
T cell activation is important for orchestrating adaptive 
immune responses, and its aberrant regulation can lead 
to autoimmunity. The cost of infectious diseases and 
autoimmune disorders has motivated much experimen-
tal research aimed at understanding how T cell activa-
tion is regulated. These studies have led to important 
discoveries regarding how T cells develop in the thymus, 
how they recognize antigen-derived peptide–MHC 
complexes in the periphery, and the proteins that medi-
ate T cell signalling1–10. In spite of these major advances, 
the mechanistic principles that govern T cell activation 
remain poorly defined.

T cell activation involves complex interactions 
between numerous proteins and spans a range of 
timescales. Molecular interactions between membrane-
bound receptors and their ligands occur in seconds 
and initiate downstream signalling cascades which 
then determine gene transcription programmes. 
These processes, which occur on the membrane, in the 
cytoplasm and in the nucleus, are subject to feedback 
regulation, last minutes to hours and can induce the 
secretion of components into the surrounding tissue. 
In turn, the tissue environment (including the cytokine 
milieu) can influence molecular interactions in the 
signalling pathways. The complexity of these multi-
scale cooperative processes often makes it difficult to 
intuitively develop an understanding of the mecha-
nisms underlying experimental observations. This 
complexity is exacerbated by the stochastic nature of 
these processes, which can make the response of each 
cell unique.

A key challenge in this field of research is to under-
stand how the biochemical reactions that define the 
complex T cell signalling networks occur stochastically, 
but in concert, to mediate specific functional outcomes. 
Recently, several studies of the T cell receptor (TCR) 
signalling pathway have confronted this challenge by 
combining theoretical and computational approaches 
(approaches that are established in the fields of statisti-
cal physics and engineering) with genetic, biochemical 
and imaging experiments. For such an interdisciplinary 
approach to be beneficial, computation and theory must 
generate mechanistic hypotheses and associated predic-
tions that can be tested by experimental methods. The 
effectiveness of combining computational approaches 
with modern experimental methods is beginning to 
enable basic researchers in immunology to better define 
mechanistic principles that describe how the T cell  
signalling network is regulated.

Why use computational models?
Computational studies of cell signalling processes can 
be divided into two broad classes based on their goals 
(FIG. 1). The first type of study (type I) aims to convert 
a detailed conceptual knowledge of the signalling path-
way and measured values of parameters (such as protein 
concentrations and rates of biochemical reactions) to a 
quantitative description. Such a computational model can 
then be used to obtain numerically accurate estimates of a 
change in cellular response when conditions are changed 
by a quantitatively specified amount. Examples of systems 
for which experimental and computational studies have 
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Abstract | T cells are activated when extracellular stimuli, such as a ligand binding to the  
T cell receptor, are converted into functional outputs by the T cell signalling network. T cell 
receptor signalling is a highly complex, stochastic and dynamic process involving many 
interacting proteins. This complexity often confounds intuition, making it difficult to develop 
mechanistic principles that underly experimental observations. In this Review, we describe 
how computational approaches can partner successfully with biological experimentation to 
help address this challenge, and we illustrate this paradigm by summarizing recent work that 
shows new aspects of the T cell signalling network.
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been combined to provide such a detailed description 
are the cell cycle of budding yeast11 and chemotaxis in 
Escherichia coli12. our knowledge of the TCR signal trans-
duction network has not reached this point of maturity, 
and accurate measurements of many relevant param-
eters (protein concentrations and rates of biochemical 
reactions) are not available. At present, computational 
models can provide numerically accurate descriptions of 

only small signalling modules present in T cells. This can 
motivate studies of how a particular signalling module 
may interact with other pathways, but by itself has lim-
ited value for aiding the discovery of new phenomena and 
mechanisms.

Computational research that aims to elucidate new 
mechanisms relevant to T cell signalling (a type II study) 
may be sparked by experimental observation of a new and 

Figure 1 | Types of computational and theoretical research methods. Theoretical and computational research  
can be classified into two general types depending on their goals. a | Type I research constructs models that describe 
experimental observations in quantitative detail. Detailed knowledge of the signalling pathways and parameters (such 
as rates of biochemical reactions and numbers of signalling proteins) is required. The schematic shows an example of 
such a pathway: chemotaxis of Escherichia coli. b | Type II research complements experiments to aid the discovery  
of new aspects of the signalling machinery. Here, the emphasis is on generating hypotheses that describe a qualitative 
phenomenon robustly and helping the design of experiments that can test predictions to discriminate between viable 
hypotheses. A quantitatively accurate description is not the goal. The schematic shows the T cell receptor (TCR) 
signalling pathway as an example. Theoretical studies could make a qualitative prediction that the T cell signalling 
network contains motifs which result in cells expressing either high levels of active signalling proteins or very few, and 
experiments could test its veracity, thereby leading to new mechanistic insights. APC, antigen-presenting cell; DAG, 
diacylglycerol; ERK, extracellular signal-regulated kinase; GRB2, growth factor receptor-bound protein 2; InsP

3
,  

inositol-1,4,5-trisphosphate; LAT, linker for activation of T cells; MEK, MAPK/ERK kinase; PLCγ, phospholipase Cγ; 
PtdIns(3,4)P

2
, phosphatidylinositol-3,4-bisphosphate; RASGAP, RAS GTPase-activating protein; RASGRP, RAS 

guanyl-releasing protein; SOS, son of sevenless homologue; ZAP70, ζ-chain-associated protein kinase of 70 kDa.
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unexplained phenomenon. Models can be formulated 
based on what is known about the signalling network 
and hypotheses that may explain the new observation. 
Feedback regulation and the many possible interactions 
between signalling components lead to combinatorial 
complexity, which often makes it difficult to parse the 
various implications of a hypothesis. Modern computers 
and computational methods can keep track of every pos-
sible event that could occur in keeping with a specified 
hypothesis and reveal how a particular event influences 
the qualitative nature of the cellular responses. For exam-
ple, one could determine whether a certain hypothesis 
results in a graded or sharp dose–response curve. Results 
from these studies can be counter-intuitive because of the 
complexity of the signalling pathways and can show that 
some hypotheses that seemed plausible cannot explain the 
observed phenomena or imply cellular behaviour that is 
inconsistent with known facts. using computational mod-
els to a priori dismiss such hypotheses can save fruitless 
experimental efforts to test them. Computational studies 
also reveal why a hypothesis does not explain a puzzling 
observation, and this helps to identify key missing areas 
of knowledge and generate new hypotheses.

Several parameters will be unknown when exploring 
new phenomena or pathways through computational 
approaches. Diverse biological effects are fairly robust to 
variations in most parameters13–16 — that is, the qualitative 
response to a stimulus is stable despite variations in many 
parameters over wide ranges. It is likely that the ‘wiring’ of 
biological networks has evolved to exhibit such robustness. 
Therefore, if the outcome of a proposed signalling pathway 
fits with a new observation only when many parameters 
are in narrow ranges, it probably does not reflect the true 
biological network. However, biological networks are also 
sensitive to variations in a few key parameters or network 
characteristics16. For example, T cells can discriminate 
between numerous ligands with closely related affinities. 
Theoretical and computational approaches can be used to 
establish whether a proposed signalling network exhibits 
a response robustly and sensitively and identify key fea-
tures and parameters that confer this property. This can 
be accomplished by ‘brute force-’ or Monte Carlo-based17 
calculations (BOX 1), in which parameters are varied, and 
by theoretical analyses.

Computational models can be used to mimic experi-
ments with cells derived from animals with mutations 
that inhibit or enhance a particular pathway. In turn, 
results of such calculations can help to inform the 
design of experiments that will sensitively discriminate 
between viable hypotheses that are predicted to describe 
an observation of unknown origin equally well18,19. These 
results can also identify which key parameters need to be 
measured. Alternating iteration between experimental 
tests and further computations can potentially provide a 
mechanistic understanding of a new aspect of the T cell 
signalling network and its function. Most research that 
yields important results usually involves both type I and 
type II computational studies. For example, a quanti-
tatively accurate model of a well-established signalling 
module may be generated first (a type I study). Theory, 
computation and complementary experiments would 

then be pursued to establish how this module func-
tions when integrated in the complex T cell signalling  
network (a type II study).

Types of theoretical and computational models. The 
generation of a computational model begins by deciding 
how to describe the relevant signalling components. For 
example, as is done to aid protein structure determina-
tion, one could describe each protein in atomic detail 
(that is, each atom and its interactions with others are 
described). Despite the power of modern computers, it 
is not practical or necessary to provide such a detailed 
description of the many proteins engaged in dynamic 
processes during T cell signalling in order to study cel-
lular responses. Rather, each protein is presumed to 
interact with others according to specified rules (for 
example, a TCR binds cognate peptide–MHC ligands) 
and parameters (for example, the on-rate of an interac-
tion). The rules are either established facts or predictions 
to be tested.

There are several commonly used computational 
methods that have varying degrees of complexity and that 
require differing amounts of computational time (BOX 1). 
Importantly, a particular computational method is cho-
sen according to its suitability for answering the question 
of interest. For example, if stochastic effects arising from 
the intrinsically random nature of biochemical reactions 
(intrinsic noise)20 or cell–cell variations in protein expres-
sion (extrinsic noise)21 are thought to affect a phenomenon 
of interest, one should not use a computational method 
that ignores stochastic fluctuations. 

Finally, we note that theory and computation are 
not synonyms. Results from computational stud-
ies show how a biological system would behave if an 
input hypothesis is correct. Theoretical analyses and 
calculations of simplified versions of complex mod-
els can help the investigator to understand why a 
hypothesis worked or failed and to identify the key 
elements and parameters of a viable hypothesis that 
should be subjected to experimental tests. Here, we 
describe a small subset of studies that have success-
fully used complementary theoretical, computational 
and experimental approaches to elucidate the complex 
TCR signalling network.

Membrane-proximal feedback regulation
Stimulation of the TCR and/or co-stimulatory and 
cytokine receptors with different ligands (inputs) leads 
to diverse biological outcomes (such as the development 
and differentiation of thymocytes4,6 and the prolifera-
tion, differentiation22 and anergy23 of mature T cells). 
A specific outcome is reached by inputs that are within 
a certain range of quality and quantity, whereas other 
outcomes are reached by inputs in a different range. 
Feedback regulation can mediate this type of stimulus–
response behaviour. The TCR signalling pathway 
is replete with modules that are subject to feedback 
regulation24,25. Two recent studies19,26 show how com-
plementary in silico and in vitro investigations can be 
used to determine how feedback loops enable T cells to 
translate certain types of input into decisions.
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Digital signalling and hysteresis during RAS activation 
in lymphocytes. when cell surface receptors are weakly 
stimulated — for example, by just a few cognate ligands 
— the basal level of active downstream signalling mol-
ecules is maintained. A continuous (analogue) increase 

in the number of stimulatory ligands could lead to two 
types of response (FIG. 2). The population of cells could 
increase the number of active downstream signalling 
molecules in a continuous manner (this is referred to as 
an analogue response). Alternatively, beyond a threshold 

 Box 1 | Types of theoretical and computational approaches

ordinary differential equations (oDEs)
ODEs can be used to study phenomena for which the intrinsic stochastic nature of the biochemical reactions is 
unimportant and signalling components are assumed to be uniformly distributed in the cell membrane or the 
cytoplasm. ODE-based calculations97 are appropriate if the relevant proteins are expressed in large amounts and the 
spatial organization of signalling components is irrelevant. These calculations yield average concentrations of active 
signalling molecules in a population of cells, similar to results obtained from a western blot assay. Effects of cell–cell 
variations in protein expression (extrinsic stochastic effects) can be described by ODEs by carrying out several 
calculations using experimentally determined distributions of expression levels. Of the commonly used methods, 
such computations require the least amount of computer time (see the figure).

Partial differential equations (PDEs)
PDEs can be used to study phenomena for which the spatial organization and reorganization of signalling 
components, mediated by unknown clustering mechanisms, protein diffusion or active transport of molecules,  
are important77,98 but stochastic effects are not. Imaging experiments that observe the spatio-temporal evolution  
of signalling components complement PDE-based calculations as they indicate how mean protein concentrations 
vary with time in different locations. Such computations require more computer time than ODE-based calculations.

monte Carlo algorithms
These methods are used to study phenomena for which intrinsic stochastic fluctuations are important, and  
they require the most computer time. The Gillespie method38,99,100 is a widely used algorithm among the various  
Monte Carlo techniques developed recently100,101. Assays that can analyse single cells in a population (for example, 
flow cytometry) are experimental counterparts. Such experiments reflect both intrinsic and extrinsic stochastic 
effects. Variants of these methods can be used to investigate issues in which the spatial patterning of signalling 
components is unimportant or significant. Experimental imaging of single cells and spatially inhomogeneous, 
stochastic calculations provide the most detailed information but also require large amounts of computer time.

Informatics and logic-based methods
Analysing high-throughput data on signalling responses using principal component analysis and partial least square 
regression has yielded important information on other cell types102,103 and more studies of this type are required to further 
investigate lymphocytes. These methods provide ‘smart’ ways to correlate complex data. The correlations are interpolated 
or extrapolated to predict outcomes as inputs are varied. However, these methods rarely provide mechanistic insights; so, 
given the focus of this Review, we do not discuss them further. Similarly, models based on Boolean104,105 and Fuzzy logic106 
that have been used recently to analyse cell signalling networks and provide some mechanistic insights are also not 
discussed as these models are distinct from the physical molecular models discussed in this Review.

Degree of complexity
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stimulus level, the population of cells could split into 
two subpopulations — one that maintains basal signal-
ling, and another that turns on a large proportion of a 
downstream signalling molecule (this is referred to as 
a digital response).

Early markers of TCR-initiated signalling (such as acti-
vation of members of the extracellular signal-regulated 
kinase (ERK) family) exhibit digital responses19,26. Active 
RAS family proteins27,28 target many downstream signal-
ling pathways, and a recent study suggests that digital sig-
nalling in lymphocytes is controlled by the way in which 
RAS is activated19. In lymphocytes, RAS is activated by two 
families of guanine nucleotide exchange factors (GEFs), 
RAS guanyl releasing proteins (RASGRPs) (RASGRP1 
and RASGRP2)29,30 and son of sevenless homologue (SoS) 
proteins (SoS1 and SoS2)31–33, which convert inactive 
RASGDP to active RASGTP.

After receptor stimulation, SoS is targeted to the 
membrane34 and inhibition of its catalytic domain is 
removed33,35. The binding of RASGTP to an allosteric 
site in SoS leads to a large increase in the enzymatic 
activity of SoS32. Thus, the GEF activity of SoS is subject 
to positive feedback regulation, which can give rise to 
sharp dose–response curves32,36 but does not necessarily 
lead to this result. using mostly known rate constants of 
RAS activation by SoS (FIG. 3a), calculations showed how 
the amount of active RASGTP varies with the amount 
of uninhibited SoS (or stimulus) if the SoS module 
functioned in isolation19. The amount of RASGTP 
produced in a given time depends on the number of 
times each type of relevant biochemical reaction occurs 
during this period (FIG. 3a). Biochemical reactions are 
stochastic events and so the number of times each reac-
tion occurs, and the corresponding amount of RASGTP 
produced, is different for each process (intrinsic sto-
chastic cell–cell variations). For initial exploration of the 
SoS module, these stochastic effects were not studied 
and, therefore, ordinary differential equations (oDEs; 
see BOX 1) were used to calculate the average concen-
tration of RASGTP. For low or high levels of stimulus, 
levels of active RAS are low or high, respectively (FIG. 3b). 

But, for intermediate values of the stimulus, two pos-
sible stable states of RAS activity were predicted for the 
same stimulus level (bistability). one state corresponds 
to high GEF activity because many SoS proteins have 
RASGTP bound to the allosteric site, and the other state 
corresponds to one in which the activity of SoS is low 
because RASGTP is not bound to this site. Thus, feed-
back regulation of the enzymatic activity of SoS leads 
to the bistable behaviour. The prediction of two possible 
states of RAS activity above a threshold stimulus (FIG. 3b) 
suggested that positive feedback regulation of SoS 
might cause the digital signalling in lymphocytes. As 
most parameters were known, this hypothesis emerged 
from a computational study similar to one with a goal of 
a type I study (FIG. 1a). Testing this hypothesis, however, 
required a type II study. 

T cells can be stimulated by few TCR–ligand interac-
tions37 and several T cell signalling proteins are present 
in small copy numbers. Therefore, the number of bio-
chemical reactions that can occur in a given time is 
small, making stochastic cell–cell variations important. 
Computer simulations of part of the T cell signalling 
network (FIG. 1b), including the interplay of RAS activa-
tion by RASGRP and SoS, were carried out using the 
Gillespie algorithm38, which accounts for stochastic 
effects (BOX 1). Several replicate simulations were carried 
out with the same parameters. Each simulation mimics 
the behaviour of a single cell, and results for the amount 
of active RASGTP in all the in silico ‘cells’ were repre-
sented as a histogram. This type of analysis yields results 
analogous to those from studies using flow cytometry in 
which a particular active protein is assayed in individual 
cells in a population.

Many parameters (for example, reaction rates and 
protein copy numbers) required for computer simula-
tions of the network under study are unknown (FIG. 1b). As 
noted previously, it is important to use the computational 
model to establish whether the qualitative outcome of a 
hypothesis is robust to variations in unknown parameters 
before subjecting it to experimental tests. using theoreti-
cal analyses to complement brute-force parameter sen-
sitivity studies, it was shown that the qualitative results 
summarized below are robust if the following conditions 
are met: first, the enzymatic activity of SoS is subject to 
positive feedback regulation; second, RASGRP activity is 
not so high that all RAS proteins are activated before the 
SoS feedback loop can be engaged; finally, RAS GTPase-
activating proteins (RASGAPs) enzymatically deactivate 
active RAS.

Computer simulations showed that, beyond a threshold 
amount of SoS targeted to the membrane, the popu-
lation of cells split into two subpopulations with one 
population exhibiting high levels of active RAS and the 
other not (FIG. 3c). This digital response was dependent 
on positive feedback regulation of SoS. Experiments 
with different amounts of the catalytic domain of SoS 
transfected into jurkat T cells (FIG. 3c), and stimulation 
of receptors of T and B cell lines, as well as primary 
T cells, supported these predictions19. But, because it is 
not feasible to measure RAS activation in single cells, 
these experiments assayed RAS-dependent downstream 

Figure 2 | Digital and analogue responses of signalling networks stimulated 
by continuous increases in stimulus. Digital and analogue responses of cells to a 
continuous (or analogue) increase in stimulus level (for example, ligand concentration).  
If the population of cells continuously increases the level of active signalling molecules 
in response to continuous increases in stimulus, the response is termed analogue. 
If, when above a sharply defined threshold stimulus level, the population of cells splits 
into two subpopulations, one with high levels of active signalling molecules and the 
other with low levels, the response is termed digital. Analogue responses may not enable 
decisive functional outcomes.
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Hysteresis
A biological system’s memory 
of its recent history. For 
example, a cell may respond to 
a certain stimulus weakly if it is 
subject to stimulation for the 
first time, but it may respond 
strongly to the same stimulus 
if it has recently been robustly 
stimulated. 

markers (such as ERK phosphorylation or the expres-
sion of the early activation molecule CD69). one could 
therefore argue that the observed digital signalling was 
due to signalling modules downstream of RAS. 

A combination of theoretical predictions and experi-
mental tests provided evidence indicating that feedback 
regulation of the enzymatic activity of SoS is a domi-
nant factor in enabling digital signalling in lymphocytes. 
It was shown that digital responses, leading to a popu-
lation of cells that exhibit high RAS activity, occur at a 
higher stimulus threshold for RASGRP-deficient systems 
(FIG. 3d) because RASGRP produces the first RAS mol-
ecules that prime the feedback loop that regulates SoS. 
Computations predicted that, although intermediate lev-
els of RASGRP activity led to optimal digital responses, 
RAS signalling is analogue in nature if RASGRP activity 

dominates RAS activation19 (FIG. 3d). So, if high levels of 
RAS activity were to be stimulated by RASGRP alone 
and downstream markers (such as ERK phosphoryla-
tion) exhibited analogue responses, this would indicate 
that digital RAS activation was important for digital 
responses in lymphocytes. Experiments using T and 
B cells stimulated with phorbol 12-myristate 13-acetate 
(PMA) (which causes RAS activation through RASGRP 
only) or using SoS-deficient B cells stimulated through 
the B cell receptor showed purely analogue responses at 
all stimulus doses19 (FIG. 3d).

It was also reported that digital RAS activation was 
accompanied by a phenomenon known as hysteresis19, 
which may enable lymphocytes to integrate signals 
from a series of individual encounters with antigen-
presenting cells (APCs) in vivo39. work resulting in this 
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finding also exemplifies how calculations can suggest 
ways to experimentally test for phenomena that cannot 
be directly assessed owing to technical limitations (for 
example, the inability to assay single cells for RAS acti-
vation). Hysteresis is indicated by the finding that the 
same stimulus dose can induce a higher level of active 
RAS in a population of cells that has previously been 
stimulated robustly than in cells that have not (FIG. 3e). 
when a cell is weakly stimulated for the first time, most 
SoS molecules do not have RASGTP bound to the allos-
teric sites, and resulting active RAS levels are low. For a 
finite period of time, a previously stimulated cell will 
have more SoS molecules with RASGTP bound to the 
allosteric sites. The resulting higher enzymatic activity of 
SoS can lead to RAS activation after weak stimulation. 
Digital signalling (bistability) owing to feedback regula-
tion of SoS implies hysteresis. The predicted hysteresis 
in RAS activity was tested experimentally by measuring 
RAS levels in populations of cells (using western blots). In 
this way, digital RAS activation was tested by inference. 

Interestingly, it was shown that SoS-dependent hyster-
esis allowed cells to exhibit short-term molecular mem-
ory of past encounters with antigen, enabling previously 
stimulated cells to respond robustly to weak signals that 
are not stimulatory for cells not previously exposed to 
the antigen (FIG. 3f ).

Effects of positive and negative feedback regulation on 
T cell sensitivity to antigen. T cells can discriminate 
between agonist, antagonist and non-cognate peptide–
MHC ligands. Germain and co-workers26,40 have sug-
gested that an interesting interplay of feedback loops 
during TCR signalling may underlie this ability. Based 
on experimental results41, they proposed that the proto-
oncogene tyrosine kinase lCK mediates activation of 
its own inhibitor, SH2-domain-containing protein tyro-
sine phosphatase 1 (SHP1; also known as PTPn6). But 
this inhibitory interaction is prevented if active ERK 
molecules, generated by the activation of the mitogen- 
activated protein kinase pathway, phosphorylate  
serine 59 of lCK. The consequences of these positive 
and negative feedback loops were explored using a com-
putational model26. In addition to these feedback loops, 
a simplified model of signal propagation from the TCR 
to RAS activation and a model for the mitogen-activated 
protein kinase pathway leading to ERK activation were 
included. The system was presumed to be spatially 
homogeneous, stochastic effects were ignored and the 
average concentration of various species in a population 
of cells was calculated using oDEs (BOX 1). Altan-Bonnet 
et al.26 made careful estimates of various parameters with 
the aim of obtaining numerically accurate results that 
could be compared with experimental measurements 
(type I study). They also used the computational model 
to predict the consequences of feedback regulation of 
lCK (type II study).

The Germain group’s findings suggest that, whereas 
weak TCR stimulation can lead to lCK recruitment and 
SHP1 activation, ERK activation and concomitant pro-
tection of lCK from the action of SHP1 requires strongly 
stimulatory TCR ligands. This is presumably because 
ζ-chain-associated protein kinase of 70 kDa (ZAP70) 
recruitment and activation (which is a prerequisite for 
ERK activation) is favoured by full phosphorylation of 
TCR chains, a state that is more likely to be reached fol-
lowing stimulation with ligands that bind to the TCR 
strongly. Results from experiments with CD8+ oT-I 
T cells (which are specific for an ovalbumin peptide) 
were consistent with predictions that the transition from 
antagonism to agonism occurred when the number of 
agonists presented exceeded a sharply defined threshold 
(FIG. 4a). More generally, Altan-Bonnet and Germain sug-
gested that the ability of T cells to discriminate between 
different ligands (FIG. 4b) was dependent on the compet-
ing effects of feedback regulation of lCK by SHP1 and 
activated ERK26. They also noted that model predic-
tions matched the qualitative trends of the experimental 
results only if the model was tuned such that ERK activa-
tion was digital. Digital ERK activation in lymphocytes 
has now been suggested to originate in RAS activation 
characteristics19.

Figure 3 | An example of complementary in silico and in vitro studies elucidating 
the function of a feedback loop in the membrane-proximal T cell receptor 
signalling pathway. a | The reactions show activation of RAS at the catalytic site of  
son of sevenless homologue (SOS) and feedback regulation of this activity owing to 
nucleotide-associated RAS binding to the allosteric site (allo) of SOS. The rate constants 
(k) of the reactions in this small network are known from in vitro experiments. SOS with

 

RASGTP bound in the allosteric pocket has 75-fold higher catalytic activity than SOS 
with RASGDP bound. b | Steady states of the mean-field kinetic rate equations show 
production of low and high concentrations of RASGTP (characterized by stable fixed 
points shown in red) at low and high values of total SOS concentration (a measure of 
signal strength), respectively. At the intermediate levels of SOS concentrations three 
states arise; but the states shown in blue are unstable, so cells would not be observed  
in these states. c | Distributions of RASGTP (red histograms) calculated from stochastic 
simulations at low, intermediate or high levels of SOS (twofold increments) in in silico 
‘cells’. At intermediate levels of SOS, a bimodal RASGTP pattern arises. In experiments 
(blue histograms) Jurkat T cells expressing low, intermediate and high levels of SOS

cat
 

(the catalytic domain of SOS without inhibitory domains) were analysed for activation  
of RAS by measuring levels of CD69 or phosphorylated extracellular signal-regulated 
kinase (ERK) expression by flow cytometry. Similar to the computational simulation, 
upregulation of CD69 and phosphorylated ERK expression at intermediate levels of 
SOS

cat
 was bimodal. d | Computational calculations showing RAS activation as a function 

of SOS and RAS guanyl-releasing protein (RASGRP) expression. The results show that 
RASGRP alone activates RAS in an analogue manner. Stimulating Jurkat T cells using 
phorbol 12-myristate 13-acetate (PMA), which activates RAS through RASGRP alone, 
results in analogue ERK activation, regardless of stimulus dose. The blue histograms show 
how phosphorylated ERK is gradually activated, in unimodal distributions, in flow 
cytometry experiments. e | Prediction of hysteresis from stochastic simulations. Points in 
black and red denote RAS activation when in silico cells had either no or high amounts of 
RASGTP initially, respectively. Each pair of these points is calculated as the SOS 
concentration, a measure of the signal strength, is varied. The red and black points do not 
coincide for intermediate levels of SOS concentrations (hysteresis). f | The experiments 
that test these results are based on the following effect of hysteresis in RAS activation. 
The RAS molecules in a lymphocyte reach maximal activation within minutes after a 
strong stimulus is delivered. If the stimulus is withdrawn at this point, RAS activation will 
start to decrease owing to the effect of RAS GTPase-activating proteins (RASGAPs). If a 
suboptimal second stimulus (that is incapable of producing significant RAS activation in 
a resting lymphocyte, such as a low antigen dose) is then applied shortly afterwards, RAS 
activation returns to the maximal level because of hysteresis in RAS activation. However, 
if the second stimulus is given after a long period of time, such that the RAS activation 
has reduced almost to the basal level, the stimulus would fail to produce any significant 
RAS activation (not shown). Because SOS is responsible for the hysteresis in RAS 
activation, the suboptimal second stimulus applied soon after the first will not cause 
maximal RAS activation in SOS-deficient cells. Figure is modified, with permission, from 
REF. 19 © (2009) Elsevier Science.
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MicroRNA
Small (~21–23 nucleotides  
in length), single-stranded 
RNA molecules that regulate 
the expression of genes by 
binding to the 3ʹ untranslated 
regions of homologous target 
mRNAs.

Immunological synapse
A large junctional structure 
that is formed at the cell 
surface between a T cell  
that is interacting with an 
antigen-presenting cell. 
Important molecules involved in 
T cell activation, including the 
T cell receptor, numerous signal-
transduction molecules and 
molecular adaptors, accumulate 
in an orderly manner at this site. 

Kinetic proofreading
A model of T cell activation in 
which a series of sequential 
modifications (such as 
phosphorylation) of the TCR 
needs to be completed for  
the triggering of downstream 
signalling events. TCR 
modifications are reversed if 
the ligand and TCR dissociate 
prior to reaching the terminal 
state of modification. The 
model, therefore, suggests that 
there is a threshold time that a 
TCR needs to remain bound to 
a peptide–MHC complex for 
T cell activation.

The results described above suggest that SHP1 has 
an important role in regulating lCK activity in vitro26. 
Elegant experiments have been carried out using the 
microRNA miR-181a, which suppresses the expression of 
phosphatases such as SHP2 (also known as PTPn11), 
dual-specificity protein phosphatase 5 (DuSP5), DuSP6 
and protein tyrosine phosphatase, non-receptor type 22 
(PTPn22), but does not affect SHP1 expression. It was 
found that miR-181a dramatically changed the sensi-
tivity of T cells to ligands and converted an antagonist 
into a weak agonist42. These results indicate that SHP1 
may not be the only negative regulator that influences 
T cell sensitivity.

In addition to the intrinsic stochastic nature of 
biochemical reactions that mediate T cell signalling, 
cell–cell differences could be further accentuated by 
stochastic variations in the expression of proteins 
in each cell. Extrinsic stochastic effects have been 
observed to have an important role in other signalling 
networks regulating cell fate decisions43,44. Recently, 
one group has examined these extrinsic stochastic 
effects in oT-I T cells40. They found that levels of 
CD8 and SHP1 expression varied between individual 
cells, but these fluctuations in each cell correlated: 
high SHP1 expression was compensated by high CD8 
levels. Based on calculations, they proposed that this 
effect minimized extrinsic stochastic noise, leading to 
a narrow antigen sensitivity threshold for a population 
of cells. Intrinsic stochastic effects, however, can still 
be important in this system, as shown by a stochastic 
simulation of a simplified model of the phosphory-
lated ERK-mediated positive feedback regulation of 
lCK activation45.

Spatial organization of signalling components
The influence of the spatial organization of cellular 
components on T cell signalling is emerging as an 
important area of research owing to the observations 
that TCRs are pre-clustered on resting T cells46,47, that 
TCR signalling is initiated in microclusters of TCRs 
and peptide–MHC ligands48,49 and that large-scale spa-
tial reorganization of proteins occurs at the immuno-
logical synapse50,51. we summarize recent work that uses 
complementary experimentation and computation to 
examine this issue. 

Initiation of TCR signalling. Several studies of the earliest 
events in TCR signalling have investigated the effects of 
spatial organization of proteins on T cell activation. It was 
proposed that one peptide–MHC complex could serially 
trigger many TCRs, thus enabling T cells to detect minute 
amounts of agonists52. Computational approaches have 
been used to study this hypothesis. one study53 divided 
the T cell–APC junction into two zones and examined 
how serial triggering and kinetic proofreading54,55 influ-
enced TCR internalization (a marker of phosphorylated 
receptors). The computations led to the prediction that an 
optimal value of the peptide–MHC–TCR off-rate maxi-
mizes TCR internalization if both free and ligand-bound 
TCRs can be internalized. Complementary experiments 
seemed to support this suggestion53, but other data do 
not indicate an optimum off-rate56. So, it remains unclear 
whether the optimal off-rate of the most stimulatory TCR 
ligands is reached by balancing the need to enhance serial 
triggering with the need to bind long enough to allow 
kinetic proofreading. The influence of ligand–TCR con-
centration on serial triggering57 and that of second mes-
sengers on kinetic proofreading have also been studied58, 
and recently summarized in detail59–61.

The observation that T cells are sensitive to minute 
numbers of agonist peptide–MHC ligands among 
numerous endogenous ones37,62 has motivated comple-
mentary experimental and computational studies using 
the Gillespie algorithm (BOX 1). In particular, the possi-
ble role that endogenous peptide–MHC ligands have in 
cooperating with agonist ligands to amplify signalling 
has been studied in detail63–66. one view emerging from 
these studies is that lCK that is recruited and activated 
following the binding of agonist ligands to the TCR can 
subsequently phosphorylate neighbouring receptors 
that bind transiently to endogenous ligands. However, 
how the spatial organization of proteins influences the 
cooperative interactions between TCR, lCK and endog-
enous and agonist ligands has yet to be studied carefully. 
Spatially resolved stochastic computational methods will 
be important complements to imaging experiments in 
unravelling these mechanisms.

The influence of the spatial organization of proteins on 
potentially altering the basal phosphorylation and dephos-
phorylation of the cytoplasmic tails of the TCR–CD3 com-
plex has been studied using complementary experimental 
and computational techniques67. It was proposed that TCR 
triggering is a consequence of the spatial segregation of 
phosphatases (CD45 and CD148 (also known as RPTPη) 
and kinases (lCK) in the T cell plasma membrane (the 

Figure 4 | An example of complementary in silico and in vitro studies showing the 
effects of positive and negative feedback regulation of lCK on T cell activation. 
a | Results from computer simulations show activation in T cells following exposure to 
a range of agonist and antagonist ligands. Percentage of inhibition is defined as the 
ratio of fully phosphorylated extracellular signal-regulated kinase (ERK) following 
stimulation by both agonist and antagonist ligands to that stimulated by agonists 
alone. The degree of inhibition decreases sharply as the number of agonist ligands in 
the mixture is increased. These predictions are supported by experiments using OT-I  
T cells. b | Dose responses for ERK phosphorylation in naive OT-I T cells after 
activation by an agonist peptide and its antagonistic variants. The computational 
model has been used to suggest a mechanism for the sensitivity of T cells to these 
ligands of varying potency. Figure is modified from REF. 26.
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kinetic segregation model, FIG. 5). Phosphorylation (by 
lCK) and dephosphorylation (by phosphatases) of the 
TCR complex is balanced in unstimulated cells, thereby 
preventing TCR triggering. T cell–APC interactions 
result in regions where the inter-membrane separation 
is approximately the size of the peptide–MHC–TCR 
complex (15 nm). CD45 and CD148 molecules, which 
are larger (25–40 nm) than the peptide–MHC–TCR 
complex, are excluded from these regions, thereby ena-
bling the kinases to dominate in the balance between 
phosphorylation and dephosphorylation. Experiments 
with modified CD45 molecules with smaller ecto-
domains and peptide–MHC complexes with larger  
ectodomains support this model68. A stochastic Monte 
Carlo simulation (BOX 1) of a patterned surface in which 
kinase-rich regions are embedded in a phosphatase-rich 
background also show that fully phosphorylated TCRs 
are generated in the kinase-rich region69,70 owing to the 
longer residence time of the bound peptide–MHC–TCR 
complexes and increased kinase activity of lCK molecules 
in the kinase-rich domains. Although mechanistically 
appealing, this model does not account for the many ways 
in which lCK is regulated by kinases and phosphatases 
(such as carboxy-terminal SRC kinase (CSK) and CD45) 
and so further study is warranted.

Signalling in the immunological synapse. A few min-
utes after receptor–ligand engagement, proteins at the 
T cell–APC junction organize into a characteristic 

pattern50,51,71. For example, TCR and peptide–MHC 
molecules (along with other proteins) accumulate 
in a central region 3–5 μm in diameter. This region, 
known as the central supramolecular activation cluster 
(cSMAC), is surrounded by a peripheral ring of adhe-
sion molecules known as the peripheral supramolecu-
lar activation cluster (pSMAC), and together they form 
the immunological synapse. The immunological syn-
apse has many functions: it can direct the secretion of 
toxic molecules at juxtaposed cells, thereby minimiz-
ing bystander damage72, and serve as a niche for asym-
metrical T cell division73. we focus on its possible role 
in regulating TCR signalling.

originally, it was proposed that the cSMAC enhances 
and sustains TCR signalling50,51. Consistent with this 
view, calculations57 showed that, if TCRs were present at 
low levels, the accumulation of ligands (as in the cSMAC) 
would enhance the rate of peptide–MHC–TCR encoun-
ters, which presumably would increase serial triggering 
and signalling. However, the failure to detect activated 
ZAP70 (a marker for TCR signalling) in the cSMAC74 
led investigators to question whether signalling occurs 
in the cSMAC.

To further examine this question, a computational 
model75 of mobile TCR and peptide–MHC ligands was 
developed. The molecules were placed on two mem-
branes (to resemble T cell and APC surfaces). The recep-
tors and ligands interacted with each other according to 
prescribed on- and off-rates. Receptor–ligand engage-
ment resulted in signalling through a simplified model, 
and ZAP70 activation was monitored as a function of 
time. Fully phosphorylated internalized TCRs were 
degraded, and partially phosphorylated and unphospho-
rylated receptors were recycled to the plasma membrane. 
Directed movement of TCRs was initiated if the amount 
of activated RAC1 (a Rho GTPase) exceeded a threshold, 
thereby resulting in cSMAC formation. In the computa-
tional studies, unlike in the experiments, it is easy to turn 
off cSMAC formation by disabling this mechanism. This 
allowed the computations to directly analyse signalling 
with and without cSMAC formation without changing 
other conditions.

Results from Monte Carlo simulations (BOX 1) of this 
model, along with experimental tests, led to the follow-
ing conclusions75: clustering of receptors and ligands in 
the cSMAC can enhance the rate of generation of fully 
phosphorylated receptors because higher concentra-
tions can increase the rates of encounters between TCR,  
peptide–MHC and kinases (as described elsewhere57,76). 
But, the high concentration of receptors in the cSMAC 
can also enhance degradation, and this explains why 
active signalling molecules are not detected. 

High-resolution images showed signalling molecules 
in T cells interacting with lipid bilayers loaded with 
appropriate ligands48,49. Active signalling was observed 
in microclusters of TCRs that formed continuously in 
the pSMAC. The microclusters were then transported 
to the cSMAC, where there was no evidence of active 
signalling molecules, as reported earlier74. These obser-
vations suggested that the cSMAC is exclusively a site for 
receptor degradation and cannot sustain signalling. 

Figure 5 | The kinetic segregation model. In the absence of ligation between a T cell 
and an antigen-presenting cell (APC), T cell receptor (TCR)-associated CD3 molecules  
are continuously phosphorylated and dephosphorylated by kinases (such as LCK) and 
phosphatases (such as CD45), respectively. However, these two competing processes 
balance each other and do not initiate signalling in a resting T cell. When peptide–MHC 
molecules interact with TCRs, large CD45 molecules are pushed outside the close contact 
regions, owing to steric interactions, where the membranes of the conjugated APC and 
the T cell are separated by a distance of approximately the size of the peptide–MHC–TCR 
complex. This shifts the balance of TCR phosphorylation in favour of kinases, thereby 
initiating downstream signalling. Figure is reproduced, with permission, from Nature 
Immunology REF. 67 © (2006) Macmillan publishers Ltd. All rights reserved.
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Anergy
A state of unresponsiveness 
that is sometimes observed  
in T and B cells that are 
chronically stimulated or are 
stimulated through the antigen 
receptor in the absence of 
co-stimulatory signals.

Complementary computational and experimental 
studies have suggested that the situation may be more 
subtle77,78. Because proteins are concentrated in the 
cSMAC, stochastic effects are less important (see earlier). 
Therefore, a PDE-based model (BOX 1) was developed that 
accounted for spatial variations, but not stochastic effects. 
This model more faithfully represented receptor degrada-
tion than that used in previous studies75.

Computational results were obtained both allow-
ing and preventing cSMAC formation (FIG. 6). For 
potent agonists present in high concentrations (as in 
most experiments), cSMAC formation was predicted 
to enhance receptor degradation and inhibit signal-
ling. However, if a threshold off-rate was exceeded, 
cSMAC formation was predicted to enhance signal-
ling. Results from experiments with ligands of vary-
ing potency seem to support these computational 
results. For example, the variant peptide ligand 
moth cytochrome C (MCC) K99A interacts with the  

AnD TCR with a faster off-rate than the canonical 
wild-type agonist (MCC 88–103) and does not induce 
cSMAC formation but stimulates greater amounts of 
T cell proliferation (FIG. 6). If the MCC K99A ligand 
has an off-rate that is slower than the predicted point 
at which signalling by the cSMAC is neither inhibited 
nor enhanced (FIG. 6), this is consistent with the cSMAC 
inhibiting signalling for good agonists. Expression of 
natural killer group 2, member D (nKG2D) on T cells 
promotes cSMAC formation in a ligand-independent 
manner and does not affect T cell activation77,78. A 
weak agonist that does not induce cSMAC forma-
tion, or proliferation of AnD TCR T cells, stimulates 
cSMAC formation and a proliferative response follow-
ing nKG2D expression (FIG. 6). This is consistent with 
the prediction that cSMAC formation promotes sig-
nalling in cells stimulated by weak ligands. Also, con-
sistent with predictions, active ZAP70 was observed 
in the cSMAC following stimulation of T cells with 
low doses of agonists78.

The ability to ask ‘what if ’ questions readily using 
computational models, and the experiments thereby 
motivated, leads to the suggestion that the cSMAC 
functions primarily as a location for degradation of 
receptors stimulated by potent ligands. But it can also 
function to enable less potent ligands to signal through 
the TCR. The physiologically advantageous or delete-
rious implications of its role in supporting signalling 
by less potent ligands need further study. Many other 
questions regarding the signalling function of the syn-
apse remain unresolved. why is it necessary to maintain 
the cSMAC over several hours for full commitment to 
activation79 when activation of molecules immediately 
downstream of the TCR occurs in a few minutes? Even 
for potent ligands, signalling through co-stimulatory 
molecules (such as CD28) is detected in the periphery 
of the cSMAC80. Studying this process may shed light 
on how TCR signalling is integrated with co-stimulatory  
signals, with potential implications for factors that 
determine the induction of T cell anergy.

Concluding remarks
Extracellular inputs (such as cognate TCR ligands) 
are translated into specific functional outcomes, such 
as activation, anergy, differentiation and apoptosis, by 
the T cell signalling network. Signalling is mediated 
by cooperative dynamic processes that involve many 
components that must act in concert. Because it is often 
hard to intuit the consequences of such complex events, 
it has been difficult to establish the principles that gov-
ern T cell signalling and its aberrant regulation. Simpler 
cooperative dynamic processes have been successfully 
studied in the physical and engineering sciences using 
theoretical and computational approaches that com-
plement experiments. Recently, such theoretical and 
computational approaches have been used together 
with genetic, biochemical and imaging experiments 
to uncover new aspects of the TCR signalling net-
work. we have described how such a complementary 
approach works and illustrated it by summarizing some 
recent studies.

Figure 6 | Signalling in the immunological synapse. Two cases from a computer 
simulation are compared here, one in which a central supramolecular activation 
cluster (cSMAC) (red) is allowed to form regardless of the value of the off-rate and 
another in which no cSMAC (blue) is formed. For small off-rate values, cSMAC 
formation inhibited the total amount of integrated signal, whereas the opposite was 
true for ligands that bind the T cell receptor (TCR) weakly. These calculations were 
carried out with a peptide–MHC density of 1 molecule per μm2 and an on-rate equal 
to 2200 M–1s–1. The proliferation of AND TCR T cells in response to wild-type moth 
cytochrome C (MCC), which efficiently forms a cSMAC, and variant MCC K99A 
peptide ligands, which do not form a cSMAC, is shown. The MCC K99A peptide is 
characterized by a faster off-rate for binding to the AND TCR, but induces a greater 
proliferative response than that induced by the wild-type MCC peptide (residues 
88–103). Proliferation assays carried out with 5C.C7 TCR T cells support another 
prediction of the computational model. The variant peptides MCC K99A and MCC 
T102S, which bind weakly to the 5C.C7 TCR, resulted in enhanced stimulation when 
cSMAC formation is enforced by transducing the T cells and the antigen-presenting 
cells with natural killer group 2, member D (NKG2D) and its ligands, respectively.
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we focused on two broad areas of study. The first 
concerned how feedback regulation of signalling mod-
ules enabled digital activation of T cells and the abil-
ity to discriminate between ligands of varying potency. 
Although these studies suggest that certain feedback 
loops may have a dominant role in mediating these cellu-
lar responses, it is not known how the interplay between 
various feedback loops involved in T cell signalling81–87 
influences outcomes and this needs to be studied by 
bringing together complementary in silico, in vitro and 
in vivo methods.

we also described how combining computational and 
experimental studies has helped to clarify the early events 
in TCR triggering, with a specific focus on the role of the 
spatial organization of signalling components. various 
models for TCR triggering (such as kinetic segregation, 
change in receptor conformation88,89 and signal amplifi-
cation by endogenous ligands37,64) are often thought to 
be mutually exclusive. we think that these hypotheses 
describe different effects, the relative importance of each 
being context dependent. Computational models should 
prove to be useful in defining such an integrated mech-
anistic description. As T cells are activated by minute 
numbers of stimulatory ligands37,64, stochastic effects 
are important. Computational modelling can help in 
understanding the influence of intrinsic and extrinsic 
stochastic variations in experimental investigations43,44. 
our discussion of the importance of spatial patterns of 
signalling components focused largely on membrane-
proximal signalling (such as studies of the immunological 
synapse). But these effects need not be confined to events 
that occur at the membrane. For example, depending 
on the stimulus, RAS activation occurs predominantly 

at the plasma membrane or at Golgi membranes90, and 
nanoclusters of active RAS proteins have recently been 
observed91. Spatially resolved computational studies cou-
pled with biochemical and imaging experiments offer 
rich opportunities for elucidating the relevance of such 
phenomena and how they are connected to digital or 
analogue responses. Combining in vitro and in vivo stud-
ies with computational analysis should also help us to 
understand how co-stimulation and cytokine signalling 
pathways integrate with TCR signalling. 

To facilitate such studies, we will need to develop 
more efficient ways to carry out parameter sensitivity 
analyses for stochastic computations92 and more efficient 
algorithms for carrying out stochastic calculations that 
account for spatial inhomogeneities93.

Most complementary theoretical and experimental 
studies today are the result of collaborations between 
experimental and computational scientists. This situ-
ation may change in the ensuing years as user-friendly 
computer codes that can carry out calculations for study-
ing signalling in immune cells are becoming available93–97. 
Today, experimental scientists need to use these compu-
ter codes with caution. As we have pointed out, each type 
of computational method contains approximations, and 
it is important to establish whether a particular method 
is appropriate for answering a specific question of inter-
est. Moreover, theoretical analysis that complements 
computation and experiment is key for understanding 
the underlying principles. ultimately, however, we expect 
that a situation similar to that in organic and inorganic 
chemistry will prevail, in which synthetic chemists 
use standard quantum chemistry codes to inform and  
analyse experimental studies.
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	Figure 4 | An example of complementary in silico and in vitro studies showing the effects of positive and negative feedback regulation of LCK on T cell activation. a | Results from computer simulations show activation in T cells following exposure to a range of agonist and antagonist ligands. Percentage of inhibition is defined as the ratio of fully phosphorylated extracellular signal-regulated kinase (ERK) following stimulation by both agonist and antagonist ligands to that stimulated by agonists alone. The degree of inhibition decreases sharply as the number of agonist ligands in the mixture is increased. These predictions are supported by experiments using OT‑I T cells. b | Dose responses for ERK phosphorylation in naive OT‑I T cells after activation by an agonist peptide and its antagonistic variants. The computational model has been used to suggest a mechanism for the sensitivity of T cells to these ligands of varying potency. Figure is modified from REF. 26.
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