
  
Short Abstract — Because rare but important regulatory 

molecules can cause a great amount of intrinsic noise within a 
cell, stochasticity is of crucial importance in the analysis of gene 
regulatory problems. Such systems are frequently modeled 
with jump Markov processes, whose probability distributions 
evolve according to the Chemical Master Equation (CME). In 
this poster we will present recent Finite State Projection (FSP) 
based approaches to solving the CME.   
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I. PURPOSE 
he cellular environment is abuzz with noise due to 
random events that govern the motion of cellular 

constituents. Intriguing examples of mechanisms that rely on 
noise include stochastic switches, coherence resonance in 
oscillators, and stochastic focusing for the amplification of 
signals [1]. Given the importance of noise induced stochastic 
fluctuations in the cell, quantitative modeling and analysis of 
these fluctuations is of paramount importance for the 
understanding and synthesis of biological networks.  

The topic of this presentation is the mathematical 
modeling and analysis of discrete stochastic chemically 
reacting systems, with an eye on applications to gene 
regulatory networks. Essentially, for an N species chemical 
reaction, the infinite dimensional Chemical Master Equation 
(CME) [2] is the ordinary differential equation that describes 
the evolution of probability measure along an N-dimensional 
non-negative integer lattice.   

Although we will review a few recent Kinetic Monte 
Carlo approaches to generate sample trajectories of the CME 
[3-5], this presentation will focus primarily on Finite State 
Projection (FSP) based approaches to solving the CME.  We 
will give an intuitive understanding of our original FSP 
approach [6], and we will illustrate the power of the FSP 
approach to (1) provide approximations to the CME with 
strict accuracy guarantees; and (2) enable exact 
computations of certain important quantities such as switch 
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rates.   
We will intuitively describe four systems theory based 

modifications and enhancements that enable large reductions 
and increased efficiency of the FSP with little or no loss in 
accuracy. The first reduction separates the system into slow 
and fast partitions and then utilizes perturbation theory to 
average over fast dynamics and project the system to its 
slow manifold [7,8].  The second scheme utilizes the 
linearity and time invariance properties of the CME to solve 
the FSP problem with an equivalent sequence of smaller 
dimensional systems over short time intervals [9]. The third 
reduction scheme recognizes that one often does not require 
the full solution to the CME. Instead one may specify an 
output quantity (switch rate, population expectation, etc...) 
and obtain an equivalent minimal realization of the system 
[10]. The fourth reduction scheme for the FSP solves the 
CME not on its full integer lattice but on much coarser grid 
of interpolation points [11]. 
 Each of these reduction schemes will be illustrated and 
compared on two biological examples. The first example is a 
stochastic model of Gardner’s genetic toggle switch [12] and 
the second is a toy model of the heat shock mechanism in E. 
coli. 
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