 + 3x2

2 + 2x1
2x2 + 2x4

x1
4

x4

x4

x2
2

x2
2

x2
2

x1
2x2

x1
2x2



  

Generating polynomials through k=5



  

Class structure: Isomer chemistry

Substitute a term of the form Aa+Ba for each xa

k=2 (max 16)

K=3 (max 96) K=4 (max 768)



  

Class structure for k=5

K=5 (7680)



  

Characteristic polynomials

Do two randomly chosen strategies belong to the same class?

Each class has a unique characteristic polynomial.

Construct the adjacency matrix: Aij=1 if link, 0 if no link
Place the strategy on the diagonal
Find the determinant

a 1 1 0
1 b 0 1
1 0 c 1
0 1 1 d

Det: -ab-ac-bd-cd-abcd

-4A2+A4

-4AB+A2B2

-A2-2AB-B2+A2B2

-2AB-2B2+A2B2



  

Geometric strategy classification

We classify a given strategy depending on the number of 
edges, faces, and higher dimensional objects having all entries 
the same, p(d,k), d<=k.  This represents varying degrees of 
canalization.

h=1
p(1,2)=4
p(2,2)=1

h=0.5
p(1,2)=2
p(2,2)=0

h=0.75
p(1,2)=2
p(2,2)=0

h=0.5
p(1,2)=0
p(2,2)=0



  

Recursion relations

We can think of a k+1 strategy as being assembled out of two k strategies

+ =

00 1
01 1
10 1
11 1

00 0
01 0
10 0
11 0

000 1
001 1
010 1
011 1
100 0
101 0
110 0
111 0

p(1,2)=4
p(2,2)=1

p(1,2)=4
p(2,2)=1

p(1,3)=8
p(2,3)=2
p(3,3)=0



  

Recursion relations

Improving on the maximum bound

+ =

00 1
01 1
10 1
11 1

00 1
01 0
10 0
11 0

000 1
001 1
010 1
011 1
100 1
101 0
110 0
111 0

p(1,2)=4
p(2,2)=1

p(1,2)=2
p(2,2)=0

p(1,3)=7
p(2,3)=1
p(3,3)=0

6 <= p(1,3) <=8



  

Lower symmetry cases

+ =

00 1
01 1
10 0
11 1

00 1
01 0
10 0
11 0

p(1,2)=2
p(2,2)=0

p(1,2)=2
p(2,2)=0

p(1,3)=6
p(2,3)=0
p(3,3)=0
asymmetric

+ all possible rotations

+ all possible rotations

OR

p(1,3)=5
p(2,3)=0
p(3,3)=0

4 <= p(1,3) <=6

OR

+ all possible rotations
p(1,3)=6
p(2,3)=0
p(3,3)=0
symmetric



  

Bounding canalization

Although the fraction of fully canalizing functions drops rapidly with 
k, the fraction of partially canalizing functions remains large.



  

Effective k may be lower than actual k

G.D. Bader et al, Trends Cell Biol. 13, 344 (2003)



  

Summary

• Boolean network models can be used to represent genetic 
regulatory networks.

• The number of possible strategies grows rapidly with connection 
degree k; the number of network states grows rapidly with 
network size N.

• Nodes which respond to only a fraction of their inputs have an 
effectively reduced k, which reduces the available phase space.

• Mapping of the gene strategy tables to Ising hypercubes allows 
us to use symmetry properties to enumerate strategy classes.

• By assembling k+1 strategies out of k strategies recursively, we 
can put bounds on the amount of canalization present in the k+1 
strategies.

• A significant fraction of strategies are at least partially canalized, 
reducing the complexity and cycle length of the logical network.


