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Chapter 1IntrodutionIn this ourse, we shall be onerned with the time-dependent behaviour ofsystems lose to a ritial point. These may be equilibrium (or lose to equi-librium) systems, or systems maintained in/lose to some steady-state whihis not equilibrium, by some driving fore.These will be the two main parts of the ourse. However, it will emerge thatmany of the saling properties of suh systems are similar, whether or notthey are in equilibrium. As a result, the most e�etive way of understand-ing these, the renormalisation group (RG) and dynami �eld theory are verysimilar.We shall restrit ourselves to systems at �nite temperature, whih turnsout to mean that, in the ritial region, the thermal utuations are moreimportant than the quantum ones. Thus, the system is in ontat with aheat bath whih, in the absene of driving fore, will produe dissipationand relaxation toward equilibrium.Hene, the e�etive equations of motion we shall use have a diretion of timebuilt into them. This is not to say that no features of the underlying timereversal invariant dynamis remain : for example, any onservation laws inthe full dynamis should also be respeted by the e�etive equations.Conservation laws ! slow modes! a�et long-time dependene (!; k! 0).Note that there are other mehanisms for produing slow modes, e.g. Gold-stone bosons, whih arise from the spontaneous breaking of a ontinuoussymmetry.
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Part ICritial dynamis nearequilibrium phase transitions
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Chapter 2Basi PriniplesIn dynami ritial behaviour, there are di�erent kinds of observable quanti-ties. Consider a magneti system with s(r; t) being the loal, time-dependentmagnetisation.2.1 Correlation funtionsC(r � r0; t� t0) � hs(r; t)s(r0; t0)i (2.1)(in equilibrium) wherehs(r; t)s(r0; t0)i � limT!1 12T Z +T�T dt00 s(r; t+ t00)s(r0; t0 + t00) (2.2)hs(r; t)s(r0; t0)i is the stati orrelation funtion, and may be alulated bythe usual equilibrium statistial mehanis formula :hs(r; t)s(r0; t)i = 1ZTr ns(r)s(r0)e��Ho (2.3)2.2 Response funtionsWe may add a time-varying �eld h(r; t) (H �! H�Pr h(r; t)s(r; t)) whihouples to s(r; t) in the hamiltonian, and measure the response hs(r; t)i. Thelinear response must have the formhs(r; t)i = Z G(r � r0; t� t0)h(r0; t0) ddr0dt0 (2.4)whih de�nes G. Note that G = 0 if t < t0 by ausality.
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2.3 Flutuation-dissipation relationC and G are related byC(t� t0) = kBT Z t0�1G(t� t00)dt00 (t > t0) (2.5)Let us see where this omes from for an Ising system in whih s(t) = �1 (wesuppress the r-dependene for larity). We have in equilibrium :hs(t)s(t0)i = 12hs(t)is(t0)=+1 � 12hs(t)is(t0)=�1 (2.6)where hs(t)is(t0)=+1 means then onditional expetation value of s(t), inlud-ing only those histories when s(t0) = +1.Now imagine swithing on a small �eld h at t = �1 and swithing it o� att = t0. At that point the system will be in equilibrium in the presene of the�eld h, so the probability that s(t0) = �1 is :exp(�h=kBT )2 osh(h=kBT ) � 12  1� hkBT +O(h2)! (2.7)Henehs(t)i = 12  1 + hkBT ! hs(t)is(t0)=+1 + 12  1� hkBT ! hs(t)is(t0)=�1= h Z t0�1G(t� t00) dt00 (2.8)and (2.5) follows by equating terms O(h) (note that the O(1) terms anelby symmetry).Problem : Show for this simple model that the nonlinear response is also relatedto C(t� t0).The FDT is usually expressed in terms of frequeny spae :~G(!) = Z +1�1 dtG(t)ei!t G(t) = Z +1�1 d!2� ~G(!)e�i!t (2.9)~C(!) = Z +1�1 dt C(t)ei!t C(t) = Z +1�1 d!2� ~C(!)e�i!t (2.10)C 0(t� t0) = kBT [G(t� t0)�G(t0 � t)℄ (2.11)
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from whih we get ~C(r; !) = 2kBT! Im( ~G(r; !)) (2.12)[ NB : This is the �h! 0 limit of the quantum FDT :~C = 2�h oth �h!kBT ! Im( ~G) (2.13)whih may be derived using Fermi's golden rule (see Landau & Lifshitz).℄The RHS of equations (2.12),(2.13) is related to the dissipation : the energyis proportional to �Pr;r0 s(r)s(r0)Æ(r � r0), thusdE=dt /Xr;r0 hs(r; t) _s(r0; t)iÆ(r � r0)but hs(r; t) _s(r0; t)i � C 0(0) / Z d! Im ~G(!)Thus Im ~G(!) gives the rate of energy dissipation power spetrum.FDT follows from very general priniples, and any e�etive desription shouldrespet it.
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Chapter 3Models of ritial dynamis
3.1 Master equation3.1.1 De�nitionThis is an equation of motion for the time evolution of the probability P (�; t)of �nding a system in a mirostate �. It has the form :ddtP (�; t) =X� R�!�P (�; t)�X� R�!�P (�; t) (3.1)The model determines the rates R�!�.Note that the probability is onserved : ddt P� P (�; t) = 0.If this is supposed to desribe the relaxation towards equilibrium, the Gibbsdistribution P (�) / exp(�E(�)=kT ) must be a steady-state solution. Thismeans that X� hR�!�e�E(�)=kT �R�!�e�E(�)=kT i = 0 (3.2)This will ertainly be satis�ed if the [�℄ = 0 for eah � (detailed balaneondition). It requires R�!�R�!� = e�(E(�)�E(�))=kT (3.3)There are many solutions of this onstraint, e.g.R�!� / e+ 12 (E(�)�E(�))=kTe+ 12 (E(�)�E(�))=kT + e� 12 (E(�)�E(�))=kT (3.4)
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As T ! 0 we have zero-temperature dynamis :R�!� = 8><>: 1 if E(�) < E(�)12 if E(�) = E(�)0 if E(�) > E(�) (3.5)Problem : Show that the Metropolis algorithm satis�es detailed balane.3.1.2 Example : the Glauber modelAn example of a master equation is given by the Glauber dynamis for theIsing model : Let us denote s1; s2; ::: the spins and � = fsg the mirostates.The allowed transitions �! � orrespond to ipping a single spin :Rj("!#) Rj(#!") (3.6)These rates will satisfy detailed balane ifRj("!#)Rj(#!") = e�hj=kTe+hj=kT (3.7)where hj is the loal �eld aused by either the applied �eld or the other spins.A solution is to take Rj("!#) = � e�hj=kTe�hj=kT + e+hj=kT (3.8)where � is a rate with dimensions (time)�1.For example, for the one-dimensional Ising model, the allowed loal proesses,with their respetive rates are, in the absene of an applied �eld (Hext = 0) :""" ! "#" � exp(�2J=kT )exp(2J=kT )+exp(�2J=kT )"#" ! """ � exp(+2J=kT )exp(2J=kT )+exp(�2J=kT )""# $ "## �Problem : Show that C & G alulated in the Glauber model satisfy the FDT.10



These proesses are more simply understood in terms of domain walls. Thelast proesses orrespond to random walks, or di�usion of domain walls.Their density � hanges by the �rst two proesses, and we an write :d�dt = �2� e2J=kTe2J=kT + e�2J=kT �2+2� e�2J=kTe2J=kT + e�2J=kT (3.9)Thus at late times, �! �� = e�2J=kT whih is just the orrelation length ��1in equilibrium.The relaxation time (time for a single spin to ip) is � to the time for adomain wall to di�use a orrelation length whih is of the order of �2. (Notethat this is di�erent from the relaxation time for �, whih sales like 1=�� � �).3.2 Langevin-type equationThis is a stohasti di�erential equation designed to generate the requireddistribution. It works better for systems with ontinuous degrees of freedom.The prototype is Brownian motion :Consider a Brownian partile of unit mass. The equation of motion for theveloity (in 1-d) is : _v(t) = F (t)� �v(t) + �(t) (3.10)with : F (t) = driving fore�v(t) = frition�(t) = randomnoise due to ollisionsThe dissipative term may be written :���v �H = 12v2; the energy� (3.11)The noise is orrelated only over times between mirosopi ollisions. Overlonger times, we an therefore write :h�(t)�(t0)i = 2DÆ(t� t0) (3.12)
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where D is a onstant. Its value is determined by the requirement that thesteady-state distribution is Maxwellian, i.e. hv2i = kT .Integrating over a time interval dt yields :v(t+ Æt) � (1� �Æt)v(t) + Z t+Ætt �(t0)dt0 (3.13)Note that both terms in the sum are unorrelated, hene :hv2(t + Æt)i � (1� 2�Æt)hv2(t)i+ 2DÆt (3.14)and �nally D = �kT (Einstein relation) (3.15)NB : From the Langevin equation, we an also derive the Fokker-Plankequation, whih desribes the time evolution of the probability distributionP (v(t); t).3.3 Models A and B3.3.1 De�nitionThis is the simplest purely relaxational model of an Ising ferromagnet. Wework in redued units, so kT = 1; � = D. The redued Landau-Ginzburghamiltonian is : H = Z �12(rS)2 + V (S)� ddx (3.16)where V (S) = 12r0S2 + 14uS4, r0 / T � TMF .Model A is : �tS(x; t) = �D ÆHÆS(x; t) + �(x; t) (3.17)where ÆHÆS = �r2(S) + V 0(S).The Einstein relation now has the form :h�(x; t)�(x0; t0)i = 2DÆ(d)(x� x0)Æ(t� t0) (3.18)This follows as for Brownian motion : we have :S(x; t+ Æt) ' S(x; t)�DÆt � ÆHÆS(x; t) + Z t+Ætt �(x; t0)dt0 (3.19)
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so hS(x; t+ Æt)S(x0; t+ Æt)i � hS(x; t)S(x0; t)i ��DÆt "*S(x; t) ÆHÆS(x0; t)++ *S(x0; t) ÆHÆS(x; t)+#+ Z t+Ætt dt0 Z t+Ætt dt00h�(x; t0)�(x0; t00)i (3.20)But, in equilibrium : hS(x; t) ÆHÆS(x0;t)i = Æ(d)(x� x0) by funtional integrationby parts, and the left hand side vanishes.In Model A, the total magnetisation R S ddx is not onserved. But in somephysial systems, it might be (e.g. S=order parameter for liquid-gas ritialpoint, or a binary uid). In that ase, we have a ontinuity equation for S :�tS = �~r � ~J (3.21)where ~J is a urrent. To be onsistent, we should therefore takeD �! �D0r2 [Question : Why theminus sign ?℄ (3.22)with D0 > 0. The Einstein relation is then :h�(x; t)�(x0; t0)i = �2D0r2Æ(d)(x� x0)Æ(t� t0) (3.23)or equivalently, we an think of the noise term as being ~r � ~�, in whih aseh�i(x; t)�j(x0; t0)i = �2D0Æi;jÆ(d)(x� x0)Æ(t� t0) (3.24)3.3.2 the Gaussian modelIf we neglet the S4 term in H (whih is valid outside the ritial region orfor d > 4), we end up with linear equations :For model A : �tS = �D(�r2S + r0S) + � (3.25)Taking Fourier transforms :_Sk = �D(k2 + ��20 )Sk + �k (3.26)where we have identi�ed the stati orrelation length �0.
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Eah mode deays independently with hSki � e�t=�k , where�k = 1D0 (k2 + ��20 ) (3.27)Note that �0 / �20 !1 at T = (T)MF : this is the ritial slowing down.We an work out the response funtion in this approximation : we add a �eldh(t) to H : h _Ski = �D(k2 + ��20 )hS(k)i �Dhk(t) (3.28)and then Fourier transform with respet to time as well :hSk(!)i = hk(!) �G0(!; k) (3.29)where G0(!; k) = 1�i!D + k2 + ��20 (3.30)In the stati limit ! = 0 this reprodues the Ornstein-Zernike form.Similarly, solving in the presene of noise but with h = 0 we �nd :Sk(!) = �k(!)�i! +D(k2 + ��20 ) (3.31)and h�k(!)�k0(!0)i = 2DÆ(! + !0)Æ(d)(k + k0) (3.32)Hene, C0(!; k) = 2D!2 +D2(k2 + ��20 )2 = 2! ImG0 (3.33)so FDT is satis�ed.For model B, on the other hand, D �! D0k2, soG0(!; k) = k2�i!D0 + k2(k2 + ��20 ) (3.34)and �k / 1k2(k2 + ��20 ) (3.35)Modes with k � ��10 deay therefore with � � �40 .
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3.4 Response funtion formalismThere is a way of writing the Langevin equations in d+1 dimensions so theylook rather like equilibrium models in d + 1 spae dimensions, whih is verysuggestive.For example, for model A : �tS = �DÆHÆS + � (3.36)We are interested in solving this equation for S(x; t) for a given �(x; t) andthen omputing averages of quantities like S(x1; t1)S(x2; t2) over the noise �.We an do this by writing�Z DS S(x1; t1)S(x2; t2)Æ[S(x; t) = solution℄�noise (3.37)with Æ[equation℄ = Æ " _S +DÆHÆS � �#� Jaobian (3.38)A word about this Jaobian. One way is to write it asdet "�t +D Æ2HÆSÆS # (3.39)and write this as a Grassmann integral over antiommuting �elds  (x; t),� (x; t) : Z D D � exp � Z � "�t +D Æ2HÆSÆS # dtddx! (3.40)But in fat this is unneessary if we regularise properly : if we interpret �tSas a forward di�erene operator, thenS(t+ Æt) � S(t) + Æt "�D ÆHÆS(x; t) + �(x; t)# (3.41)and it is easy to see that J = 1. But note that this hoie will have onse-quenes later. We now writeÆ " _S +DÆHÆS � �# = Z D ~S exp � Z "ddxdt ~S  _S +DÆHÆS � �!#! (3.42)(Note that ~S should stritly be integrated along the imaginary axis | inpratie sine we almost always do perturbation theory, this is not impor-tant).
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Finally, we an average over � : at eah point in spae-time,he� ~S�i = e(1=2)h��i ~S2 = eD ~S2 (3.43)The result is that orrelation funtions like hS(x1; t1)S(x2; t2)i may be eval-uated as funtion integrals with a "weight"Z D ~SDS exp � Z "ddxdt ~S  _S +DÆHÆS �D ~S2!#! (3.44)~S is alled the response �eld. This is beause its orrelators give responsefuntions. If we add a soure term +hS to H, this is the same as adding�Dh ~S to the "ation". SoÆhS(x0; t0)iÆh(x; t)| {z }=G(x�x0;t0�t) = DhS(x0; t0) ~S(x; t)i (3.45)We an easily show FDT from this :Add a soure +hS as above. The terms involving ~S are : �Dh ~S, �D ~S2. Wean shift ~S ! ~S � h=2 to get rid of this linear term, but this indues a term�h2 � _S +D ÆHÆS �Hene G(x0 � x; t0 � t) = �12 *S(x0; t0) " _S(x; t) +D ÆHÆS(x; t)#+= 12 _C(x0 � x; t0 � t)| {z }odd � D2 *S(x0; t0) ÆHÆS(x; t)+| {z }even (3.46)But we know that G = 0 for t0� t < 0, and the last term is an even funtionof t0 and t. So it must be thatG(x0 � x; t0 � t) = _C(x0 � x; t0 � t) for t0 � t > 0 (3.47)whih is FDT.3.5 Dynami salingThe simple examples we have looked at so far exhibit simple dynami salinglose to a ritial point where ��1 = 0.For model A and the Glauber model, we found that typial time sales for16



the relaxation of utuations of the linear size of � behave like � / �z withz = 2.For model B, we found z = 4.Problem : Starting from a mirosopi master equation for the 1d Ising modelwhih loally onserves the magnetisation, argue that z = 3 in this ase.This may be generalised to hypothesise dynami saling forms for dynamiorrelations funtions whih generalise the stati ones.For example ~G(k; !; �) = �2���(�k; �z!) (3.48)(for ! = 0, this is the stati orrelation funtion).Similarly, ~C(k; !; �) = �2��+z	(�k; �z!) (3.49)As we shall see, these saling forms emerge from an RG analysis, with, how-ever, in general non-trivial values for �, z et.
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Chapter 4Perturbation theory for ModelALet us start with the model A equation :_S = �DÆHÆS + � (4.1)= �D ��r2S + r0S + uoS3�+ �(x; t) (4.2)where h�(x; t)�(x0; t0)i = 2DÆ(d)(x� x0)Æ(t� t0)We an set up a perturbative solution in u0 by writing it as an integralequation : _S �Dr2S +Dr0S = �Du0S3 + � (4.3)or  1D ��t �r2 + r0!S = �u0S3 + 1D� (4.4)whih yieldsS(x; t) = Z ddxdt0G0(x� x0; t� t0) "�u0S3(x0; t0) + �(x0; t0)D # (4.5)Note that G0 is just the bare response funtion, with Fourier transform1�i!D + k2 + r0 (4.6)We an introdue a diagrammati notation with time running from right to left :
18



�G0(x� x0; t� t0)(x; t) (x0; t0)Thus S(x; t) =
�(x; t) (�u0S3(x0; t0))+
�(x; t) ( 1D�(x0; t0))We an now iterate this equation for S :S(x; t) =
�(x; t) ( 1D�(x0; t0))+
�(x; t) (�u0S3 + 1D�(x0; t0))(x0; t0)=
�+
�+ 19



�+ ::: where we integrate over the (x; t) of eah vertex of type	�u0 (subjetto the ondition that they are time-ordered), and where eah
 means+�=D.To get the response funtion we just lop o� one of these x :G(x1; t1; x2; t2) =
�(x1; t1) (x2; t2)+ 3�
�(x1; t1) (x2; t2)+ 3�
+ 2�
Æ20



Note that, sine so far all we are doing is solving a partial di�erential equa-tion, the diagrams are simply trees. All ounting fators are 1.Loops ome in when we average over �, usingh�(x1; t1)�(x2; t2)i = 2DÆ(d)(x1 � x2)Æ(t1 � t2) (4.7)We are then supposed to tie the ends� together, in pairs, in all possibleways, with a fator 1D � 1D � 2D = 2D .Note also that we never get �with our hoie of regularisation of �t, sine the propagator� alwaysgoes forward in time.Problem : Show that h ~S ~Si = 0Thus, to O(u10), we have
��u0(x1; t1) (x2; t2)(x00; t00) 2=�(x0; t0)whih represents the term= �6u0D Zt1>t0>t2; t0>t00 ddx0dt0ddx00dt00��G0(x1 � x0; t1 � t0)G0(x0 � x2; t0 � t2)G0(x0 � x00; t0 � t00)2 (4.8)As with all Feynman diagrams, this is simpler in Fourier spae :
�(!; ~q)(!0;~k)(�!0;�~k)(!; ~q)

21



standing for= �6u0D  1�i!=D + q2 + r0!2 �� Z d!02� ddk(2�)d 1�i!0=D + k2 + r0 1+i!0=D + k2 + r0| {z }D R ddk(2�)d 12(k2+r0) (4.9)Note that at ! = 0, we get the stati orrelation funtion at 1-loop :
�A more interesting diagram is :
�(!2;~k2)
(!1;~k1)(!; ~q) (!; ~q)

whih omes from sewing in two ways the following diagram :
�The overall fator is 32 � 2 � ( 2D)2 � (�u0)2 and the integral is :1(�i!=D + q2 + r0)2 Z d!12� ddk1(2�)d d!22� ddk2(2�)d� 1�i!1=D + k21 + r0 1+i!1=D + k21 + r0� 1�i!2=D + k22 + r0 1�i(!�!1�!2)D + (q � k1 � k2)2 + r0 (4.10)
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= 1(�i!=D + q2 + r0)2D2 Z ddk1(2�)d ddk2(2�)d� 12(k21 + r0) 1(2k22 + r0)� 1�i!=D + k21 + k22 + (q � k1 � k2)2 + 3r0 (4.11)[ Note that we an do !� integrals automatially by looking at intermediatestates in "old-fashioned" perturbation theory.At ! = 0 we an symmetrise (k3 = q � k1 � k2)1k21 + r0 1k22 + r0 1k21 + k22 + k23 + 3r0�! 13 1k21 + k22 + k23 + 3r0 " 1k21 + r0 1k22 + r0 + perms:#= 13 1k21 + r0 1k22 + r0 1k23 + r0 (4.12)and so reover the usual 2-loop diagram in the statis :�Note that the fators of D all anel in the stati limit, as they should.4.1 Diagrammati expansion via the responsefuntion formalismThese diagram may also be read o� from the response formalism : ResalingS ! ~S=D (so that hS ~Si is the response funtion) the ation is :S = Z dtddx " ~S  _SD �r2S + r0S + uoS3!� 1D ~S2# (4.13)If we look at the gaussian terms ~S : : : S we see the propagator1�i!=D + k2 + r0�S ~S23



[ Note that we ould inlude 1D ~S2 as part of the gaussian term. This leadsto a matrix  �i!D + k2 + r0+i!D + k2 + r0 � 2D ! (4.14)to be inverted. Its elements are hS ~Si0hS ~Si�0 hSSi0 ! (4.15)where the lower right element is nothing but the bare orrelation funtion.This introdues two kinds of propagators whih are indeed related by FDT.In fat, sine to any �nite order in u0 we only get a �nite number of ~S2verties, it is easier to think of ~S2 as part of the "interation". ℄We have verties
��3!u0~SS3and
�+2=D~S2
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Chapter 5RG alulations for Model Aand Model B
5.1 Renormalisation of dynami �eld theory(model A)The theory as stands is regularised at large (!; k) by lattie or other short-time e�ets. We an examine how the regularisation enters by power-ounting.For simpliity, let us hoose a ut-o� in jkj < � : later, for elegane, we'lluse dimensional regularisation.De�ne G(m;n) ((!1; k1) � � � (!m; km); (!01; k01) � � � (!0n; k0n)) to be the onnetedresponse funtion with n ingoing and m outgoing lines :

�n� � �2112� � �mFrom this de�ne the trunated 1-partile irreduible vertex funtions �(m;n).As in the stati theory, only a �nite number of these ontain primitive diver-genes near d = 4. These areh�(1;1)i / k2 ; h�(1;3)i / k0 (5.1)Hene in d = 4, �(1;1)(!;~k) is quadratially divergent / �2 and �k2�(1;1),�!�(1;1), �(1;3) are log-divergent. Apart from �!�(1;1) these are just the same
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divergenes met in the stati theory. They are removed by mass, �eld andoupling onstant renormalisation.Working for simpliity at the ritial point, we may assume that mass renor-malisation has always been done, and �(1;1)(! = ~k = 0) = 0.As usual, we de�ne SR = Z�1=2S S~SR = Z�1=2S ~S (5.2)so �(1;1)R = ZS�(1;1) (5.3)and in general �(m;n)R = Z m+n2S �(m;n) (5.4)where ��k2�(1;1)R �!=0;k=� = 1 (5.5)[ this is inspired by �(1;1) = �i!=D + k2 in free theory ℄In the same way we de�neuR = � ��(1;3)R �!i=0;ki/� (5.6)This suggest that we therefore de�ne1DR =  + ��(�i!)�(1;1)R !!=0;k=� � 1ZDD0 (5.7)The statement of renormalisability of the dynami theory is that all responsefuntions �(m;n)R are �nite as �!1 when expressed in terms of uR and DR.Let us fous on �(1;1)R = ZS�(1;1)�(1;1)R (!; k;DR; uR; �) = ZS(uR; �;�)�(1;1)(!; k;D0; u0;�) (5.8)Sine �(1;1) does not depend on �, we an write � ���!u0;�;D0 Z�1S �(1;1)R = 0 (5.9)
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We de�ne gR|{z}dimensionless = uR��� (5.10)and an rewrite it"� ��� + �(gR) ��gR + ZS� ���(Z�1S ) + ��DR�� ��DR #�(1;1)R = 0 (5.11)where as usual �(gR) =  � ���gR!u0;� (5.12)We de�ne now s(gR) �  + 1ZS � ���ZS!u0;�D(gR) �  + 1DR� ���DR!u0;D0;�= 1ZD� ���ZD (5.13)For simpliity suppose gR = g� = O(�) and �(g�) = 0.We then have "� ��� � �s + �DDR ��DR #�(1;1)R = 0 (5.14)Now we have to use a version of dimensional analysis :�(1;1)R (!; k;DR; �) = �2� "k�; !DRk2# (5.15)From this we see that DR�R = �!�! and ��� + k�k = 2� 2!�!, so"�k ��k + 2� �s � (2 + �D)! ��!#�(1;1)(!; k) = 0 (5.16)�(1;1)(!; k) = k2��s� � !k2+�D � (5.17)whih is dynami saling, with � = �s , z = 2 + �D.
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5.1.1 Lowest order alulationNotie there are no 1-loop orretions to Zs or Z� sine the only diagram is
� (!; ~q)whih, after trunating the external lines, is independent of ! and q.To one loop, then, we have only the renormalisation of u0
��u0

(0;�) q (0;�=3) q1(0;�=3) q2(0;�=3) q3
+

�k(�u0)2 � 3� 3� 2� (2=�)
q2q1

The one-loop diagram is therefore(�u0)232 � 22D0 D0|{z}fromR d! � Z ddk(2�)d 1�i0 + k2 + (q1 + q2 � k)2 1�i0 + k2 + k2(5.18)This is log-divergent in d = 4 as expeted : in 4� � dimensions the integralgives 14 2�2(2�)4��� �1� +O(1)� (5.19)
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Thus uR = u0 � 32u20��� 2�2(2�)4| {z }�K4 1� +O(u30) (5.20)gR = u0��� �1� 32K4� u0��� + � � �� (5.21)�(gR) �  ��gR�� !u0 = ��gR + u0��� � 32K4u0��� + � � �= ��gR + 32K4g2R + � � � (5.22)g�R = �32K4 +O(�2) (5.23)Problem : Chek this is the same as in stati theory. NB fator of 6 in thede�nition of u0:Now let's alulate ZD :Z�1D = D0 ��(�i!)�(1;1)R = ZSD0 ��(�i!)�(1;1) (5.24)�(1;1) = �i!D0 + q2 �|{z}NB� + � � �= �i!D0 + q2 � 32 � 2 � (�u0)2 Z dk1dk2 1k21 1k22 �� 1�i!=D0 + k21 + k22 + (q � k1 � k2)2 + � � � (5.25)so thatZ�1D = Zs "1 + 32 � 2 � u20 Z dk1dk2 1k21 1k22 1[k21 + k22 + (q � k1 � k2)2℄2 + � � �#(5.26)at q2 = �2.Problem : Show that this integral gives us ��2�K24 A�
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We then have D = �s + 32 � 2 � u20��2�K24 � 2A (5.27)and sine �s = � = �254 +O(�3) (5.28)this gives �nally z = 2 + 0:0135�2 + � � � (5.29)Note 1 : We hose Z~s = Zs but in priniple we ould shu�e these fatorsaround : e.g. hoose Z~s = 1. In other theories, we may well hoose to dothis.Note 2 : We an also get the renormalisation of � by looking at the orrelationfuntion hSSi, whih to lowest order is given by
 (�!;�~q)(!; ~q)

equal times2=�whih gives the integral= 2D0 Z d!2�i 1�i!=D0 + q2 1+i!=D0 + q2= 1q2 as expeted (5.30)
[ or by utting! ! 2 � 1�i0+2q2 ℄The 2-loop orretion to this is :
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Problem : Chek that this gives the symmetrised version of the previous integral.
5.2 Renormalisation of model BModel B orresponds to a onserved order parameter, as appropriate to abinary uid (ignoring however hydrodynami e�ets !)In this ase, _S = D0r2 ��r2S + r0S + u0S3�+ � (5.31)where h�(x; t)�(x0; t0)i = �2D0r2Æ(d)(x� x0)Æ(t� t0) (5.32)Thus the di�erenes from model A are :1. The bare propagator is #(!; ~q) = ��i!D0 + q2(q2 + r0)��1

2. The vertex $(!; ~q) = �u0q23. The noise %~q�~q = 2D00 q2Dimensional analysis goes through in the same way for the �(m;n), so in prin-iple, �(1;1), ��(1;1)�q2 , ��(1;1)�(�i!) and �(1;3) show primitive divergenes.But ! : The fator q2 in the vertex makes a big di�erene. In fat, if we lookat the renormalisation of hSSi again, we have
&~q
�~q q2q2hSSi = 1q2(q2 + r0) hq2 + (q2)2u20 � some integral + � � �i (5.33)
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Sine u0 is dimensionless at d = 4, this integral annot be divergent !Problem : hek that this is indeed true.As a result, then, Z�1D = ZS and D = �S. So,z = 2� � to all orders in � (5.34)Chek : for d = 1, � = �1 (why ?) and z = 3 ) OK.
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Chapter 6More realisti modelsIt turns out to be almost impossible to �nd real physial systems auratelydesribed by models A or B. This is beause in real systems, there are otherslow modes whih interat with the order parameter modes. They do nota�et the statis, but may have a dramati e�et on the dynamis.Two examples :1. E�et of slow heat ondutionSine equilibration ours via ontat with a heat bath (= phonons), andthey di�use as well as the spin modes, we should inlude these phonons. Thee�etive hamiltonian has the formH = Z ddx�12(rS)2 + 12r0S2 + 14u0S4 + 12�2 + 12g�S2� (6.1)where� � is the energy density of phonons, in units where heat apaity = 1.� g is the oupling between the phonons and the spin degrees of freedom.We an ignore terms like (r�)2 sine � is not ritial itself.For the statis, � makes no di�erene, sineZ d� exp��12�2 + 12g�S2� / exp �g2S4=8� (6.2)whih simply shifts u0 ( This orresponds to the diagram' )
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For the dynamis, we have _S = �DÆHÆS + � (6.3)_� = +D0r2 ÆHÆ� + � (sine � is onserved)= D0r2 �� + 12gS2�+ � (6.4)showing how the energy of the spin degrees of freedom drives heat ondution.In the same way, _S = �D �r2S + r0S + u0S3 + g�S�+ � (6.5)showing that � ats like a loal variation of T.From these we also see that [g�℄ = [u0℄[S2℄ = [u0℄[�℄=[g℄, so [g2℄ = [u0℄ and gis also dimensionless in d = 4.Problem : Draw diagrams whih renormalise g and u0 to 1-loop. Is D renor-malised now at 1-loop ?2. Isotropi ferromagnetAs well as relaxational modes, there may also be organised motion in thesystem whih orresponds to "real" dynamis.For example in a Heisenberg ferromagnet, the loal magnetization ~S(x; t) willpreess in the loal �eld ~B aording to_~S / ~S � ~B (6.6)Suh preession may be dedued from the quantum equations of motionand will not disappear on oarse-graining. The loal �eld ~B depends on~S(x0; t) for x0 near x, hene to lowest order in derivatives, in may be written~B / ~S + onstr2~S + � � �. Sine ~S � ~S = 0, we �nd a term_~S = �~S �r2~S + model B terms + noise (6.7)Note that suh so-alled reversible terms do not spoil FDT or the approahto the equilibrium distribution : 34



hÆ(S � S0)i = P [S0℄ / e�H[S0℄ (6.8)hÆ(S � S0)i = Z�1 Z DS Æ(S � S0)e�H(S) (6.9)ddtP [S0(t)℄ = �Z�1 Z DSXx Æ0(S � _S0)e�H(S)= Z ddx _S0  ÆÆS e�H(S)!S=S0= � Z ddx * _S0 ÆHÆS0+ (6.10)For model A, this is * �D ÆHÆS0 + �! ÆHÆS0+ = 0 (6.11)If we add the term ~S �r2~S, we haveZ ddx *(~S �r2~S)ÆHÆS + (6.12)whih vanishes by symmetry.By looking at the model B terms �D0r4S �D0r2r0S + � � �, we see that[�=D0℄ = k2[S℄�1 = k3�d=2 (6.13)so that �=D0 is relevant when d < 6 !Saling suggests that sine _S = �S �r2S :[!℄ = [k2℄[S℄ = [k2℄k d�2+�2 (6.14)z = d+ 2� �2 (6.15)whih is true to all orders due to a Ward identity.
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Part IINon-equilibrium phasetransitions
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Chapter 7IntrodutionIn the ase of ritial dynamis near equilibrium, we were guided by thepriniples of detailed balane, Einstein relations, FDT, et. to a form of theLangevin equation whih was largely ditated. But for systems driven (orrelaxing) far from equilibrium, this is no longer valid.For simpliity, we shall onsider only stohasti partile systems (e.g. reation-di�usion models, simple uids, et.)As a very simple example, onsider the reation-di�usion model where asingle speies of partiles A do random walks on a lattie and, wheneverthey meet on the same site, undergo the reation A+A! ;(inert) at rate �.(we allow multiple oupation : if the mean density is small, this is unlikelyanyway).For this proess, we might write down the rate equation for the mean densityn(x; t) : �n�t = Dr2n� 2�n(2) (7.1)where� D is the di�usion oeÆient of the A partiles on the lattie.� n(2) is the probability of �nding 2 partiles on the same site.In the spirit of the mean-�eld approximation, we might writen(2) � n2 (7.2)in whih ase equation (7.1) is easy to solve :n(t) = n01 + 2�n0t (7.3)
37



in the homogeneous ase. Note that as t!1, n(t) � (�t)�1 independentlyof n0 but not of �.Approximation (7.2) is valid as long as the utuations n(2)�hni2 are small.These are aused by partiles having been in the same region of spae atsome previous time, and are given to lowest order by the diagramRt>t0 ddx0dt0 (kk0(x; t) (x0; t0) / R ddk(2�)d 12Dk2For d > 2, this is �nite (with some UV ut-o� / (lattie spaing)�1) but ford � 2 it diverges., due to the reurrene property of simple random walks.We might hope to aount for suh e�ets by adding a noise term, as inequilibrium problems : _n = Dr2n� 2�n2 + � (7.4)but we have no obvious way of �xing the orrelations. As we shall see, (7.4),at least taken literally, is simply wrong.Instead, we will adopt a di�erent approah, summarized by the following owhart :Master eqn �! "Seond-quantised"version �! Path integral#Analyse using�eld-th. RG �! Continuumlimit �! interpretationas LangevineqnWe will initially onsider the reation A+A! ; for simpliity, and generaliselater.
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Chapter 8Field-theoreti representationof the master equation
8.1 Basi priniplesAs stated before, the master equation has the form :dP (�)dt =X� R�!�P (�)�X� R�!�P (�) (8.1)On a lattieL, the mirostates � are the oupation numbers fng � fn1; n2; :::gof eah site. Equation (8.1) is like the Shr�odinger equation for a many-bodywave funtion in that it is1. linear in the P (�)2. �rst-order in �=�tThis suggests a "seond-quantised" formalism :� De�ne p(n1; n2; :::; t) = P (fng; t) (8.2)� Introdue annihilation & reation operators fai; ayigi2L with [ai; ayi ℄ = 1.� De�ne the j0i state as satisfying aij0i = 0 8i� De�ne now j	(t)i = Pfnig p(fng; t)ayn11 ayn22 :::j0iThen the master equation is ompletely equivalent to the Shr�odinger-likeequation ddt j	(t)i = �Hj	(t)i (8.3)39



where H is an operator depending on the a's & ay's only.Let's now work towards this result with a ouple of examples :8.2 Example a : Simple hoppingConsider just 2 sites (1,2) and hopping 1! 2 at rate D. The master equationis : dP (n1; n2)dt = D(n1 + 1)P (n1 + 1; n2 � 1)�Dn1P (n1; n2) (8.4)Notie that the atual rates are proportional to n1, sine eah partile mayhop independently. [We ould modify this if we wanted.℄De�ning j	i = Pn1;n2 ayn11 ayn22 P (n1; n2)j0i we get :dj	idt = D Xn1;n2 [P (n1 + 1; n2 � 1)(n1 + 1)� P (n1; n2)n1℄ ayn11 ayn22 j0i= D Xn1;n2 P (n1 + 1; n2 � 1)ay2a1ay(n1+1)1 ay(n2�1)2 j0i �D Xn1;n2 P (n1; n2)ay1a1ayn11 an22 j0i (8.5)= D(ay2a1 � ay1a1)j	i (8.6)( using ai $ �=�ayi ). So in this ase,H � �D(ay2a1 � ay1a1) (8.7)Note that as well as the obvious & intuitive hopping term ay2a1, we have aterm �ay1a1 whih ensures probability onservation.If we onsider also hopping 2 ! 1 at the same rate, we have :H = �D(ay2a1 � ay1a1 + ay1a2 � ay2a2)= D(ay2 � ay1)(a2 � a1) (8.8)8.3 Example b : Simple annihilation at a sin-gle siteHere the master equation is :dP (n)dt = �(n+ 2)(n+ 1)P (n+ 2)� �n(n� 1)P (n) (8.9)40



j	i =Xn P (n)aynj0i (8.10)dj	idt = �Xn (n+ 2)(n+ 1)P (n+ 2)aynj0i � �Xn n(n� 1)P (n)aynj0i= �Xn P (n+ 2)a2ay(n+2)j0i � �Xn P (n)ay2a2aynj0i (8.11)so H = ��(a2 � ay2a2) (8.12)One again, as well as the obvious term proportional to a2, there is anotherdiagonal term in H.Putting these together for our lattie model, we obtain :H = DXhiji (ayi � ayj)(ai � aj)� �Xi (a2i � ay2i a2i ) (8.13)8.4 Aspets of this formalism whih di�er fromordinary many-body QM :1. No "i" in the Shr�odinger equation | like "eulidean" QM.2. H is not (neessarily) hermitian.Problem : Show that if the rates satisfy detailed balane, then H may bemade symmetri & real by a similarity transformation.3. Most important : expetation values of observables A(n1; n2; :::) areNOT h	(t)jAj	(t)i sine this would be bilinear in the p(fnig)Instead, we have :�A = Xfnig p(n1; n2; :::)A(n1; n2; :::)= h0jePi aiA(n1; n2; :::)Xfnig p(n1; n2)ayn11 ayn22 :::j0i= h	0jAj	(t)i= h	0jAe�Htj	(0)i (8.14)where h	0j = h0jePi ai .[ Proof : use [ea; ay℄ = hea;� ��ai = ea and h0jay = 0. ℄
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An immediate orollary of this is a ondition that H onserves probability :1 = �1 = D	0je�Htj	(0)E (8.15)so h	0jH = 0and h	0j	(0)i = 1 (8.16)Sine h	0jayi = 1 this is equivalent to the ondition that H vanishes if weformally set eah ayi to 1.This fator of ePi ai may or may not be a problem, depending on the natureof A(n1; n2; :::).If we are interested in exlusive probabilities, e.g. the probability that thereis exatly 1 partile at site 1 and zero partiles elsewhere, thenA = Æay1a1;1 Yj 6=1 Æayjaj ;0 (8.17)and the fator h0jePi ai beomes simply h0ja1.If, however, we are interested in inlusive probabilities, e.g. the averagenumber of partiles at site 1 irrespetive of other sites, we needh0jePi aiay1a1e�Htj	(0)i = h0jePi aia1e�Htj	(0)i (8.18)In this ase, it is easier to ommute the fator ePi ai through, usingeaay = (ay + 1)ea (8.19)so to get h0ja1e�H(fay+1;ag)tj~	(0)i (8.20)where H(fay + 1; ag) may be alled a "shifted" hamiltonian and j~	(0)i �ePi ai j	(0)i.In our ase, the shifted hamiltonian isH = DXi (ayi � ayj)(ai � aj) + �Xi (2ayia2i + ay2i a2i ) (8.21)For an initial state, a suitable hoie is	(0) = e�n0en0Pi ayi j0i (8.22)orresponding to a Poisson distribution p(n; 0) = e�n0 nn0n! at eah site.In this ase, j~	(0)i = en0Pi ayi j0i. 42



Chapter 9Path integral representationOne again, for simpliity, onsider a single site.We want to evaluate e�Ht. We write this as a produt :e�Ht = lim�t!0 (1�H�t)t=�t = (1�H�t) � (1�H�t) � � �| {z }t=�t fators (9.1)Into eah time slie, we insert a omplete set of oherent states :Z d��d�� e����e�ayj0ih0je��a == Z d��d�� e����Xm;n �m��nm!n! aymj0ih0jan (9.2)Terms with m 6= n give zero on integrating over the phase of �. Lettingj�j � �, we get = 1Z0 2�d� e��2 Xn "(�2)nn! aynpn! j0ih0j anpn!#= Xn aynpn! j0ih0j anpn! = 1 (9.3)Between eah slie, we have :h0je��(t+�t)a(1��tH)e�(t)ay j0i == e��(t+�t)�(t) ��th0je��(t)aHe�(t)ay j0i+O((�t)2)= e��(t+�t)�(t)e��tH(��;�) +O((�t)2) (9.4)where H(��; �) is obtained by replaing a! �, ay ! ��.43



The remaining terms areY e��(t+�t)�(t)���(t+�t)�(t+�t) � e� R dt ���t� (9.5)so we get, in the limit �t! 0, a funtional integral (generalising to d 6= 0)Z D��D� e� R dtddx L(��;�) (9.6)where Z Lddx = Z ddx ���t�+H(��; �) (9.7)L = ���t�+D(r��)(r�)� �(�2 � ��2�2) (9.8)or, before taking the ontinuum limit,L =Xj ��j�t�j +DXhiji (��i � ��j)(�i � �j)� �Xi (�2i � ��2i �2i ) (9.9)Note that we do not need to oarse-grain to get a �eld theory on the lattie.In the same way, we an show that the following fators go over respetivelyinto : ePi ai �! ePj �je�n0Pi ayi �! e�n0Pj ��j (9.10)We an get rid of the �rst term by shifting��j = 1 + ~�j (9.11)The extra term e� R dt �t�j integrates up to anel e�j .Similarly, observables like A(nj) give A(��j�j) and so on.
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Chapter 10Interpretation as a LangevinequationFor simpliity, let us write the ontinuum form, with the shift :exp�� Z dtddx [ ~��t�+D(r~�)(r�) + 2�~��2 + �~�2�2℄� (10.1)where the D(r~�)(r�) term an be integrated by parts to give �D ~�r2� +surfae term.This looks very like the response funtion formalism we disussed earlier. Wean undo the quadrati ~�2 term by writingexp��� Z dtddx ~�2�2� = Z D� exp ndtddx ~��oP ([�℄) (10.2)where P () is the "probability distribution" for the "noise" �.The ation is now linear in ~� and we an integrate it out to obtain a Langevinequation : �t� = Dr2�� 2��2 + � (10.3)If we neglet �, we reognise this as the rate equation we wrote earlier, if weinterpret � as the average density. In fat this is so, at this level, beauseaya = h0jeaayaj	i �! h�i (10.4)where h� � �i denotes the average with respet to the weight e�S.But, if we are areful with the signs, we see thath�(x; t)�(x0; t0)i = �2��2(x; t)Æd(x� x0)Æ(t� t0) (10.5)45



The appearane of �2 makes sense : if there are no partiles, there is nonoise. But the sign means that � is pure imaginary !How an this be ? The answer is that although h�i is the average density,�(x; t) is NOT the density. In fat,n2 = h0jea(aya)2j	i = h0jea(a2 + a)j	i �! h�+ �2i (10.6)It is easy to hek (Problem) that if all the higher umulants h�2i � h�i2et. of � vanish, as would be true in the absene of loops in our �eld the-ory, then the atual density n would have a Poisson distribution, as expeted.Another reason why � is imaginary an be seen by studying the equal-timedensity-density orrelation funtionn(x; t)n(x0; t0) = h�(x; t)�(x0; t0)i for x 6= x0 (10.7)The lowest order diagram is
)�

� h��iwhih is negative. So partiles are anti-orrelated. This makes sense : thereis a de�it of partiles in the neighbourhood of a given one, sine any partilesnearby have been "swept up".
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Chapter 11Field theory and RG analysis ofA +A! ;It turns out that this is a very simple �eld theory to analyse. Let us work inthe shifted theory :S = Z ddxdt h~�[�t�℄ +D0(r~�)(r�) + 2�0 ~��2 + �0 ~�2�2i (11.1)We an either write this as a stohasti equation :_� = D0r2�� 2�0�2 + � (11.2)with h�(x; t)�(x0; t0)i = �2�0�2Æd(x � x0)Æ(t � t0) and proeed as earlier, orwe an write down the Feynman rules by inspetion.The bare propagator, from the ~� � � �� terms, is*(!; ~q) = 1�i!+D0q2[ Note that we now write this instead of 1�i!=D0+q2 beause1. The stati limit (! 6= 0) does not orrespond to equilibrium statistialmehanis.2. The oeÆient of �i! being unity means that partile number is on-served in the absene of reations. ℄We have verties
+�4�0 ,�4�0
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There is an immediate simpli�ation : there are no loop orretions to G(1;1),so : �(1;1) = �i! +D0q2 (11.3)whih implies Z� = Z~� = 1 ; ZD = 1 (11.4)The only diagrams renormalising the verties are :
- = . +/ +0+ � � �
1 = 2 +3 + � � �
These have a simple physial interpretation :4 gives the probabilityof annihilating given that partiles have not annihilated in the past.In priniple, we ould treat the ouplings5�4�(1)0 6�4�(1)0as di�erent, in whih ase we would �nd[ 7  ! = 12 R ddk(2�)d 1�i!+2Dk2 ℄�(1)R = �(1)01 + 4�(2)02 R ddk(2�)d 1�i!+2Dk2 (11.5)�(2)R = �(2)01 + 4�(2)02 R ddk(2�)d 1�i!+2Dk2 (11.6)
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where the 2's at the denominator of 4�(2)02 are fators oming from symmetry.Note that we have to de�ne �R at ! 6= 0, otherwise we would have an IRdivergene for d < 2. This is di�erent from previous ase where we ouldalways renormalise in stati limit.Note also that if �(1)0 = �(2)0 , then �(1)R = �(2)R . This is a onsequene ofprobability onservation, h0jePi aH(unshifted) = 0.Problem : Consider the proesses A+A �1�! ; and A+A �2�! A, and show thatthe resulting ation an be brought to our form by a suitable transformation ofthe �elds �, ~�.We de�ne �R at �i! = D�2 (sine D is unrenormalised this is D0). Theintegral now gives1(2�)d 1Z0 d� Z ddk e�2D�k2�D��2 = 1(2�)d 1Z0 d� � �2D��d=2 e�D��2= 1(2�)d ��2�d=2 �(1� d=2) 1D���� kd2� ���D (11.7)� = 2� d (note that kd is regular) and k2 = 1=(2�).From the ation we see that[ ~��℄ = kd ) [�0℄kd = kd! = [D℄kd+2 (11.8)So the dimensionless oupling isgR = �RD ��� (11.9)whih gives gR = (�0=D)���1 + kd� �0D ��� (11.10)(exat to all orders !)Hene �(gR) � � �gR�� !�0;D = ��gR + �0D ��� � kd �0D ���(1 + kd� �0D ���)2= ��gR + kdg2R exat! (11.11)49



For d < 2 we therefore �nd an IR �xed point at g�R = �=kd � 2��+O(�2).Let us see how to use this to ompute the mean density.In the bare theory, we have n(t; D; �0; n0) where n0 is the initial density. Inthe renormalised theory, this beomes nR(t; DR; gR; n0R; �).But in fat, nR = n sine there is no �eld renormalisation. Similarly,DR = D,n0R = n0.This means we an write down an RG equation : � ���!D;�0;n0 nR(t; D; gR; n0; �) = 0 (11.12)"� ��� + �(gR) ��gR #nR(t; D; gR; n0; �) = 0 (11.13)Dimensional analysis tells us thatnR(t; D; n0; �) = �d�(�2Dt; n0��d) (11.14)so � ���nR =  d� dn0 ��n0 + 2Dt ��(Dt)!nR (11.15)and "Dt ��(Dt) + 12�(gR) ��gR � 12dn0 ��n0 + d2#nR = 0 (11.16)The solution of this is :nR(t; D; gR; n0; �) = ��d(Dt)�d=2 nR �Dt = ��2; n0 = (mu2Dt)d=2; ~gR; ��(11.17)where ~gR(�2Dt) is the running oupling.As t!1, ~gR ! g�R = O(�).Note that if we an ignore the exploding fator n0(�2Dt)d=2, we have n /(Dt)�d=2, so the exponent is exat for d < 2. ( This may be argued on dimen-sional grounds if n is independent of �0 | but these ignore the possibility ofanomalous dimensions ).To proeed further, we have to evaluate the RHS of (11.17). Fortunately, wean do this sine g�R = O(�) is small near d = 2.What we do is onsider all the diagrams for nR (or n) at a given order in n0: 50



8 n0n0n0 n0gRgRgR + 9gRgRgR gR + : + � � �To lowest order in gR = O(�) the diagrams are tree diagrams.The sum of these gives the rate equation result. ThusnR �Dt = ��2; n0(�2Dt)d=2; �=kd; �� =n0(�2Dt)d=21 + 2D�� �kdn0(�2Dt)d=2 1D�2 + higher orders in � (11.18)As t!1, we see that indeed n0(�2Dt)d=2 drops out andnR(t; D; n0; gR; �) � 1(Dt)d=2��d�2��kd� + higher orders (11.19)The �-dependene disappears as it must.It takes further work to onvine oneself that n0 drops out to all orders in �,and that n � A(Dt)d=2 (11.20)where the amplitude A is universal and depends only on �.To lowest order : A = 14�� +O(1) (11.21)Problem : What happens in d = 2 ?
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Chapter 12Conservation laws | Thereation A +B ! ;Consider now the ase of 2 speies whih undergo the reation A + B ! ;.For onveniene, we suppose they have equal di�usivities, and we begin witha random but statistially homogeneous mixture of equal densities n0.The hief di�erene in this system is that the density nA � nB is loallyonserved. We might expet this to slow the reation as in model B. But ifwe write down the hamiltonian :H = Hdiffusion � � Z ddx[ab� aybyab℄ (12.1)we see that [�℄ = k2�d, so apparently d = 2 as before.For d � 2 we expet the rate equations :_a = Dr2a� �ab_b = Dr2b� �ab (12.2)to be valid. If we look for a solution whih is homogeneous, we �nd a = b /1=(�t) as before.This is indeed inorret as it ignores the utuations in the initial state,whih do not disappear as in A+ A! ;.In fat, if we write  � a� b, it satis�es the di�usion equation_ = Dr2 (12.3)so  (x; t) = Z ddx0 G0(t; x� x0) (x0; 0) (12.4)If a and b have a random initial distribution, then  (x0; 0) has a distributionwith  (x0; 0) = 0 and  (x0; 0) (x00; 0) / 2n0Æ(d)(x0 � x00).52



Thus  (x; t) will have a Gaussian distribution with, in partiular : (x; t)2 = 2n0 Z ddx G0(t; x� x0)2 = 2n0 Z ddk(2�)d e�2Dtk2= 2n0 1(2�)d � �2Dt�d=2� �td=2 (12.5)Sine  (x; t) has a Gaussian distribution/ exp(� (x;t)22 2 ) we an also ompute(for later use)j a� b j = j  (x; t) j = Z d j  j e� 2=(2 2)= s 2� ( (x; t)2)1=2= s2�� 1td=4 = (2n0)1=2�1=2(8�)d=4 1(Dt)d=4 (12.6)Note that for d < 4 this is slower that 1=t, indiating that it is not possiblethat �a � �b � 1=t (12.7)This means that loally, either a(x)� b(x) or vie-versa, i.e. there is segre-gation.Then j a� b j= max (a; b), so�a = 12 j  j / 1td=4 (t < 4) (12.8)
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Chapter 13Direted perolationIn the previous example, the steady-state was trivial (but the approah to itexhibited interesting universal behaviour).In order to get a non-trivial steady-state, we need branhing proesses as well.Examples are provided by epidemi proesses : onsider a lattie where sitesmay be infeted (i.e. oupied by a partile A) or not infeted (not oupied).We shall allowmultiple oupation, but sine the interesting behaviour ourswhen the probability of oupation is small, this does not matter.A given site is oupied (infeted) at time t+�t if it or its neighbours wereinfeted at time t, but only with some probability. The disease may just dieout loally. Thus the hamiltonian has the formH = �Xi (ayi � 1)F (ayiai; Xj n:n: i ayjaj) (13.1)where the �1 ensures onservation of probability.A simple form to take for F isF = �1Xj ayjaj � �20�Xj ayjaj1A2 (13.2)where the sum is over all neighbours inluding i. We expet �1 > 0 and�2 > 0 | this is beause i an be infeted only one in �t.If we now let ayi = 1 + �ai (i.e. make the shift) we �nd a variety of terms, allproportional to �ai. We get an e�etive di�usion term �aiaj proportional to �1and terms proportional to ��1�aa, ��a2a and +�aa2 (where we have been are-ful to keep trak of the signs). All other terms are later shown to be irrelevant.
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Going straight to the �eld theory, the ation is :S = Z dtddx [ ~��t�+D0r~�r�+ r0 ~��+ u1 ~��2 � u2 ~�2�℄ (13.3)where r0 / ��1 < 0u1 > 0 ; u2 > 0 (13.4)If we rewrite this as a stohasti equation, we �nd_� = D0r2�+ �1�� u1�2 + � (13.5)where h�(x; t)�(x0; t0)i / u2�Æ(d)(x� x0)Æ(t� t0) (13.6)Ignoring the noise, we see that there are two possible steady-states :� h�i = 0 : the inative or absorbing state (if the system starts here, itstays here).� h�i = �r0=u1 : the ative state.In the rate equation approximation, the latter state is the dynamially stableone for all r0 < 0 (i.e. �1 > 0). But, one the utuations are inluded, thereis a non-trivial ritial value of r0 < 0.This ation is therefore very general and desribes a dynami transition froman inative state (with no utuations) to an ative state (with utuations)as a funtion of a ontrol parameter. For historial reasons, it is alled thedireted perolation ("DP") universality lass.In DP, "time" is a disrete spae dimension, usually on a lattie (see Fig.13.1).It is usual to resale the �elds ~� & � so that the oeÆients of ~��2 and �~�2�are equal. ThusS = Z dtddx [ ~��t�+D0r~�r�+ r0 ~��+ 12u0 ~��2 � 12u0 ~�2�℄ (13.7)In this form, the theory has a remarkable time-reversal symmetry undert ! �t, � ! �~�, ~� ! ��. This implies that the renormalised versions ofthese two ouplings will be equal.The Feynman rules for this theory are quite simple :55



(t+1,x)

(t,x+1)(t,x-1)

t

x

Figure 13.1: (t; x) is oupied with prob. p if either of (t; x� 1),(t; x+ 1) isoupied | direted site perolation.
Propagator : ; 1�i!+D0q2+r0
Verties : <�u0 =+u0

Now, however, there are orretions to the propagator>To 1-loop :�(1;1) = �i! +D0q2 + r0 � (�u0)(u0)12 Z dk 1�i! +D0k2 +D0(q � k)2 + 2r0+ � � � (13.8)where now R dk stands for R ddk=(2�)d.Notie that the loop orretions at to make rR > r0 so that at the ritialpoint where rR = 0, r0 < 0 as advertised.Power ounting : [ ~��℄ = kd as usual. Beause of the symmetry we hoose[ ~�℄ = [�℄ = kd=2. Then [u0℄k3d=2 = kd! = kd+2[D0℄, so [u0=D0℄ = k2�d=2 so
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that the upper ritial dimension is d = 4.If we study the vertex funtions �(m;n) we �nd in d = 4 that[�(1;1)℄ = [D0℄k2 ; [�(1;2)℄ = [�(2;1)℄ = [D0℄k0 (13.9)so we have to regularise the following quantities : (mass(r0) renormalisationassumed done) : �(1;1), ��(1;1)�k2 , �(1;1), ��(1;1)�(�i!) and �(1;2) = ��(2;1).Beause of the form of the bare propagator (�i!+D0q2 rather than �i!D0 + q2), we demand :1. � ��(�i!)�(1;1)R �NP = 1 to de�ne Z� = Z~�2. � ��q2�(1;1)R �NP = DR � Z+1D D03. uR = ���(1;2)R �NP = ��(2;1)R �NPso Z�1� = ��(�i!)�(1;1) = 1� u202 Z  dk(D0k2 +D0(q � k)2)2!q2=�2= 1� � u0D0�2 12 14 2�2(2�)4 ���� +O(u40) (13.10)DR = Z� ��q2�(1;1)= Z� "D0 + u202 ��q2 Z dkD0(k + 12q)2 +D0(k � 12q)2#q2=�2 + � � �= Z�D0 "1� u202 12 Z dkD0(k + 12q)2 +D0(k � 12q)2 + � � �#= Z�D0 "1� � u0D0�2 12 12 14 2�2(2�)4 ���� + � � �# (13.11)
�(1;2) = ? + � q2

q1
+ A q2

q1
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= �u0 + (�u0)2u0 Z dk[D0k2 +D0(q1 � k)2℄[D0k2 +D0(q1 + q2 � k)2℄+ (q1 $ q2) term= �u0 + 2 u30D20 14 2�2(2�)4 ���� (13.12)uR = ��(1;2)R = �Z3=2� �(1;2) (13.13)Finally, the dimensionless oupling isgR = (uR=DR)���=2= (u0=D0)���=2[1� 12K4 (u0=D0)2���� ℄[1� 116K4 (u0=D0)2���� ℄[1� 116K4 (u0=D0)2���� + � � �℄= (u0=D0)���=2[1� 38K4 (u0=D0)2���� + � � �℄ (13.14)�(gR) = ��2 gR + 38K4g3R +O(g5R) (13.15)As usual, we have a non-trivial IR �xed point, this time withg�2R = 4�3 + � � � (13.16)ZD =  1 + 18K4 (u0=D0)2���� ! 1� 116K4 (u0=D0)2���� ! (13.17)so D = � 116K4g2R + � � � ) z = 2� �12 +O(�2) (13.18)Z� = 1 + 18K4 (u0=D0)2���� + � � � (13.19)� = �18K4g2R + � � � (13.20)13.0.1 Saling behaviour� ���!u0;D0;���Z�1� �(1;1)R = 0 (13.21)
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26666664� ��� � 1Z�� ���Z�| {z }�� +�(gR) ��gR + ��DR�� ��DR| {z }�DDR ��DR
37777775�(1;1)R = 0 (13.22)� = � ��� lnZ� D = � ��� lnZD (13.23)At the �xed point : "� ��� � �� � �DDR ��DR #�(1;1)R = 0 (13.24)13.0.2 Dimensional analysis�(1;1)R = DR�2� "k�; !(DRk2)# (13.25)so DR ��DR = 1� ! ��! (13.26)� ��� + k ��k = 2� 2! ��! (13.27)Hene "�k ��k + 2� �� � (2 + �D)! ��!#�(1;1)R = 0 (13.28)�(1;1)(!; k) = k2���+�D�� !k2+�D � (13.29)and we end up with dynami saling again.As k ! 0 we expet �(1;1)(!; 0) � !1���=(2+�D) implying that the density ofinfeted sites deays as R d! ei!t�(1;1)�1 � t���=(2+�D) and that the dynamiexponent takes the value z = 2 + �D (13.30)13.0.3 Away from the ritial pointIn DP we have a ontrol parameter r0, like a bare mass. There is anotherritial exponent assoiated with this, whih may be found by studying therenormalisation of the omposite operator ~��. The 1-loop diagram is
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BDenoting �0 =j r0 � r0 j we �nd the saling behaviour�(1;1)R (!; k;�0) = k2�����D�(!=kz; k=��?0 ) (13.31)whih may be rewritten in various other ways, e.g. !=��k=2�?0 .For r0 > r0, G(1;1) deays exponentially like e�t=� with � / ���k0 .For r0 < r0, starting from a single infeted site we go to a �nite density inthe ative state. In that aseG(1;1)(t; x) t!1�! p(j �0 j) (13.32)Replaing now G(1;1) and p by their omplete expressions, we getZ d!ddk k�2+��+�D� !j �0 j�k ; kj �0 j�?! / j �0 j�k+d�?�(2�����D)�?= j �0 j(d+��)�?= j �0 j� (13.33)de�ning the "order parameter" exponent �.
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Chapter 14The Kardar-Parisi-ZhangequationThis was originally formulated as a model of a growing interfae, but it analso be mapped to :� the "noisy" Burgers equation in hydrodynamis.� direted polymers in a random medium.Consider an Ising model below T, with an interfae between " and # phases.We use a ontinuus spin S = S(~x; z)H = Z [12(rS)2 + V (S)℄ ddxdz (14.1)

x

z

h(x)

The position of the interfae is z = h(~x).
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In equilibrium we �nd a at solution h = onst, S = f(z� h) by minimisingH, so f 00(z) = V (f(z)) (14.2)Let this solution be f(�).When the interfae utuates, we assume that its pro�le does not vary, onlyits position and angle. So we write :S(~x; z; t) = f 0� z � h(~x; t)q1 + (~r?h)21A (14.3)where ~r? is the derivative in the ~x-diretions (note that d is now the numberof transverse dimensions).We now add a magneti �eld : H �! H + � R S ddxdz whih will drive theinterfae (i.e. make it move in the z-diretion), and write down model A :_S = D �2S�z2 + ~r2?S � V 0(S)� �!+ � (14.4)Inserting the Ansatz (14.3) :� _hp� f 0  z � hp� ! = D0� 1(p�)2f 00 � ~r2?hf 0p� + (~r?h)2f 00(p�)2 � V 0(f)� �1A+ �(14.5)where we have ignored some terms with � 3 derivatives.The �rst, third and fourth terms in the brakets anel, beause f satis�es(14.2.)We multiply this equation by f 0( z�hp� ) and integrate R1�1 dz :_h 1Z�1 f 0(u)2 du = Dr2?h 1Z�1 f 0(u)2 du+D�p� 1Z�1 f 0(u) du+ ~� (14.6)where ~�(~x; t) = p� 1Z�1 �(~x; z; t)f 0(z) dz (14.7)Expanding out p� � 1 + 12(r?h)2 + � � �, we �nally obtain an equation of theform : _h = v + 12�(r?h)2 + �r2?h + � (14.8)where v / D�, � / D�, � / D and h�(~x; t)�(~x0; t0)i = 2DÆ(d)(~x�~x0)Æ(t� t0).We an remove v by going to a moving frame h �! h0 = h� vt. This givesthe KPZ equation. Note that we have lost detailed balane | the rhs annotbe written as �D ÆFÆh + �. 62



14.1 KPZ equation : response funtion for-malismAtion : Z dtddx [~h( _h� 12�(rh)2 � �r2h)�D~h2℄ (14.9)Dimensional analysis :[~hh℄ = kd, [�℄ = !k�2, [�℄[~hh2℄ = kd�2!, [D℄[~h2℄ = kd!, so[�2D℄(~hh)4 = k2d�4!2kd! = [�℄3k3d+2Dimensionless expansion parameter is [�2D=�3℄ = k2�d :d = 2In d > 2 : the non-linearity (rh)2 is irrelevant (for � small).We are therefore lead to the Edwards-Wilkinson theory :_h = �r2h + � (14.10)(whih satis�es the detailed balane ondition with D = �kT ).In general :Dynami saling : hh(~x; t)h(0; 0)i =j ~x j2� � � tj~xjz�� � > 0 ) interfae rough� � < 0 ) interfae smoothIn EW theory, hh(~x; 0)h(0; 0)i = R ddqq2 eiqx /j x j�d+2 so�EW = 1� d=2 smooth ford > 2: (14.11)zEW = 2 (14.12)14.2 Renormalisation for d < 2Propagator : C hh ~hi = 1�i!+�k2Vertex ~h(rh)2 : Dq1q2 / ~q1 � ~q263



Noise vertex : E1-loop orretion to propagator :
F�kkq � k (!; q)Z ddk(2�)d [k � (q � k)℄[�k � q℄(�i! + �k2 + �(q � k)2)(2�k2) / q2 Z ddk[k2℄ (14.13)Hene ��(�i!)�(1;1) is �nite in d=2 (but ��q2�(1;1) is not).There is therefore no �eld renormalisation. We should only renormalise�;D; �.In addition, there is in fat no renormalisation of � due to Galilean invariane: If ~u = ~rh : _~u = ~r(�2~u2 + � ~ru) + ~r�= �(~u � ~r)~u+ �r2~u+ ~r� (14.14)If � = �1, we an take the �rst term onto the left-hand side, giving_~u+ (~u � ~r)~u � D~uDt (14.15)is the onvetive derivative, as for a uid : this then gives the noisy Burgersequation (whih is the Navier-Stokes equation in the absene of vortiity).For this, we expet Galilean invariane.For general �, we in fat have invariane under~x �! ~x� �~vt ; ~u �! ~u0 = ~u(~x + �~vt) + ~v (14.16)(where ~v = onst). This reets the tilt-invariane of the original interfaemodel.Sine � is a parameter in this transformation, it an't be renormalised !So we are left with D � 1DR� ���DR� � 1�R� ����R (14.17)
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as non-trivial renormalisation group funtions.Dimensionless oupling : gR = �2RDR�3R �d�2 (14.18)so �(gR) � � ���gR = gR(d� 2 + D � 3�) (14.19)Hene, at any non-trivial �xed point�D � 3�� = 2� d (14.20)As usual, z = 2 + �� (14.21)The RG equation for G = R ddx eik(x�x0)hh(x; t)h(x0; t0)i is :"� ��� + �DD ��D + ��� ��� #G = 0 at �xed point (14.22)G = D�k2�(�k ) (14.23)"�2� k ��k + �D � ��#G = 0 (14.24)G / 1k2��D+�� (14.25)� = 1� d2 + �� � �D2 (14.26)Hene z + � = 2 (14.27)This is a remarkable saling relation whih omes from Galilean invarianeand the lak of �eld renormalisation.14.3 Exat exponents for d = 1Edwards-Wilkinson linear theory satis�es detailed balane :_h = �r2h + � h��i = 2DÆ(:)Æ(:)= �� ÆÆh �Z 12(rh)2 ddx�+ � (14.28)
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Equilibrium distribution :P [h℄ = exp�� 1kTe� Z 12(rh)2 ddx� (14.29)where kTe� = D=�.In d = 1, adding the non-linearity does not a�et this !P [h0℄eq = hÆ(h� h0(x; t))i = Z Dh Æf(h� h0(x; t)) exp(�He� [h℄) (14.30)ddtP [h0℄ = � Z Dh Xx Æ0(h� h0(x; t)) _h0 Yx0 6=x Æ(h� h0) exp(�He�)= � Z ddx Z Dh Æf(h� h0) _h0  ÆHe�Æh !h=h0 exp(�He�)= Z ddx h12�(rh)2r2hi+ � � � (14.31)In general, this is non-zero, but in d = 1 �h�x!2  �2h�x2! = 13 ��x 24 �h�x!335 (14.32)giving a total derivative whih integrates to zero.We know the steady-state for d = 1 ) FDT ) �D = �� givingz = 3=2 ; � = 1=2 (14.33)The interfae is rough !14.4 Direted polymer representation_h = �r2h+ 12�(rh)2 + � (14.34)Let now h = 2�� lnw (Cole� Hopf transformation) (14.35)then 2�� _ww = 2�2� "r2ww � (rw)2w2 # + 2�2� (rw)2w2 + � (14.36)_w = �r2w + �2�w� linear ! (14.37)66
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Figure 14.1: A polymer in a random medium (dots represent impurities)Polymer in a random medium (see Fig. 14.1):Let w(~x; t) be the partition funtion given the ends are at (0; 0) and (~x; t).w(~x; t) = ~x0(t)=~xZ~x0(0)=0 D~x0 exp � 1kT Z t0 dt0 [ �2(d~x0dt0 )2 + V (~x0; t0)℄! (14.38)with V being a random potential. This is like a Feynman path integral, sow obeys a "Shr�odinger" equation :T �w�t = T 22�r2w + V w (14.39)whih is the same equation as (14.37) with � = T2� , and � = 1��V14.4.1 Renormalisation for d > 2Response funtion formalism :Z ddxdt " ~w( _w � �r2w)� �2D2�2 ~w2w2# (14.40)Feynman rules : G 1�i!+�k2H +�2D�267



Renormalisation is simple : just as in A+ A �! ; :I = J +K + � � �but the oupling onstant has now a di�erent sign.�(gR) = �gR[2� d℄� bg2R (14.41)To all orders : g�R = (d� 2)=b (14.42)
g
R

β

UV fixed point

(d>2)

d

g

z=2, χ=0

rough

smooth

The interpretation of this is a roughening transition at g = g�.Exatly at the transition, we have�? = 1d� 2 (14.43)
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where �smooth / (g� � g)��? (14.44)Unsolved problems :1. What is the nature of the rough (strong oupling) phase for d � 2 ?2. Is there an upper ritial dimension ? [For d > 4, �? = 1d�2 violatesthe rigorous inequality d�? > 2℄
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