Troisième cycle de la Physique en Suisse Romande

Année académique 1998-1999, semestre d'été

Field Theory and Nonequilibrium Statistical Mechanics

John Cardy
Oxford University, UK

Contents

1 Introduction 4
I Critical dynamics near equilibrium phase transi- tions 5
2 Basic Principles 6
2.1 Correlation functions 6
2.2 Response functions 6
2.3 Fluctuation-dissipation relation 7
3 Models of critical dynamics 9
3.1 Master equation 9
3.1.1 Definition 9
3.1.2 Example : the Glauber model 10
3.2 Langevin-type equation 11
3.3 Models A and B 12
3.3.1 Definition 12
3.3.2 the Gaussian model 13
3.4 Response function formalism 15
3.5 Dynamic scaling 16
4 Perturbation theory for Model A 18
4.1 Diagrammatic expansion via the response function formalism 23
5 RG calculations for Model A and Model B 25
5.1 Renormalisation of dynamic field theory (model A) 25
5.1.1 Lowest order calculation 28
5.2 Renormalisation of model B 31
6 More realistic models 33
II Non-equilibrium phase transitions 36
7 Introduction 37
8 Field-theoretic representation of the master equation 39
8.1 Basic principles 39
8.2 Example a : Simple hopping 40
8.3 Example b : Simple annihilation at a single site 40
8.4 Aspects of this formalism which differ from ordinary many- body QM : 41
9 Path integral representation 43
10 Interpretation as a Langevin equation 45
11 Field theory and RG analysis of $A+A \rightarrow \emptyset$ 47
12 Conservation laws - The reaction $A+B \rightarrow \emptyset$ 52
13 Directed percolation 54
13.0.1 Scaling behaviour 58
13.0.2 Dimensional analysis 59
13.0.3 Away from the critical point 59
14 The Kardar-Parisi-Zhang equation 61
14.1 KPZ equation : response function formalism 63
14.2 Renormalisation for $d<2$ 63
14.3 Exact exponents for $d=1$ 65
14.4 Directed polymer representation 66
14.4.1 Renormalisation for $d>2$ 67

Chapter 1

Introduction

In this course, we shall be concerned with the time-dependent behaviour of systems close to a critical point. These may be equilibrium (or close to equilibrium) systems, or systems maintained in/close to some steady-state which is not equilibrium, by some driving force.

These will be the two main parts of the course. However, it will emerge that many of the scaling properties of such systems are similar, whether or not they are in equilibrium. As a result, the most effective way of understanding these, the renormalisation group (RG) and dynamic field theory are very similar.

We shall restrict ourselves to systems at finite temperature, which turns out to mean that, in the critical region, the thermal fluctuations are more important than the quantum ones. Thus, the system is in contact with a heat bath which, in the absence of driving force, will produce dissipation and relaxation toward equilibrium.

Hence, the effective equations of motion we shall use have a direction of time built into them. This is not to say that no features of the underlying time reversal invariant dynamics remain : for example, any conservation laws in the full dynamics should also be respected by the effective equations.

$$
\begin{aligned}
\text { Conservation laws } & \rightarrow \text { slow modes } \\
& \rightarrow \text { affect long-time dependence }(\omega, k \rightarrow 0) .
\end{aligned}
$$

Note that there are other mechanisms for producing slow modes, e.g. Goldstone bosons, which arise from the spontaneous breaking of a continuous symmetry.

Part I

Critical dynamics near equilibrium phase transitions

Chapter 2

Basic Principles

In dynamic critical behaviour, there are different kinds of observable quantities. Consider a magnetic system with $s(r, t)$ being the local, time-dependent magnetisation.

2.1 Correlation functions

$$
\begin{equation*}
C\left(r-r^{\prime}, t-t^{\prime}\right) \equiv\left\langle s(r, t) s\left(r^{\prime}, t^{\prime}\right)\right\rangle \tag{2.1}
\end{equation*}
$$

(in equilibrium) where

$$
\begin{equation*}
\left\langle s(r, t) s\left(r^{\prime}, t^{\prime}\right)\right\rangle \equiv \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{+T} d t^{\prime \prime} s\left(r, t+t^{\prime \prime}\right) s\left(r^{\prime}, t^{\prime}+t^{\prime \prime}\right) \tag{2.2}
\end{equation*}
$$

$\left\langle s(r, t) s\left(r^{\prime}, t^{\prime}\right)\right\rangle$ is the static correlation function, and may be calculated by the usual equilibrium statistical mechanics formula :

$$
\begin{equation*}
\left\langle s(r, t) s\left(r^{\prime}, t\right)\right\rangle=\frac{1}{Z} \operatorname{Tr}\left\{s(r) s\left(r^{\prime}\right) e^{-\beta \mathcal{H}}\right\} \tag{2.3}
\end{equation*}
$$

2.2 Response functions

We may add a time-varying field $h(r, t)\left(\mathcal{H} \longrightarrow \mathcal{H}-\sum_{r} h(r, t) s(r, t)\right)$ which couples to $s(r, t)$ in the hamiltonian, and measure the response $\langle s(r, t)\rangle$. The linear response must have the form

$$
\begin{equation*}
\langle s(r, t)\rangle=\int G\left(r-r^{\prime}, t-t^{\prime}\right) h\left(r^{\prime}, t^{\prime}\right) d^{d} r^{\prime} d t^{\prime} \tag{2.4}
\end{equation*}
$$

which defines G. Note that $G=0$ if $t<t^{\prime}$ by causality.

2.3 Fluctuation-dissipation relation

C and G are related by

$$
\begin{equation*}
C\left(t-t^{\prime}\right)=k_{B} T \int_{-\infty}^{t^{\prime}} G\left(t-t^{\prime \prime}\right) d t^{\prime \prime} \quad\left(t>t^{\prime}\right) \tag{2.5}
\end{equation*}
$$

Let us see where this comes from for an Ising system in which $s(t)= \pm 1$ (we suppress the r-dependence for clarity). We have in equilibrium :

$$
\begin{equation*}
\left\langle s(t) s\left(t^{\prime}\right)\right\rangle=\frac{1}{2}\langle s(t)\rangle_{s\left(t^{\prime}\right)=+1}-\frac{1}{2}\langle s(t)\rangle_{s\left(t^{\prime}\right)=-1} \tag{2.6}
\end{equation*}
$$

where $\langle s(t)\rangle_{s\left(t^{\prime}\right)=+1}$ means then conditional expectation value of $s(t)$, including only those histories when $s\left(t^{\prime}\right)=+1$.
Now imagine switching on a small field h at $t=-\infty$ and switching it off at $t=t^{\prime}$. At that point the system will be in equilibrium in the presence of the field h, so the probability that $s\left(t^{\prime}\right)= \pm 1$ is:

$$
\begin{equation*}
\frac{\exp \left(\pm h / k_{B} T\right)}{2 \cosh \left(h / k_{B} T\right)} \approx \frac{1}{2}\left(1 \pm \frac{h}{k_{B} T}+O\left(h^{2}\right)\right) \tag{2.7}
\end{equation*}
$$

Hence

$$
\begin{align*}
\langle s(t)\rangle & =\frac{1}{2}\left(1+\frac{h}{k_{B} T}\right)\langle s(t)\rangle_{s\left(t^{\prime}\right)=+1}+\frac{1}{2}\left(1-\frac{h}{k_{B} T}\right)\langle s(t)\rangle_{s\left(t^{\prime}\right)=-1} \\
& =h \int_{-\infty}^{t^{\prime}} G\left(t-t^{\prime \prime}\right) d t^{\prime \prime} \tag{2.8}
\end{align*}
$$

and (2.5) follows by equating terms $\mathcal{O}(h)$ (note that the $\mathcal{O}(1)$ terms cancel by symmetry).

Problem: Show for this simple model that the nonlinear response is also related to $C\left(t-t^{\prime}\right)$.

The FDT is usually expressed in terms of frequency space :

$$
\begin{gather*}
\tilde{G}(\omega)=\int_{-\infty}^{+\infty} d t G(t) e^{i \omega t} \quad G(t)=\int_{-\infty}^{+\infty} \frac{d \omega}{2 \pi} \tilde{G}(\omega) e^{-i \omega t} \tag{2.9}\\
\tilde{C}(\omega)=\int_{-\infty}^{+\infty} d t C(t) e^{i \omega t} \quad C(t)=\int_{-\infty}^{+\infty} \frac{d \omega}{2 \pi} \tilde{C}(\omega) e^{-i \omega t} \tag{2.10}\\
C^{\prime}\left(t-t^{\prime}\right)=k_{B} T\left[G\left(t-t^{\prime}\right)-G\left(t^{\prime}-t\right)\right] \tag{2.11}
\end{gather*}
$$

from which we get

$$
\begin{equation*}
\tilde{C}(r, \omega)=\frac{2 k_{B} T}{\omega} \operatorname{Im}(\tilde{G}(r, \omega)) \tag{2.12}
\end{equation*}
$$

[NB : This is the $\hbar \rightarrow 0$ limit of the quantum FDT :

$$
\begin{equation*}
\tilde{C}=2 \hbar \operatorname{coth}\left(\frac{\hbar \omega}{k_{B} T}\right) \operatorname{Im}(\tilde{G}) \tag{2.13}
\end{equation*}
$$

which may be derived using Fermi's golden rule (see Landau \& Lifshitz).]
The RHS of equations (2.12),(2.13) is related to the dissipation : the energy is proportional to $-\sum_{r, r^{\prime}} s(r) s\left(r^{\prime}\right) \delta\left(r-r^{\prime}\right)$, thus

$$
d E / d t \propto \sum_{r, r^{\prime}}\left\langle s(r, t) \dot{s}\left(r^{\prime}, t\right)\right\rangle \delta\left(r-r^{\prime}\right)
$$

but

$$
\left\langle s(r, t) \dot{s}\left(r^{\prime}, t\right)\right\rangle \equiv C^{\prime}(0) \propto \int d \omega \operatorname{Im} \tilde{G}(\omega)
$$

Thus $\operatorname{Im} \tilde{G}(\omega)$ gives the rate of energy dissipation power spectrum.
FDT follows from very general principles, and any effective description should respect it.

Chapter 3

Models of critical dynamics

3.1 Master equation

3.1.1 Definition

This is an equation of motion for the time evolution of the probability $P(\alpha, t)$ of finding a system in a microstate α. It has the form :

$$
\begin{equation*}
\frac{d}{d t} P(\alpha, t)=\sum_{\beta} R_{\beta \rightarrow \alpha} P(\beta, t)-\sum_{\beta} R_{\alpha \rightarrow \beta} P(\alpha, t) \tag{3.1}
\end{equation*}
$$

The model determines the rates $R_{\alpha \rightarrow \beta}$.
Note that the probability is conserved : $\frac{d}{d t} \sum_{\alpha} P(\alpha, t)=0$.
If this is supposed to describe the relaxation towards equilibrium, the Gibbs distribution $P(\alpha) \propto \exp (-E(\alpha) / k T)$ must be a steady-state solution. This means that

$$
\begin{equation*}
\sum_{\beta}\left[R_{\beta \rightarrow \alpha} e^{-E(\beta) / k T}-R_{\alpha \rightarrow \beta} e^{-E(\alpha) / k T}\right]=0 \tag{3.2}
\end{equation*}
$$

This will certainly be satisfied if the $[\cdot]=0$ for each β (detailed balance condition). It requires

$$
\begin{equation*}
\frac{R_{\alpha \rightarrow \beta}}{R_{\beta \rightarrow \alpha}}=e^{-(E(\beta)-E(\alpha)) / k T} \tag{3.3}
\end{equation*}
$$

There are many solutions of this constraint, e.g.

$$
\begin{equation*}
R_{\alpha \rightarrow \beta} \propto \frac{e^{+\frac{1}{2}(E(\alpha)-E(\beta)) / k T}}{e^{+\frac{1}{2}(E(\alpha)-E(\beta)) / k T}+e^{-\frac{1}{2}(E(\alpha)-E(\beta)) / k T}} \tag{3.4}
\end{equation*}
$$

As $T \rightarrow 0$ we have zero-temperature dynamics :

$$
R_{\alpha \rightarrow \beta}=\left\{\begin{array}{ccc}
1 & \text { if } & E(\beta)<E(\alpha) \tag{3.5}\\
\frac{1}{2} & \text { if } & E(\beta)=E(\alpha) \\
0 & \text { if } & E(\beta)>E(\alpha)
\end{array}\right.
$$

Problem : Show that the Metropolis algorithm satisfies detailed balance.

3.1.2 Example : the Glauber model

An example of a master equation is given by the Glauber dynamics for the Ising model : Let us denote s_{1}, s_{2}, \ldots the spins and $\alpha=\{s\}$ the microstates. The allowed transitions $\alpha \rightarrow \beta$ correspond to flipping a single spin :

$$
\begin{equation*}
R_{j}(\uparrow \rightarrow \downarrow) \quad R_{j}(\downarrow \rightarrow \uparrow) \tag{3.6}
\end{equation*}
$$

These rates will satisfy detailed balance if

$$
\begin{equation*}
\frac{R_{j}(\uparrow \rightarrow \downarrow)}{R_{j}(\downarrow \rightarrow \uparrow)}=\frac{e^{-h_{j} / k T}}{e^{+h_{j} / k T}} \tag{3.7}
\end{equation*}
$$

where h_{j} is the local field caused by either the applied field or the other spins.
A solution is to take

$$
\begin{equation*}
R_{j}(\uparrow \rightarrow \downarrow)=\Gamma \frac{e^{-h_{j} / k T}}{e^{-h_{j} / k T}+e^{+h_{j} / k T}} \tag{3.8}
\end{equation*}
$$

where Γ is a rate with dimensions (time) $)^{-1}$.
For example, for the one-dimensional Ising model, the allowed local processes, with their respective rates are, in the absence of an applied field $\left(H_{e x t}=0\right)$:

$\uparrow \uparrow \uparrow$	\rightarrow	$\uparrow \downarrow \uparrow$	$\Gamma \frac{\exp (-2 J / k T)}{\exp (2 J / k T)+\exp (-2 J / k T)}$
$\uparrow \downarrow \uparrow$	\rightarrow	$\uparrow \uparrow \uparrow$	$\Gamma \frac{\exp (2 J / k T)}{\exp (2 J / k T)+\exp (-2 J / k T)}$
$\uparrow \uparrow \downarrow$	\leftrightarrow	$\uparrow \downarrow \downarrow$	Γ

Problem: Show that $C \& G$ calculated in the Glauber model satisfy the FDT.

These processes are more simply understood in terms of domain walls. The last processes correspond to random walks, or diffusion of domain walls. Their density ρ changes by the first two processes, and we can write :

$$
\begin{align*}
\frac{d \rho}{d t}= & -2 \Gamma \frac{e^{2 J / k T}}{e^{2 J / k T}+e^{-2 J / k T}} \rho^{2} \\
& +2 \Gamma \frac{e^{-2 J / k T}}{e^{2 J / k T}+e^{-2 J / k T}} \tag{3.9}
\end{align*}
$$

Thus at late times, $\rho \rightarrow \rho^{*}=e^{-2 J / k T}$ which is just the correlation length ξ^{-1} in equilibrium.

The relaxation time (time for a single spin to flip) is \approx to the time for a domain wall to diffuse a correlation length which is of the order of ξ^{2}. (Note that this is different from the relaxation time for ρ, which scales like $1 / \rho^{*} \sim \xi$).

3.2 Langevin-type equation

This is a stochastic differential equation designed to generate the required distribution. It works better for systems with continuous degrees of freedom. The prototype is Brownian motion :

Consider a Brownian particle of unit mass. The equation of motion for the velocity (in 1-d) is :

$$
\begin{equation*}
\dot{v}(t)=F(t)-\Gamma v(t)+\zeta(t) \tag{3.10}
\end{equation*}
$$

with :

$$
\begin{aligned}
F(t) & =\text { driving force } \\
\Gamma v(t) & =\text { friction } \\
\zeta(t) & =\text { random noise due to collisions }
\end{aligned}
$$

The dissipative term may be written :

$$
\begin{equation*}
-\Gamma \partial_{v}\left(\mathcal{H}=\frac{1}{2} v^{2}, \text { the energy }\right) \tag{3.11}
\end{equation*}
$$

The noise is correlated only over times between microscopic collisions. Over longer times, we can therefore write :

$$
\begin{equation*}
\left\langle\zeta(t) \zeta\left(t^{\prime}\right)\right\rangle=2 D \delta\left(t-t^{\prime}\right) \tag{3.12}
\end{equation*}
$$

where D is a constant. Its value is determined by the requirement that the steady-state distribution is Maxwellian, i.e. $\left\langle v^{2}\right\rangle=k T$.

Integrating over a time interval $d t$ yields :

$$
\begin{equation*}
v(t+\delta t) \approx(1-\Gamma \delta t) v(t)+\int_{t}^{t+\delta t} \zeta\left(t^{\prime}\right) d t^{\prime} \tag{3.13}
\end{equation*}
$$

Note that both terms in the sum are uncorrelated, hence :

$$
\begin{equation*}
\left\langle v^{2}(t+\delta t)\right\rangle \approx(1-2 \Gamma \delta t)\left\langle v^{2}(t)\right\rangle+2 D \delta t \tag{3.14}
\end{equation*}
$$

and finally

$$
\begin{equation*}
D=\Gamma k T \quad \text { (Einstein relation) } \tag{3.15}
\end{equation*}
$$

NB : From the Langevin equation, we can also derive the Fokker-Planck equation, which describes the time evolution of the probability distribution $P(v(t), t)$.

3.3 Models A and B

3.3.1 Definition

This is the simplest purely relaxational model of an Ising ferromagnet. We work in reduced units, so $k T_{c}=1, \Gamma=D$. The reduced Landau-Ginzburg hamiltonian is :

$$
\begin{equation*}
\mathcal{H}=\int\left[\frac{1}{2}(\nabla S)^{2}+V(S)\right] d^{d} x \tag{3.16}
\end{equation*}
$$

where $V(S)=\frac{1}{2} r_{0} S^{2}+\frac{1}{4} u S^{4}, \quad r_{0} \propto T-T_{M F}$.
Model A is :

$$
\begin{equation*}
\partial_{t} S(x, t)=-D \frac{\delta \mathcal{H}}{\delta S(x, t)}+\zeta(x, t) \tag{3.17}
\end{equation*}
$$

where $\frac{\delta \mathcal{H}}{\delta S}=-\nabla^{2}(S)+V^{\prime}(S)$.
The Einstein relation now has the form :

$$
\begin{equation*}
\left\langle\zeta(x, t) \zeta\left(x^{\prime}, t^{\prime}\right)\right\rangle=2 D \delta^{(d)}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{3.18}
\end{equation*}
$$

This follows as for Brownian motion : we have :

$$
\begin{equation*}
S(x, t+\delta t) \simeq S(x, t)-D \delta t \cdot \frac{\delta \mathcal{H}}{\delta S(x, t)}+\int_{t}^{t+\delta t} \zeta\left(x, t^{\prime}\right) d t^{\prime} \tag{3.19}
\end{equation*}
$$

$$
\begin{align*}
& \left\langle S(x, t+\delta t) S\left(x^{\prime}, t+\delta t\right)\right\rangle-\left\langle S(x, t) S\left(x^{\prime}, t\right)\right\rangle \approx \\
& \quad-D \delta t\left[\left\langle S(x, t) \frac{\delta \mathcal{H}}{\delta S\left(x^{\prime}, t\right)}\right\rangle+\left\langle S\left(x^{\prime}, t\right) \frac{\delta \mathcal{H}}{\delta S(x, t)}\right\rangle\right] \\
& \quad+\int_{t}^{t+\delta t} d t^{\prime} \int_{t}^{t+\delta_{t}} d t^{\prime \prime}\left\langle\zeta\left(x, t^{\prime}\right) \zeta\left(x^{\prime}, t^{\prime \prime}\right)\right\rangle \tag{3.20}
\end{align*}
$$

But, in equilibrium : $\left\langle S(x, t) \frac{\delta \mathcal{H}}{\delta S\left(x^{\prime}, t\right)}\right\rangle=\delta^{(d)}\left(x-x^{\prime}\right)$ by functional integration by parts, and the left hand side vanishes.

In Model A, the total magnetisation $\int S d^{d} x$ is not conserved. But in some physical systems, it might be (e.g. $S=$ order parameter for liquid-gas critical point, or a binary fluid). In that case, we have a continuity equation for S :

$$
\begin{equation*}
\partial_{t} S=-\vec{\nabla} \cdot \vec{J} \tag{3.21}
\end{equation*}
$$

where \vec{J} is a current. To be consistent, we should therefore take

$$
\begin{equation*}
D \longrightarrow-D^{\prime} \nabla^{2} \quad[\text { Question : Why the minus sign ?] } \tag{3.22}
\end{equation*}
$$

with $D^{\prime}>0$. The Einstein relation is then :

$$
\begin{equation*}
\left\langle\zeta(x, t) \zeta\left(x^{\prime}, t^{\prime}\right)\right\rangle=-2 D^{\prime} \nabla^{2} \delta^{(d)}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{3.23}
\end{equation*}
$$

or equivalently, we can think of the noise term as being $\vec{\nabla} \cdot \vec{\zeta}$, in which case

$$
\begin{equation*}
\left\langle\zeta_{i}(x, t) \zeta_{j}\left(x^{\prime}, t^{\prime}\right)\right\rangle=-2 D^{\prime} \delta_{i, j} \delta^{(d)}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{3.24}
\end{equation*}
$$

3.3.2 the Gaussian model

If we neglect the S^{4} term in \mathcal{H} (which is valid outside the critical region or for $d>4$), we end up with linear equations :

For model A :

$$
\begin{equation*}
\partial_{t} S=-D\left(-\nabla^{2} S+r_{0} S\right)+\zeta \tag{3.25}
\end{equation*}
$$

Taking Fourier transforms :

$$
\begin{equation*}
\dot{S}_{k}=-D\left(k^{2}+\xi_{0}^{-2}\right) S_{k}+\zeta_{k} \tag{3.26}
\end{equation*}
$$

where we have identified the static correlation length ξ_{0}.

Each mode decays independently with $\left\langle S_{k}\right\rangle \sim e^{-t / \tau_{k}}$, where

$$
\begin{equation*}
\tau_{k}=\frac{1}{D_{0}}\left(k^{2}+\xi_{0}^{-2}\right) \tag{3.27}
\end{equation*}
$$

Note that $\tau_{0} \propto \xi_{0}^{2} \rightarrow \infty$ at $T=\left(T_{c}\right)_{M F}$: this is the critical slowing down.
We can work out the response function in this approximation : we add a field $h(t)$ to \mathcal{H} :

$$
\begin{equation*}
\left\langle\dot{S}_{k}\right\rangle=-D\left(k^{2}+\xi_{0}^{-2}\right)\langle S(k)\rangle-D h_{k}(t) \tag{3.28}
\end{equation*}
$$

and then Fourier transform with respect to time as well :

$$
\begin{equation*}
\left\langle S_{k}(\omega)\right\rangle=h_{k}(\omega) \cdot G_{0}(\omega, k) \tag{3.29}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{0}(\omega, k)=\frac{1}{\frac{-i \omega}{D}+k^{2}+\xi_{0}^{-2}} \tag{3.30}
\end{equation*}
$$

In the static limit $\omega=0$ this reproduces the Ornstein-Zernicke form.
Similarly, solving in the presence of noise but with $h=0$ we find :

$$
\begin{equation*}
S_{k}(\omega)=\frac{\zeta_{k}(\omega)}{-i \omega+D\left(k^{2}+\xi_{0}^{-2}\right)} \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\zeta_{k}(\omega) \zeta_{k^{\prime}}\left(\omega^{\prime}\right)\right\rangle=2 D \delta\left(\omega+\omega^{\prime}\right) \delta^{(d)}\left(k+k^{\prime}\right) \tag{3.32}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
C_{0}(\omega, k)=\frac{2 D}{\omega^{2}+D^{2}\left(k^{2}+\xi_{0}^{-2}\right)^{2}}=\frac{2}{\omega} \operatorname{Im} G_{0} \tag{3.33}
\end{equation*}
$$

so FDT is satisfied.
For model B, on the other hand, $D \longrightarrow D^{\prime} k^{2}$, so

$$
\begin{equation*}
G_{0}(\omega, k)=\frac{k^{2}}{\frac{-i \omega}{D^{\prime}}+k^{2}\left(k^{2}+\xi_{0}^{-2}\right)} \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{k} \propto \frac{1}{k^{2}\left(k^{2}+\xi_{0}^{-2}\right)} \tag{3.35}
\end{equation*}
$$

Modes with $k \sim \xi_{0}^{-1}$ decay therefore with $\tau \sim \xi_{0}^{4}$.

3.4 Response function formalism

There is a way of writing the Langevin equations in $d+1$ dimensions so they look rather like equilibrium models in $d+1$ space dimensions, which is very suggestive.
For example, for model A :

$$
\begin{equation*}
\partial_{t} S=-D \frac{\delta \mathcal{H}}{\delta S}+\zeta \tag{3.36}
\end{equation*}
$$

We are interested in solving this equation for $S(x, t)$ for a given $\zeta(x, t)$ and then computing averages of quantities like $S\left(x_{1}, t_{1}\right) S\left(x_{2}, t_{2}\right)$ over the noise ζ. We can do this by writing

$$
\begin{equation*}
\left\langle\int \mathcal{D} S S\left(x_{1}, t_{1}\right) S\left(x_{2}, t_{2}\right) \delta[S(x, t)=\text { solution }]\right\rangle_{\text {noise }} \tag{3.37}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta[\text { equation }]=\delta\left[\dot{S}+D \frac{\delta \mathcal{H}}{\delta S}-\zeta\right] \times \text { Jacobian } \tag{3.38}
\end{equation*}
$$

A word about this Jacobian. One way is to write it as

$$
\begin{equation*}
\operatorname{det}\left[\partial_{t}+D \frac{\delta^{2} \mathcal{H}}{\delta S \delta S}\right] \tag{3.39}
\end{equation*}
$$

and write this as a Grassmann integral over anticommuting fields $\psi(x, t)$, $\bar{\psi}(x, t)$:

$$
\begin{equation*}
\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp \left(-\int \bar{\psi}\left[\partial_{t}+D \frac{\delta^{2} \mathcal{H}}{\delta S \delta S}\right] \psi d t d^{d} x\right) \tag{3.40}
\end{equation*}
$$

But in fact this is unnecessary if we regularise properly : if we interpret $\partial_{t} S$ as a forward difference operator, then

$$
\begin{equation*}
S(t+\delta t) \approx S(t)+\delta t\left[-D \frac{\delta \mathcal{H}}{\delta S(x, t)}+\zeta(x, t)\right] \tag{3.41}
\end{equation*}
$$

and it is easy to see that $J=1$. But note that this choice will have consequences later. We now write

$$
\begin{equation*}
\delta\left[\dot{S}+D \frac{\delta \mathcal{H}}{\delta S}-\zeta\right]=\int \mathcal{D} \tilde{S} \exp \left(-\int\left[d^{d} x d t \tilde{S}\left(\dot{S}+D \frac{\delta \mathcal{H}}{\delta S}-\zeta\right)\right]\right) \tag{3.42}
\end{equation*}
$$

(Note that \tilde{S} should strictly be integrated along the imaginary axis - in practice since we almost always do perturbation theory, this is not important).

Finally, we can average over ζ : at each point in space-time,

$$
\begin{equation*}
\left\langle e^{-\tilde{S} \zeta}\right\rangle=e^{(1 / 2)\langle\zeta \zeta\rangle \tilde{S}^{2}}=e^{D \tilde{S}^{2}} \tag{3.43}
\end{equation*}
$$

The result is that correlation functions like $\left\langle S\left(x_{1}, t_{1}\right) S\left(x_{2}, t_{2}\right)\right\rangle$ may be evaluated as function integrals with a "weight"

$$
\begin{equation*}
\int \mathcal{D} \tilde{S} \mathcal{D} S \exp \left(-\int\left[d^{d} x d t \tilde{S}\left(\dot{S}+D \frac{\delta \mathcal{H}}{\delta S}-D \tilde{S}^{2}\right)\right]\right) \tag{3.44}
\end{equation*}
$$

\tilde{S} is called the response field. This is because its correlators give response functions. If we add a source term $+h S$ to \mathcal{H}, this is the same as adding $-D h \tilde{S}$ to the "action". So

$$
\begin{equation*}
\underbrace{\frac{\delta\left\langle S\left(x^{\prime}, t^{\prime}\right)\right\rangle}{\delta h(x, t)}}_{=G\left(x-x^{\prime}, t^{\prime}-t\right)}=D\left\langle S\left(x^{\prime}, t^{\prime}\right) \tilde{S}(x, t)\right\rangle \tag{3.45}
\end{equation*}
$$

We can easily show FDT from this :
Add a source $+h S$ as above. The terms involving \tilde{S} are : $-D h \tilde{S},-D \tilde{S}^{2}$. We can shift $\tilde{S} \rightarrow \tilde{S}-h / 2$ to get rid of this linear term, but this induces a term $-\frac{h}{2}\left(\dot{S}+D \frac{\delta \mathcal{H}}{\delta S}\right)$
Hence

$$
\begin{align*}
G\left(x^{\prime}-x, t^{\prime}-t\right) & =-\frac{1}{2}\left\langle S\left(x^{\prime}, t^{\prime}\right)\left[\dot{S}(x, t)+D \frac{\delta \mathcal{H}}{\delta S(x, t)}\right]\right\rangle \\
& =\underbrace{\frac{1}{2} \dot{C}\left(x^{\prime}-x, t^{\prime}-t\right)}_{\text {odd }}-\underbrace{\frac{D}{2}\left\langle S\left(x^{\prime}, t^{\prime}\right) \frac{\delta \mathcal{H}}{\delta S(x, t)}\right\rangle}_{\text {even }} \tag{3.46}
\end{align*}
$$

But we know that $G=0$ for $t^{\prime}-t<0$, and the last term is an even function of t^{\prime} and t. So it must be that

$$
\begin{equation*}
G\left(x^{\prime}-x, t^{\prime}-t\right)=\dot{C}\left(x^{\prime}-x, t^{\prime}-t\right) \quad \text { for } t^{\prime}-t>0 \tag{3.47}
\end{equation*}
$$

which is FDT.

3.5 Dynamic scaling

The simple examples we have looked at so far exhibit simple dynamic scaling close to a critical point where $\xi^{-1}=0$.
For model A and the Glauber model, we found that typical time scales for
the relaxation of fluctuations of the linear size of ξ behave like $\tau \propto \xi^{z}$ with $z=2$.
For model B, we found $z=4$.
Problem : Starting from a microscopic master equation for the 1d Ising model which locally conserves the magnetisation, argue that $z=3$ in this case.

This may be generalised to hypothesise dynamic scaling forms for dynamic correlations functions which generalise the static ones.
For example

$$
\begin{equation*}
\tilde{G}(k, \omega, \xi)=\xi^{2-\eta} \Phi\left(\xi k, \xi^{z} \omega\right) \tag{3.48}
\end{equation*}
$$

(for $\omega=0$, this is the static correlation function).
Similarly,

$$
\begin{equation*}
\tilde{C}(k, \omega, \xi)=\xi^{2-\eta+z} \Psi\left(\xi k, \xi^{z} \omega\right) \tag{3.49}
\end{equation*}
$$

As we shall see, these scaling forms emerge from an RG analysis, with, however, in general non-trivial values for η, z etc.

Chapter 4

Perturbation theory for Model A

Let us start with the model A equation :

$$
\begin{align*}
\dot{S} & =-D \frac{\delta \mathcal{H}}{\delta S}+\zeta \tag{4.1}\\
& =-D\left(-\nabla^{2} S+r_{0} S+u_{o} S^{3}\right)+\zeta(x, t) \tag{4.2}
\end{align*}
$$

where $\left\langle\zeta(x, t) \zeta\left(x^{\prime}, t^{\prime}\right)\right\rangle=2 D \delta^{(d)}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)$
We can set up a perturbative solution in u_{0} by writing it as an integral equation :

$$
\begin{equation*}
\dot{S}-D \nabla^{2} S+D r_{0} S=-D u_{0} S^{3}+\zeta \tag{4.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{1}{D} \frac{\partial}{\partial t}-\nabla^{2}+r_{0}\right) S=-u_{0} S^{3}+\frac{1}{D} \zeta \tag{4.4}
\end{equation*}
$$

which yields

$$
\begin{equation*}
S(x, t)=\int d^{d} x d t^{\prime} G_{0}\left(x-x^{\prime}, t-t^{\prime}\right)\left[-u_{0} S^{3}\left(x^{\prime}, t^{\prime}\right)+\frac{\zeta\left(x^{\prime}, t^{\prime}\right)}{D}\right] \tag{4.5}
\end{equation*}
$$

Note that G_{0} is just the bare response function, with Fourier transform

$$
\begin{equation*}
\frac{1}{\frac{-i \omega}{D}+k^{2}+r_{0}} \tag{4.6}
\end{equation*}
$$

We can introduce a diagrammatic notation with time running from right to left :

$$
(x ; t) \stackrel{G_{0}\left(x-x^{\prime} ; t-t^{\prime}\right)}{\longleftrightarrow}\left(x^{\prime} ; t^{\prime}\right)
$$

Thus $S(x, t)=$

$$
(x ; t) \bullet \longleftarrow \longleftrightarrow\left(-u_{0} S^{3}\left(x^{\prime} ; t^{\prime}\right)\right)
$$

$+$

$$
(x ; t) \longleftrightarrow \longrightarrow\left(\frac{1}{D} \zeta\left(x^{\prime} ; t^{\prime}\right)\right)
$$

We can now iterate this equation for S :

$$
S(x, t)=
$$

$$
(x ; t) \curvearrowleft<\left(\frac{1}{D} \zeta\left(x^{\prime} ; t^{\prime}\right)\right)
$$

$$
+
$$

$=\quad\left(-u_{0} S^{3}+\frac{1}{D} \zeta\left(x^{\prime} ; t^{\prime}\right)\right)$

$+$
$+$

$+\quad \ldots$ where we integrate over the (x, t) of each vertex of type
to the condition that they are time-ordered), and where each $\longrightarrow \boldsymbol{x}_{\text {means }}$ $+\zeta / D$.

To get the response function we just lop off one of these x :
$G\left(x_{1}, t_{1}, x_{2}, t_{2}\right)=$
$+3 \times$
$+3 \times$

$+2 \times$

Note that, since so far all we are doing is solving a partial differential equation, the diagrams are simply trees. All counting factors are 1.
$\underline{\text { Loops come in when we average over } \zeta \text {, using }}$

$$
\begin{equation*}
\left\langle\zeta\left(x_{1}, t_{1}\right) \zeta\left(x_{2}, t_{2}\right)\right\rangle=2 D \delta^{(d)}\left(x_{1}-x_{2}\right) \delta\left(t_{1}-t_{2}\right) \tag{4.7}
\end{equation*}
$$

We are then supposed to tie the ends $\stackrel{\rightarrow}{\boldsymbol{-}}$) together, in pairs, in all possible ways, with a factor $\frac{1}{D} \cdot \frac{1}{D} \cdot 2 D=\frac{2}{D}$.
Note also that we never get

with our choice of regularisation of ∂_{t}, since the propagator \longrightarrow always goes forward in time.

Problem : Show that $\langle\tilde{S} \tilde{S}\rangle=0$
Thus, to $O\left(u_{0}^{1}\right)$, we have

which represents the term

$$
\begin{align*}
= & \frac{-6 u_{0}}{D} \int_{t_{1}>t^{\prime}>t_{2}, t^{\prime}>t^{\prime \prime}} d^{d} x^{\prime} d t^{\prime} d^{d} x^{\prime \prime} d t^{\prime \prime} \times \\
& \times G_{0}\left(x_{1}-x^{\prime}, t_{1}-t^{\prime}\right) G_{0}\left(x^{\prime}-x_{2}, t^{\prime}-t_{2}\right) G_{0}\left(x^{\prime}-x^{\prime \prime}, t^{\prime}-t^{\prime \prime}\right)^{2} \tag{4.8}
\end{align*}
$$

As with all Feynman diagrams, this is simpler in Fourier space :

standing for

$$
\begin{align*}
& =\frac{-6 u_{0}}{D}\left(\frac{1}{-i \omega / D+q^{2}+r_{0}}\right)^{2} \times \\
& \quad \times \int \frac{d \omega^{\prime}}{2 \pi} \frac{d^{d} k}{(2 \pi)^{d}} \underbrace{\frac{1}{-i \omega^{\prime} / D+k^{2}+r_{0}} \frac{1}{+i \omega^{\prime} / D+k^{2}+r_{0}}}_{D \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{2\left(k^{2}+r_{0}\right)}} \tag{4.9}
\end{align*}
$$

Note that at $\omega=0$, we get the static correlation function at 1-loop :

A more interesting diagram is :

which comes from sewing in two ways the following diagram :

The overall factor is $3^{2} \cdot 2 \cdot\left(\frac{2}{D}\right)^{2} \cdot\left(-u_{0}\right)^{2}$ and the integral is :

$$
\begin{align*}
& \frac{1}{\left(-i \omega / D+q^{2}+r_{0}\right)^{2}} \int \frac{d \omega_{1}}{2 \pi} \frac{d^{d} k_{1}}{(2 \pi)^{d}} \frac{d \omega_{2}}{2 \pi} \frac{d^{d} k_{2}}{(2 \pi)^{d}} \\
& \quad \times \frac{1}{-i \omega_{1} / D+k_{1}^{2}+r_{0}} \frac{1}{+i \omega_{1} / D+k_{1}^{2}+r_{0}} \\
& \quad \times \frac{1}{-i \omega_{2} / D+k_{2}^{2}+r_{0}} \frac{1}{\frac{-i\left(\omega-\omega_{1}-\omega_{2}\right)}{D}+\left(q-k_{1}-k_{2}\right)^{2}+r_{0}} \tag{4.10}
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{\left(-i \omega / D+q^{2}+r_{0}\right)^{2}} D^{2} \int \frac{d^{d} k_{1}}{(2 \pi)^{d}} \frac{d^{d} k_{2}}{(2 \pi)^{d}} \\
& \quad \times \frac{1}{2\left(k_{1}^{2}+r_{0}\right)} \frac{1}{\left(2 k_{2}^{2}+r_{0}\right)} \\
& \quad \times \frac{1}{-i \omega / D+k_{1}^{2}+k_{2}^{2}+\left(q-k_{1}-k_{2}\right)^{2}+3 r_{0}} \tag{4.11}
\end{align*}
$$

[Note that we can do ω-integrals automatically by looking at intermediate states in "old-fashioned" perturbation theory.

At $\omega=0$ we can symmetrise ($k_{3}=q-k_{1}-k_{2}$)

$$
\begin{align*}
& \frac{1}{k_{1}^{2}+r_{0}} \frac{1}{k_{2}^{2}+r_{0}} \frac{1}{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}+3 r_{0}} \\
& \longrightarrow \frac{1}{3} \frac{1}{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}+3 r_{0}}\left[\frac{1}{k_{1}^{2}+r_{0}} \frac{1}{k_{2}^{2}+r_{0}}+\text { perms. }\right] \\
& =\frac{1}{3} \frac{1}{k_{1}^{2}+r_{0}} \frac{1}{k_{2}^{2}+r_{0}} \frac{1}{k_{3}^{2}+r_{0}} \tag{4.12}
\end{align*}
$$

and so recover the usual 2-loop diagram in the statics: -Note that the factors of D all cancel in the static limit, as they should.

4.1 Diagrammatic expansion via the response function formalism

These diagram may also be read off from the response formalism : Rescaling $S \rightarrow \tilde{S} / D$ (so that $\langle S \tilde{S}\rangle$ is the response function) the action is :

$$
\begin{equation*}
S=\int d t d^{d} x\left[\tilde{S}\left(\frac{\dot{S}}{D}-\nabla^{2} S+r_{0} S+u_{o} S^{3}\right)-\frac{1}{D} \tilde{S}^{2}\right] \tag{4.13}
\end{equation*}
$$

If we look at the gaussian terms $\tilde{S} \ldots S$ we see the propagator

$$
\begin{gathered}
\frac{1}{-i \omega / D+k^{2}+r_{0}} \\
S \longleftarrow \tilde{S}
\end{gathered}
$$

[Note that we could include $\frac{1}{D} \tilde{S}^{2}$ as part of the gaussian term. This leads to a matrix

$$
\left(\begin{array}{cc}
& \frac{-i \omega}{D}+k^{2}+r_{0} \tag{4.14}\\
\frac{+i \omega}{D}+k^{2}+r_{0} & -\frac{2}{D}
\end{array}\right)
$$

to be inverted. Its elements are

$$
\left(\begin{array}{cc}
& \tag{4.15}\\
& \langle S \tilde{S}\rangle_{0} \\
\langle S \tilde{S}\rangle_{0}^{*} & \langle S S\rangle_{0}
\end{array}\right)
$$

where the lower right element is nothing but the bare correlation function. This introduces two kinds of propagators which are indeed related by FDT. In fact, since to any finite order in u_{0} we only get a finite number of \tilde{S}^{2} vertices, it is easier to think of \tilde{S}^{2} as part of the "interaction".]

We have vertices

and

Chapter 5

RG calculations for Model A and Model B

5.1 Renormalisation of dynamic field theory (model A)

The theory as stands is regularised at large (ω, k) by lattice or other shorttime effects. We can examine how the regularisation enters by power-counting. For simplicity, let us choose a cut-off in $|k|<\Lambda$: later, for elegance, we'll use dimensional regularisation.

Define $G^{(m, n)}\left(\left(\omega_{1}, k_{1}\right) \cdots\left(\omega_{m}, k_{m}\right) ;\left(\omega_{1}^{\prime}, k_{1}^{\prime}\right) \cdots\left(\omega_{n}^{\prime}, k_{n}^{\prime}\right)\right)$ to be the connected response function with n ingoing and m outgoing lines :

From this define the truncated 1-particle irreducible vertex functions $\Gamma^{(m, n)}$. As in the static theory, only a finite number of these contain primitive divergences near $d=4$. These are

$$
\begin{equation*}
\left[\Gamma^{(1,1)}\right] \propto k^{2} \quad, \quad\left[\Gamma^{(1,3)}\right] \propto k^{0} \tag{5.1}
\end{equation*}
$$

Hence in $d=4, \Gamma^{(1,1)}(\omega, \vec{k})$ is quadratically divergent $\propto \Lambda^{2}$ and $\partial_{k^{2}} \Gamma^{(1,1)}$, $\partial_{\omega} \Gamma^{(1,1)}, \Gamma^{(1,3)}$ are log-divergent. Apart from $\partial_{\omega} \Gamma^{(1,1)}$ these are just the same
divergences met in the static theory. They are removed by mass, field and coupling constant renormalisation.

Working for simplicity at the critical point, we may assume that mass renormalisation has always been done, and $\Gamma^{(1,1)}(\omega=\vec{k}=0)=0$.

As usual, we define

$$
\begin{align*}
S_{R} & =Z_{S}^{-1 / 2} S \\
\tilde{S}_{R} & =Z_{S}^{-1 / 2} \tilde{S} \tag{5.2}
\end{align*}
$$

so

$$
\begin{equation*}
\Gamma_{R}^{(1,1)}=Z_{S} \Gamma^{(1,1)} \tag{5.3}
\end{equation*}
$$

and in general

$$
\begin{equation*}
\Gamma_{R}^{(m, n)}=Z_{S}^{\frac{m+n}{2}} \Gamma^{(m, n)} \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\partial_{k^{2}} \Gamma_{R}^{(1,1)}\right)_{\omega=0, k=\mu}=1 \tag{5.5}
\end{equation*}
$$

[this is inspired by $\Gamma^{(1,1)}=-i \omega / D+k^{2}$ in free theory $]$
In the same way we define

$$
\begin{equation*}
u_{R}=-\left(\Gamma_{R}^{(1,3)}\right)_{\omega_{i}=0, k_{i} \propto \mu} \tag{5.6}
\end{equation*}
$$

This suggest that we therefore define

$$
\begin{equation*}
\frac{1}{D_{R}}=\left(+\frac{\partial}{\partial(-i \omega)} \Gamma_{R}^{(1,1)}\right)_{\omega=0, k=\mu} \equiv \frac{1}{Z_{D} D_{0}} \tag{5.7}
\end{equation*}
$$

The statement of renormalisability of the dynamic theory is that all response functions $\Gamma_{R}^{(m, n)}$ are finite as $\Lambda \rightarrow \infty$ when expressed in terms of u_{R} and D_{R}.

Let us focus on $\Gamma_{R}^{(1,1)}=Z_{S} \Gamma^{(1,1)}$

$$
\begin{equation*}
\Gamma_{R}^{(1,1)}\left(\omega, k, D_{R}, u_{R}, \mu\right)=Z_{S}\left(u_{R}, \mu, \Lambda\right) \Gamma^{(1,1)}\left(\omega, k, D_{0}, u_{0}, \Lambda\right) \tag{5.8}
\end{equation*}
$$

Since $\Gamma^{(1,1)}$ does not depend on μ, we can write

$$
\begin{equation*}
\left(\mu \frac{\partial}{\partial \mu}\right)_{u_{0}, \Lambda, D_{0}} Z_{S}^{-1} \Gamma_{R}^{(1,1)}=0 \tag{5.9}
\end{equation*}
$$

We define

$$
\begin{equation*}
\underbrace{g_{R}}_{\text {dimensionless }}=u_{R} \mu^{-\epsilon} \tag{5.10}
\end{equation*}
$$

and can rewrite it

$$
\begin{equation*}
\left[\mu \frac{\partial}{\partial \mu}+\beta\left(g_{R}\right) \frac{\partial}{\partial g_{R}}+Z_{S} \mu \frac{\partial}{\partial \mu}\left(Z_{S}^{-1}\right)+\mu \frac{\partial D_{R}}{\partial \mu} \frac{\partial}{\partial D_{R}}\right] \Gamma_{R}^{(1,1)}=0 \tag{5.11}
\end{equation*}
$$

where as usual

$$
\begin{equation*}
\beta\left(g_{R}\right)=\left(\mu \frac{\partial}{\partial \mu} g_{R}\right)_{u_{0}, \Lambda} \tag{5.12}
\end{equation*}
$$

We define now

$$
\begin{align*}
\gamma_{s}\left(g_{R}\right) & \equiv\left(+\frac{1}{Z_{S}} \mu \frac{\partial}{\partial \mu} Z_{S}\right)_{u_{0}, \Lambda} \\
\gamma_{D}\left(g_{R}\right) & \equiv\left(+\frac{1}{D_{R}} \mu \frac{\partial}{\partial \mu} D_{R}\right)_{u_{0}, D_{0}, \Lambda} \\
& =\frac{1}{Z_{D}} \mu \frac{\partial}{\partial \mu} Z_{D} \tag{5.13}
\end{align*}
$$

For simplicity suppose $g_{R}=g^{*}=\mathcal{O}(\epsilon)$ and $\beta\left(g^{*}\right)=0$.
We then have

$$
\begin{equation*}
\left[\mu \frac{\partial}{\partial \mu}-\gamma_{s}^{*}+\gamma_{D}^{*} D_{R} \frac{\partial}{\partial D_{R}}\right] \Gamma_{R}^{(1,1)}=0 \tag{5.14}
\end{equation*}
$$

Now we have to use a version of dimensional analysis :

$$
\begin{equation*}
\Gamma_{R}^{(1,1)}\left(\omega, k, D_{R}, \mu\right)=\mu^{2} \Phi\left[\frac{k}{\mu}, \frac{\omega}{D_{R} k^{2}}\right] \tag{5.15}
\end{equation*}
$$

From this we see that $D_{R} \partial_{R}=-\omega \partial_{\omega}$ and $\mu \partial_{\mu}+k \partial_{k}=2-2 \omega \partial_{\omega}$, so

$$
\begin{gather*}
{\left[-k \frac{\partial}{\partial k}+2-\gamma_{s}^{*}-\left(2+\gamma_{D}^{*}\right) \omega \frac{\partial}{\partial \omega}\right] \Gamma^{(1,1)}(\omega, k)=0} \tag{5.16}\\
\Gamma^{(1,1)}(\omega, k)=k^{2-\gamma_{s}^{*}} \Phi\left[\frac{\omega}{k^{2+\gamma_{D}^{*}}}\right] \tag{5.17}
\end{gather*}
$$

which is dynamic scaling, with $\eta=\gamma_{s}^{*}, z=2+\gamma_{D}^{*}$.

5.1.1 Lowest order calculation

Notice there are no 1-loop corrections to Z_{s} or Z_{Γ} since the only diagram is

which, after truncating the external lines, is independent of ω and q. To one loop, then, we have only the renormalisation of u_{0}

$$
\left(-u_{0}\right)^{2} \times 3 \times 3 \times 2 \times(2 / \Gamma)
$$

The one-loop diagram is therefore

$$
\begin{equation*}
\left(-u_{0}\right)^{2} \frac{3^{2} \cdot 2^{2}}{D_{0}} \underbrace{D_{0}}_{\text {from } \int d \omega} \cdot \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{-i 0+k^{2}+\left(q_{1}+q_{2}-k\right)^{2}} \frac{1}{-i 0+k^{2}+k^{2}} \tag{5.18}
\end{equation*}
$$

This is log-divergent in $d=4$ as expected : in $4-\epsilon$ dimensions the integral gives

$$
\begin{equation*}
\frac{1}{4} \frac{2 \pi^{2}}{(2 \pi)^{4}} \mu^{-\epsilon}\left[\frac{1}{\epsilon}+\mathcal{O}(1)\right] \tag{5.19}
\end{equation*}
$$

Thus

$$
\begin{gather*}
u_{R}=u_{0}-3^{2} u_{0}^{2} \mu^{-\epsilon} \underbrace{\frac{2 \pi^{2}}{(2 \pi)^{4}} \frac{1}{\epsilon}+\mathcal{O}\left(u_{0}^{3}\right)}_{\equiv K_{4}} \begin{aligned}
& g_{R}=u_{0} \mu^{-\epsilon}\left(1-3^{2} \frac{K_{4}}{\epsilon} u_{0} \mu^{-\epsilon}+\cdots\right) \\
& \beta\left(g_{R}\right) \equiv\left(\mu \frac{\partial g_{R}}{\partial \mu}\right)_{u_{0}}=-\epsilon g_{R}+u_{0} \mu^{-\epsilon} \cdot 3^{2} K_{4} u_{0} \mu^{-\epsilon}+\cdots \\
&=-\epsilon g_{R}+3^{2} K_{4} g_{R}^{2}+\cdots \\
& g_{R}^{*}=\frac{\epsilon}{3^{2} K_{4}}+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned} \$. \$ \text {. } \tag{5.20}
\end{gather*}
$$

Problem: Check this is the same as in static theory. NB factor of 6 in the definition of u_{0}.

Now let's calculate Z_{D} :

$$
\begin{align*}
Z_{D}^{-1}= & D_{0} \frac{\partial}{\partial(-i \omega)} \Gamma_{R}^{(1,1)}=Z_{S} D_{0} \frac{\partial}{\partial(-i \omega)} \Gamma^{(1,1)} \tag{5.24}\\
\Gamma^{(1,1)}= & \frac{-i \omega}{D_{0}}+q^{2} \underbrace{-}_{N B} \&+\cdots \\
= & \frac{-i \omega}{D_{0}}+q^{2}-3^{2} \cdot 2 \cdot\left(-u_{0}\right)^{2} \int d k_{1} d k_{2} \frac{1}{k_{1}^{2}} \frac{1}{k_{2}^{2}} \\
& \cdot \frac{1}{-i \omega / D_{0}+k_{1}^{2}+k_{2}^{2}+\left(q-k_{1}-k_{2}\right)^{2}}+\cdots \tag{5.25}
\end{align*}
$$

so that

$$
\begin{equation*}
Z_{D}^{-1}=Z_{s}\left[1+3^{2} \cdot 2 \cdot u_{0}^{2} \int d k_{1} d k_{2} \frac{1}{k_{1}^{2}} \frac{1}{k_{2}^{2}} \frac{1}{\left[k_{1}^{2}+k_{2}^{2}+\left(q-k_{1}-k_{2}\right)^{2}\right]^{2}}+\cdots\right] \tag{5.26}
\end{equation*}
$$

at $q^{2}=\mu^{2}$.

Problem: Show that this integral gives us $\mu^{-2 \epsilon} K_{4}^{2} \frac{A}{\epsilon}$

We then have

$$
\begin{equation*}
\gamma_{D}=-\gamma_{s}+3^{2} \cdot 2 \cdot u_{0}^{2} \mu^{-2 \epsilon} K_{4}^{2} \cdot 2 A \tag{5.27}
\end{equation*}
$$

and since

$$
\begin{equation*}
\gamma_{s}^{*}=\eta=\frac{\epsilon^{2}}{54}+\mathcal{O}\left(\epsilon^{3}\right) \tag{5.28}
\end{equation*}
$$

this gives finally

$$
\begin{equation*}
z=2+0.0135 \epsilon^{2}+\cdots \tag{5.29}
\end{equation*}
$$

Note 1: We chose $Z_{\tilde{s}}=Z_{s}$ but in principle we could shuffle these factors around : e.g. choose $Z_{\tilde{s}}=1$. In other theories, we may well choose to do this.

Note 2: We can also get the renormalisation of Γ by looking at the correlation function $\langle S S\rangle$, which to lowest order is given by

which gives the integral

$$
\begin{align*}
& =\frac{2}{D_{0}} \int \frac{d \omega}{2 \pi i} \frac{1}{-i \omega / D_{0}+q^{2}} \frac{1}{+i \omega / D_{0}+q^{2}} \\
& =\frac{1}{q^{2}} \text { as expected } \tag{5.30}
\end{align*}
$$

$$
\left[\text { or by cutting } \rightarrow 2 \cdot \frac{1}{-i 0+2 q^{2}}\right]
$$

The 2-loop correction to this is:

Problem: Check that this gives the symmetrised version of the previous integral.

5.2 Renormalisation of model B

Model B corresponds to a conserved order parameter, as appropriate to a binary fluid (ignoring however hydrodynamic effects !)
In this case,

$$
\begin{equation*}
\dot{S}=D^{\prime} \nabla^{2}\left(-\nabla^{2} S+r_{0} S+u_{0} S^{3}\right)+\zeta \tag{5.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle\zeta(x, t) \zeta\left(x^{\prime}, t^{\prime}\right)\right\rangle=-2 D^{\prime} \nabla^{2} \delta^{(d)}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{5.32}
\end{equation*}
$$

Thus the differences from model A are :

1. The bare propagator is $\overline{(\omega ; \vec{q})}=\left(\frac{-i \omega}{D_{0}}+q^{2}\left(q^{2}+r_{0}\right)\right)^{-1}$
2. The vertex

$$
=\frac{2}{D_{0}^{\prime}} q^{2}
$$

Dimensional analysis goes through in the same way for the $\Gamma^{(m, n)}$, so in principle, $\Gamma^{(1,1)}, \frac{\partial \Gamma^{(1,1)}}{\partial q^{2}}, \frac{\partial \Gamma^{(1,1)}}{\partial(-i \omega)}$ and $\Gamma^{(1,3)}$ show primitive divergences.

But !: The factor q^{2} in the vertex makes a big difference. In fact, if we look at the renormalisation of $\langle S S\rangle$ again, we have

$$
\begin{equation*}
\langle S S\rangle=\frac{1}{q^{2}\left(q^{2}+r_{0}\right)}\left[q^{2}+\left(q^{2}\right)^{2} u_{0}^{2} \times \text { some integral }+\cdots\right] \tag{5.33}
\end{equation*}
$$

Since u_{0} is dimensionless at $d=4$, this integral cannot be divergent !

Problem: check that this is indeed true.
As a result, then, $Z_{D}^{-1}=Z_{S}$ and $\gamma_{D}=-\gamma_{S}$. So,

$$
\begin{equation*}
z=2-\eta \quad \text { to all orders in } \epsilon \tag{5.34}
\end{equation*}
$$

Check: for $d=1, \eta=-1$ (why ?) and $z=3 \quad \Rightarrow$ OK.

Chapter 6

More realistic models

It turns out to be almost impossible to find real physical systems accurately described by models A or B. This is because in real systems, there are other slow modes which interact with the order parameter modes. They do not affect the statics, but may have a dramatic effect on the dynamics.

Two examples :

1. Effect of slow heat conduction

Since equilibration occurs via contact with a heat bath (= phonons), and they diffuse as well as the spin modes, we should include these phonons. The effective hamiltonian has the form

$$
\begin{equation*}
\mathcal{H}=\int d^{d} x\left(\frac{1}{2}(\nabla S)^{2}+\frac{1}{2} r_{0} S^{2}+\frac{1}{4} u_{0} S^{4}+\frac{1}{2} \rho^{2}+\frac{1}{2} g \rho S^{2}\right) \tag{6.1}
\end{equation*}
$$

where

- ρ is the energy density of phonons, in units where heat capacity $=1$.
- g is the coupling between the phonons and the spin degrees of freedom.

We can ignore terms like $(\nabla \rho)^{2}$ since ρ is not critical itself.
For the statics, ρ makes no difference, since

$$
\begin{equation*}
\int d \rho \exp \left(-\frac{1}{2} \rho^{2}+\frac{1}{2} g \rho S^{2}\right) \quad \propto \quad \exp \left(g^{2} S^{4} / 8\right) \tag{6.2}
\end{equation*}
$$

which simply shifts u_{0} (This corresponds to the diagram $>-\downarrow$)

For the dynamics, we have

$$
\begin{gather*}
\dot{S}=-D \frac{\delta \mathcal{H}}{\delta S}+\zeta \tag{6.3}\\
\dot{\rho}=+D^{\prime} \nabla^{2} \frac{\delta \mathcal{H}}{\delta \rho}+\eta \quad(\text { since } \rho \text { is conserved }) \\
=D^{\prime} \nabla^{2}\left(\rho+\frac{1}{2} g S^{2}\right)+\eta \tag{6.4}
\end{gather*}
$$

showing how the energy of the spin degrees of freedom drives heat conduction.

In the same way,

$$
\begin{equation*}
\dot{S}=-D\left(\nabla^{2} S+r_{0} S+u_{0} S^{3}+g \rho S\right)+\zeta \tag{6.5}
\end{equation*}
$$

showing that ρ acts like a local variation of T_{c}.
From these we also see that $[g \rho]=\left[u_{0}\right]\left[S^{2}\right]=\left[u_{0}\right][\rho] /[g]$, so $\left[g^{2}\right]=\left[u_{0}\right]$ and g is also dimensionless in $d=4$.

Problem : Draw diagrams which renormalise g and u_{0} to 1 -loop. Is D renormalised now at 1-loop ?

2. Isotropic ferromagnet

As well as relaxational modes, there may also be organised motion in the system which corresponds to "real" dynamics.
For example in a Heisenberg ferromagnet, the local magnetization $\vec{S}(x, t)$ will precess in the local field \vec{B} according to

$$
\begin{equation*}
\dot{\vec{S}} \propto \vec{S} \times \vec{B} \tag{6.6}
\end{equation*}
$$

Such precession may be deduced from the quantum equations of motion and will not disappear on coarse-graining. The local field \vec{B} depends on $\vec{S}\left(x^{\prime}, t\right)$ for x^{\prime} near x, hence to lowest order in derivatives, in may be written $\vec{B} \propto \vec{S}+$ const $\nabla^{2} \vec{S}+\cdots$. Since $\vec{S} \times \vec{S}=0$, we find a term

$$
\begin{equation*}
\dot{\vec{S}}=\lambda \vec{S} \times \nabla^{2} \vec{S}+\text { model B terms }+ \text { noise } \tag{6.7}
\end{equation*}
$$

Note that such so-called reversible terms do not spoil FDT or the approach to the equilibrium distribution :

$$
\begin{gather*}
\left\langle\delta\left(S-S_{0}\right)\right\rangle=P\left[S_{0}\right] \propto e^{-\mathcal{H}\left[S_{0}\right]} \tag{6.8}\\
\left\langle\delta\left(S-S_{0}\right)\right\rangle=Z^{-1} \int \mathcal{D} S \delta\left(S-S_{0}\right) e^{-\mathcal{H}(S)} \tag{6.9}\\
\frac{d}{d t} P\left[S_{0}(t)\right]=-Z^{-1} \int \mathcal{D} S \sum_{x} \delta^{\prime}\left(S-\dot{S}_{0}\right) e^{-\mathcal{H}(S)} \\
=\int d^{d} x \dot{S}_{0}\left(\frac{\delta}{\delta S} e^{-\mathcal{H}(S)}\right)_{S=S_{0}} \\
=-\int d^{d} x\left\langle\dot{S}_{0} \frac{\delta \mathcal{H}}{\delta S_{0}}\right\rangle \tag{6.10}
\end{gather*}
$$

For model A, this is

$$
\begin{equation*}
\left\langle\left(-D \frac{\delta \mathcal{H}}{\delta S_{0}}+\zeta\right) \frac{\delta \mathcal{H}}{\delta S_{0}}\right\rangle=0 \tag{6.11}
\end{equation*}
$$

If we add the term $\vec{S} \times \nabla^{2} \vec{S}$, we have

$$
\begin{equation*}
\int d^{d} x\left\langle\left(\vec{S} \times \nabla^{2} \vec{S}\right) \frac{\delta \mathcal{H}}{\delta S}\right\rangle \tag{6.12}
\end{equation*}
$$

which vanishes by symmetry.
By looking at the model B terms $-D^{\prime} \nabla^{4} S-D^{\prime} \nabla^{2} r_{0} S+\cdots$, we see that

$$
\begin{equation*}
\left[\lambda / D^{\prime}\right]=k^{2}[S]^{-1}=k^{3-d / 2} \tag{6.13}
\end{equation*}
$$

so that λ / D^{\prime} is relevant when $d<6$!
Scaling suggests that since $\dot{S}=\lambda S \times \nabla^{2} S$:

$$
\begin{gather*}
{[\omega]=\left[k^{2}\right][S]=\left[k^{2}\right] k^{\frac{d-2+\eta}{2}}} \tag{6.14}\\
z=\frac{d+2-\eta}{2} \tag{6.15}
\end{gather*}
$$

which is true to all orders due to a Ward identity.

Part II

Non-equilibrium phase transitions

Chapter 7

Introduction

In the case of critical dynamics near equilibrium, we were guided by the principles of detailed balance, Einstein relations, FDT, etc. to a form of the Langevin equation which was largely dictated. But for systems driven (or relaxing) far from equilibrium, this is no longer valid.

For simplicity, we shall consider only stochastic particle systems (e.g. reactiondiffusion models, simple fluids, etc.)

As a very simple example, consider the reaction-diffusion model where a single species of particles A do random walks on a lattice and, whenever they meet on the same site, undergo the reaction $A+A \rightarrow \emptyset$ (inert) at rate λ. (we allow multiple occupation : if the mean density is small, this is unlikely anyway).
For this process, we might write down the rate equation for the mean density $n(x, t)$:

$$
\begin{equation*}
\frac{\partial n}{\partial t}=D \nabla^{2} n-2 \lambda n^{(2)} \tag{7.1}
\end{equation*}
$$

where

- D is the diffusion coefficient of the A particles on the lattice.
- $n^{(2)}$ is the probability of finding 2 particles on the same site.

In the spirit of the mean-field approximation, we might write

$$
\begin{equation*}
n^{(2)} \approx n^{2} \tag{7.2}
\end{equation*}
$$

in which case equation (7.1) is easy to solve :

$$
\begin{equation*}
n(t)=\frac{n_{0}}{1+2 \lambda n_{0} t} \tag{7.3}
\end{equation*}
$$

in the homogeneous case. Note that as $t \rightarrow \infty, n(t) \sim(\lambda t)^{-1}$ independently of n_{0} but not of λ.
Approximation (7.2) is valid as long as the fluctuations $n^{(2)}-\langle n\rangle^{2}$ are small. These are caused by particles having been in the same region of space at some previous time, and are given to lowest order by the diagram

$$
\int_{t>t^{\prime}} d^{d} x^{\prime} d t^{\prime}(x ; t) \not \underbrace{k}_{k^{\prime}} \bullet\left(x^{\prime} ; t^{\prime}\right) \propto \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{2 D k^{2}}
$$

For $d>2$, this is finite (with some UV cut-off $\propto\left(\right.$ lattice spacing) ${ }^{-1}$) but for $d \leq 2$ it diverges., due to the recurrence property of simple random walks. We might hope to account for such effects by adding a noise term, as in equilibrium problems :

$$
\begin{equation*}
\dot{n}=D \nabla^{2} n-2 \lambda n^{2}+\zeta \tag{7.4}
\end{equation*}
$$

but we have no obvious way of fixing the correlations. As we shall see, (7.4), at least taken literally, is simply wrong.

Instead, we will adopt a different approach, summarized by the following flow chart :

We will initially consider the reaction $A+A \rightarrow \emptyset$ for simplicity, and generalise later.

Chapter 8

Field-theoretic representation of the master equation

8.1 Basic principles

As stated before, the master equation has the form :

$$
\begin{equation*}
\frac{d P(\alpha)}{d t}=\sum_{\beta} R_{\beta \rightarrow \alpha} P(\beta)-\sum_{\beta} R_{\alpha \rightarrow \beta} P(\alpha) \tag{8.1}
\end{equation*}
$$

On a lattice \mathcal{L}, the microstates α are the occupation numbers $\{n\} \equiv\left\{n_{1}, n_{2}, \ldots\right\}$ of each site. Equation (8.1) is like the Schrödinger equation for a many-body wave function in that it is

1. linear in the $P(\alpha)$
2. first-order in $\partial / \partial t$

This suggests a "second-quantised" formalism :

- Define

$$
\begin{equation*}
p\left(n_{1}, n_{2}, \ldots ; t\right)=P(\{n\}, t) \tag{8.2}
\end{equation*}
$$

- Introduce annihilation \& creation operators $\left\{a_{i}, a_{i}^{\dagger}\right\}_{i \in \mathcal{L}}$ with $\left[a_{i}, a_{i}^{\dagger}\right]=1$.
- Define the $|0\rangle$ state as satisfying $a_{i}|0\rangle=0 \forall i$
- Define now $|\Psi(t)\rangle=\sum_{\left\{n_{i}\right\}} p(\{n\}, t) a_{1}^{\dagger n_{1}} a_{2}^{\dagger n_{2}} \ldots|0\rangle$

Then the master equation is completely equivalent to the Schrödinger-like equation

$$
\begin{equation*}
\frac{d}{d t}|\Psi(t)\rangle=-H|\Psi(t)\rangle \tag{8.3}
\end{equation*}
$$

where H is an operator depending on the a 's $\& a^{\dagger}$'s only.
Let's now work towards this result with a couple of examples :

8.2 Example a : Simple hopping

Consider just 2 sites $(1,2)$ and hopping $1 \rightarrow 2$ at rate D. The master equation is :

$$
\begin{equation*}
\frac{d P\left(n_{1}, n_{2}\right)}{d t}=D\left(n_{1}+1\right) P\left(n_{1}+1, n_{2}-1\right)-D n_{1} P\left(n_{1}, n_{2}\right) \tag{8.4}
\end{equation*}
$$

Notice that the actual rates are proportional to n_{1}, since each particle may hop independently. [We could modify this if we wanted.]

Defining $|\Psi\rangle=\sum_{n_{1}, n_{2}} a_{1}^{\dagger n_{1}} a_{2}^{\dagger n_{2}} P\left(n_{1}, n_{2}\right)|0\rangle$ we get :

$$
\begin{align*}
\frac{d|\Psi\rangle}{d t}= & D \sum_{n_{1}, n_{2}}\left[P\left(n_{1}+1, n_{2}-1\right)\left(n_{1}+1\right)-P\left(n_{1}, n_{2}\right) n_{1}\right] a_{1}^{\dagger n_{1}} a_{2}^{\dagger n_{2}}|0\rangle \\
= & D \sum_{n_{1}, n_{2}} P\left(n_{1}+1, n_{2}-1\right) a_{2}^{\dagger} a_{1} a_{1}^{\dagger\left(n_{1}+1\right)} a_{2}^{\dagger\left(n_{2}-1\right)}|0\rangle- \\
& D \sum_{n_{1}, n_{2}} P\left(n_{1}, n_{2}\right) a_{1}^{\dagger} a_{1} a_{1}^{\dagger n_{1}} a_{2}^{n_{2}}|0\rangle \tag{8.5}\\
= & D\left(a_{2}^{\dagger} a_{1}-a_{1}^{\dagger} a_{1}\right)|\Psi\rangle \tag{8.6}
\end{align*}
$$

(using $a_{i} \leftrightarrow \partial / \partial a_{i}^{\dagger}$). So in this case,

$$
\begin{equation*}
H \equiv-D\left(a_{2}^{\dagger} a_{1}-a_{1}^{\dagger} a_{1}\right) \tag{8.7}
\end{equation*}
$$

Note that as well as the obvious \& intuitive hopping term $a_{2}^{\dagger} a_{1}$, we have a term $-a_{1}^{\dagger} a_{1}$ which ensures probability conservation.
If we consider also hopping $2 \rightarrow 1$ at the same rate, we have :

$$
\begin{align*}
H & =-D\left(a_{2}^{\dagger} a_{1}-a_{1}^{\dagger} a_{1}+a_{1}^{\dagger} a_{2}-a_{2}^{\dagger} a_{2}\right) \\
& =D\left(a_{2}^{\dagger}-a_{1}^{\dagger}\right)\left(a_{2}-a_{1}\right) \tag{8.8}
\end{align*}
$$

8.3 Example b : Simple annihilation at a single site

Here the master equation is :

$$
\begin{equation*}
\frac{d P(n)}{d t}=\lambda(n+2)(n+1) P(n+2)-\lambda n(n-1) P(n) \tag{8.9}
\end{equation*}
$$

$$
\begin{gather*}
|\Psi\rangle=\sum_{n} P(n) a^{\dagger n}|0\rangle \tag{8.10}\\
\frac{d|\Psi\rangle}{d t}=\lambda \sum_{n}(n+2)(n+1) P(n+2) a^{\dagger n}|0\rangle-\lambda \sum_{n} n(n-1) P(n) a^{\dagger n}|0\rangle \\
=\lambda \sum_{n} P(n+2) a^{2} a^{\dagger(n+2)}|0\rangle-\lambda \sum_{n} P(n) a^{\dagger 2} a^{2} a^{\dagger n}|0\rangle \tag{8.11}
\end{gather*}
$$

so

$$
\begin{equation*}
H=-\lambda\left(a^{2}-a^{\dagger 2} a^{2}\right) \tag{8.12}
\end{equation*}
$$

Once again, as well as the obvious term proportional to a^{2}, there is another diagonal term in H.
Putting these together for our lattice model, we obtain :

$$
\begin{equation*}
H=D \sum_{\langle i j\rangle}\left(a_{i}^{\dagger}-a_{j}^{\dagger}\right)\left(a_{i}-a_{j}\right)-\lambda \sum_{i}\left(a_{i}^{2}-a_{i}^{\dagger 2} a_{i}^{2}\right) \tag{8.13}
\end{equation*}
$$

8.4 Aspects of this formalism which differ from ordinary many-body QM :

1. No " i " in the Schrödinger equation - like "euclidean" QM.
2. H is not (necessarily) hermitian.

Problem: Show that if the rates satisfy detailed balance, then H may be made symmetric \& real by a similarity transformation.
3. Most important : expectation values of observables $A\left(n_{1}, n_{2}, \ldots\right)$ are NOT $\langle\Psi(t)| A|\Psi(t)\rangle$ since this would be bilinear in the $p\left(\left\{n_{i}\right\}\right)$

Instead, we have :

$$
\begin{align*}
\bar{A} & =\sum_{\left\{n_{i}\right\}} p\left(n_{1}, n_{2}, \ldots\right) A\left(n_{1}, n_{2}, \ldots\right) \\
& =\langle 0| e^{\sum_{i} a_{i}} A\left(n_{1}, n_{2}, \ldots\right) \sum_{\left\{n_{i}\right\}} p\left(n_{1}, n_{2}\right) a_{1}^{\dagger n_{1}} a_{2}^{\dagger n_{2}} \ldots|0\rangle \\
& =\left\langle\Psi_{0}\right| A|\Psi(t)\rangle \\
& =\left\langle\Psi_{0}\right| A e^{-H t}|\Psi(0)\rangle \tag{8.14}
\end{align*}
$$

where $\left\langle\Psi_{0}\right|=\langle 0| e^{\sum_{i} a_{i}}$.
[Proof : use $\left[e^{a}, a^{\dagger}\right]=\left[e^{a},-\frac{\partial}{\partial a}\right]=e^{a}$ and $\langle 0| a^{\dagger}=0$.]

An immediate corollary of this is a condition that H conserves probability :

$$
\begin{equation*}
1=\overline{1}=\left\langle\Psi_{0}\right| e^{-H t}|\Psi(0)\rangle \tag{8.15}
\end{equation*}
$$

so

$$
\begin{align*}
& \left\langle\Psi_{0}\right| H=0 \\
& \text { and } \quad\left\langle\Psi_{0} \mid \Psi(0)\right\rangle=1 \tag{8.16}
\end{align*}
$$

Since $\left\langle\Psi_{0}\right| a_{i}^{\dagger}=1$ this is equivalent to the condition that H vanishes if we formally set each a_{i}^{\dagger} to 1 .
This factor of $e^{\sum_{i} a_{i}}$ may or may not be a problem, depending on the nature of $A\left(n_{1}, n_{2}, \ldots\right)$.
If we are interested in exclusive probabilities, e.g. the probability that there is exactly 1 particle at site 1 and zero particles elsewhere, then

$$
\begin{equation*}
A=\delta_{a_{1}^{\dagger} a_{1}, 1} \prod_{j \neq 1} \delta_{a_{j}^{\dagger} a_{j}, 0} \tag{8.17}
\end{equation*}
$$

and the factor $\langle 0| e^{\sum_{i} a_{i}}$ becomes simply $\langle 0| a_{1}$.
If, however, we are interested in inclusive probabilities, e.g. the average number of particles at site 1 irrespective of other sites, we need

$$
\begin{equation*}
\langle 0| e^{\sum_{i} a_{i}} a_{1}^{\dagger} a_{1} e^{-H t}|\Psi(0)\rangle=\langle 0| e^{\sum_{i} a_{i}} a_{1} e^{-H t}|\Psi(0)\rangle \tag{8.18}
\end{equation*}
$$

In this case, it is easier to commute the factor $e^{\sum_{i} a_{i}}$ through, using

$$
\begin{equation*}
e^{a} a^{\dagger}=\left(a^{\dagger}+1\right) e^{a} \tag{8.19}
\end{equation*}
$$

so to get

$$
\begin{equation*}
\langle 0| a_{1} e^{-H\left(\left\{a^{\dagger}+1, a\right\}\right) t}|\tilde{\Psi}(0)\rangle \tag{8.20}
\end{equation*}
$$

where $H\left(\left\{a^{\dagger}+1, a\right\}\right)$ may be called a "shifted" hamiltonian and $|\tilde{\Psi}(0)\rangle \equiv$ $e^{\sum_{i} a_{i}}|\Psi(0)\rangle$.
In our case, the shifted hamiltonian is

$$
\begin{equation*}
H=D \sum_{i}\left(a_{i}^{\dagger}-a_{j}^{\dagger}\right)\left(a_{i}-a_{j}\right)+\lambda \sum_{i}\left(2 a_{i}^{\dagger} a_{i}^{2}+a_{i}^{\dagger 2} a_{i}^{2}\right) \tag{8.21}
\end{equation*}
$$

For an initial state, a suitable choice is

$$
\begin{equation*}
\Psi(0)=e^{-n_{0}} e^{n_{0} \sum_{i} a_{i}^{\dagger}}|0\rangle \tag{8.22}
\end{equation*}
$$

corresponding to a Poisson distribution $p(n, 0)=e^{-n_{0}} \frac{n_{0}^{n}}{n!}$ at each site.
In this case, $|\tilde{\Psi}(0)\rangle=e^{n_{0} \sum_{i} a_{i}^{\dagger}}|0\rangle$.

Chapter 9

Path integral representation

Once again, for simplicity, consider a single site.
We want to evaluate $e^{-H t}$. We write this as a product :

$$
\begin{equation*}
e^{-H t}=\lim _{\Delta t \rightarrow 0}(1-H \Delta t)^{t / \Delta t}=\underbrace{(1-H \Delta t) \cdot(1-H \Delta t) \cdots}_{t / \Delta t \text { factors }} \tag{9.1}
\end{equation*}
$$

Into each time slice, we insert a complete set of coherent states :

$$
\begin{align*}
& \int \frac{d \phi^{*} d \phi}{\pi} e^{-\phi^{*} \phi} e^{\phi a^{\dagger}}|0\rangle\langle 0| e^{\phi^{*} a}= \\
& \quad=\int \frac{d \phi^{*} d \phi}{\pi} e^{-\phi^{*} \phi} \sum_{m, n} \frac{\phi^{m} \phi^{* n}}{m!n!} a^{\dagger m}|0\rangle\langle 0| a^{n} \tag{9.2}
\end{align*}
$$

Terms with $m \neq n$ give zero on integrating over the phase of ϕ. Letting $|\phi| \equiv \rho$, we get

$$
\begin{align*}
& =\int_{0}^{\infty} 2 \rho d \rho e^{-\rho^{2}} \sum_{n}\left[\frac{\left(\rho^{2}\right)^{n}}{n!} \frac{a^{\dagger n}}{\sqrt{n!}}|0\rangle\langle 0| \frac{a^{n}}{\sqrt{n!}}\right] \\
& =\sum_{n} \frac{a^{\dagger n}}{\sqrt{n!}}|0\rangle\langle 0| \frac{a^{n}}{\sqrt{n!}}=1 \tag{9.3}
\end{align*}
$$

Between each slice, we have :

$$
\begin{align*}
& \langle 0| e^{\phi^{*}(t+\Delta t) a}(1-\Delta t H) e^{\phi(t) a^{\dagger}}|0\rangle= \\
& \quad=e^{\phi^{*}(t+\Delta t) \phi(t)}-\Delta t\langle 0| e^{\phi^{*}(t) a} H e^{\phi(t) a^{\dagger}}|0\rangle+\mathcal{O}\left((\Delta t)^{2}\right) \\
& \quad=e^{\phi^{*}(t+\Delta t) \phi(t)} e^{-\Delta t H\left(\phi^{*}, \phi\right)}+\mathcal{O}\left((\Delta t)^{2}\right) \tag{9.4}
\end{align*}
$$

where $H\left(\phi^{*}, \phi\right)$ is obtained by replacing $a \rightarrow \phi, a^{\dagger} \rightarrow \phi^{*}$.

The remaining terms are

$$
\begin{equation*}
\prod e^{\phi^{*}(t+\Delta t) \phi(t)-\phi^{*}(t+\Delta t) \phi(t+\Delta t)} \approx e^{-\int d t \phi^{*} \partial_{t} \phi} \tag{9.5}
\end{equation*}
$$

so we get, in the limit $\Delta t \rightarrow 0$, a functional integral (generalising to $d \neq 0$)

$$
\begin{equation*}
\int \mathcal{D} \phi^{*} \mathcal{D} \phi e^{-\int d t d^{d} x \mathcal{L}\left(\phi^{*}, \phi\right)} \tag{9.6}
\end{equation*}
$$

where

$$
\begin{gather*}
\int \mathcal{L} d^{d} x=\int d^{d} x \phi^{*} \partial_{t} \phi+H\left(\phi^{*}, \phi\right) \tag{9.7}\\
\mathcal{L}=\phi^{*} \partial_{t} \phi+D\left(\nabla \phi^{*}\right)(\nabla \phi)-\lambda\left(\phi^{2}-\phi^{* 2} \phi^{2}\right) \tag{9.8}
\end{gather*}
$$

or, before taking the continuum limit,

$$
\begin{equation*}
\mathcal{L}=\sum_{j} \phi_{j}^{*} \partial_{t} \phi_{j}+D \sum_{\langle i j\rangle}\left(\phi_{i}^{*}-\phi_{j}^{*}\right)\left(\phi_{i}-\phi_{j}\right)-\lambda \sum_{i}\left(\phi_{i}^{2}-\phi_{i}^{* 2} \phi_{i}^{2}\right) \tag{9.9}
\end{equation*}
$$

Note that we do not need to coarse-grain to get a field theory on the lattice.
In the same way, we can show that the following factors go over respectively into :

$$
\begin{align*}
e^{\sum_{i} a_{i}} & \longrightarrow e^{\sum_{j} \phi_{j}} \\
e^{-n_{0} \sum_{i} a_{i}^{\dagger}} & \longrightarrow e^{-n_{0} \sum_{j} \phi_{j}^{*}} \tag{9.10}
\end{align*}
$$

We can get rid of the first term by shifting

$$
\begin{equation*}
\phi_{j}^{*}=1+\tilde{\phi}_{j} \tag{9.11}
\end{equation*}
$$

The extra term $e^{-\int d t \partial_{t} \phi_{j}}$ integrates up to cancel $e^{\phi_{j}}$.
Similarly, observables like $A\left(n_{j}\right)$ give $A\left(\phi_{j}^{*} \phi_{j}\right)$ and so on.

Chapter 10

Interpretation as a Langevin equation

For simplicity, let us write the continuum form, with the shift :

$$
\begin{equation*}
\exp \left\{-\int d t d^{d} x\left[\tilde{\phi} \partial_{t} \phi+D(\nabla \tilde{\phi})(\nabla \phi)+2 \lambda \tilde{\phi} \phi^{2}+\lambda \tilde{\phi}^{2} \phi^{2}\right]\right\} \tag{10.1}
\end{equation*}
$$

where the $D(\nabla \tilde{\phi})(\nabla \phi)$ term can be integrated by parts to give $-D \tilde{\phi} \nabla^{2} \phi+$ surface term.

This looks very like the response function formalism we discussed earlier. We can undo the quadratic $\tilde{\phi}^{2}$ term by writing

$$
\begin{equation*}
\exp \left\{-\lambda \int d t d^{d} x \tilde{\phi}^{2} \phi^{2}\right\}=\int \mathcal{D} \zeta \exp \left\{d t d^{d} x \tilde{\phi} \zeta\right\} P([\zeta]) \tag{10.2}
\end{equation*}
$$

where $P()$ is the "probability distribution" for the "noise" ζ.
The action is now linear in $\tilde{\phi}$ and we can integrate it out to obtain a Langevin equation:

$$
\begin{equation*}
\partial_{t} \phi=D \nabla^{2} \phi-2 \lambda \phi^{2}+\zeta \tag{10.3}
\end{equation*}
$$

If we neglect ζ, we recognise this as the rate equation we wrote earlier, if we interpret ϕ as the average density. In fact this is so, at this level, because

$$
\begin{equation*}
\overline{a^{\dagger} a}=\langle 0| e^{a} a^{\dagger} a|\Psi\rangle \longrightarrow\langle\phi\rangle \tag{10.4}
\end{equation*}
$$

where $\langle\cdots\rangle$ denotes the average with respect to the weight e^{-S}.
But, if we are careful with the signs, we see that

$$
\begin{equation*}
\left\langle\zeta(x, t) \zeta\left(x^{\prime}, t^{\prime}\right)\right\rangle=-2 \lambda \phi^{2}(x, t) \delta^{d}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{10.5}
\end{equation*}
$$

The appearance of ϕ^{2} makes sense : if there are no particles, there is no noise. But the sign means that ζ is pure imaginary!

How can this be ? The answer is that although $\langle\phi\rangle$ is the average density, $\phi(x, t)$ is NOT the density. In fact,

$$
\begin{equation*}
\overline{n^{2}}=\langle 0| e^{a}\left(a^{\dagger} a\right)^{2}|\Psi\rangle=\langle 0| e^{a}\left(a^{2}+a\right)|\Psi\rangle \longrightarrow\left\langle\phi+\phi^{2}\right\rangle \tag{10.6}
\end{equation*}
$$

It is easy to check (Problem) that if all the higher cumulants $\left\langle\phi^{2}\right\rangle-\langle\phi\rangle^{2}$ etc. of ϕ vanish, as would be true in the absence of loops in our field theory, then the actual density n would have a Poisson distribution, as expected.

Another reason why ζ is imaginary can be seen by studying the equal-time density-density correlation function

$$
\begin{equation*}
\overline{n(x, t) n\left(x^{\prime}, t^{\prime}\right)}=\left\langle\phi(x, t) \phi\left(x^{\prime}, t^{\prime}\right)\right\rangle \quad \text { for } x \neq x^{\prime} \tag{10.7}
\end{equation*}
$$

The lowest order diagram is

which is negative. So particles are anti-correlated. This makes sense : there is a deficit of particles in the neighbourhood of a given one, since any particles nearby have been "swept up".

Chapter 11

Field theory and RG analysis of $A+A \rightarrow \emptyset$

It turns out that this is a very simple field theory to analyse. Let us work in the shifted theory :

$$
\begin{equation*}
S=\int d^{d} x d t\left[\tilde{\phi}\left[\partial_{t} \phi\right]+D_{0}(\nabla \tilde{\phi})(\nabla \phi)+2 \lambda_{0} \tilde{\phi} \phi^{2}+\lambda_{0} \tilde{\phi}^{2} \phi^{2}\right] \tag{11.1}
\end{equation*}
$$

We can either write this as a stochastic equation :

$$
\begin{equation*}
\dot{\phi}=D_{0} \nabla^{2} \phi-2 \lambda_{0} \phi^{2}+\zeta \tag{11.2}
\end{equation*}
$$

with $\left\langle\zeta(x, t) \zeta\left(x^{\prime}, t^{\prime}\right)\right\rangle=-2 \lambda_{0} \phi^{2} \delta^{d}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)$ and proceed as earlier, or we can write down the Feynman rules by inspection.

The bare propagator, from the $\tilde{\phi} \cdots \phi$ terms, is

$$
\xrightarrow[(\omega ; \vec{q})]{ }=\frac{1}{-i \omega+D_{0} q^{2}}
$$

[Note that we now write this instead of $\frac{1}{-i \omega / D_{0}+q^{2}}$ because

1. The static limit $(\omega \neq 0)$ does not correspond to equilibrium statistical mechanics.
2. The coefficient of $-i \omega$ being unity means that particle number is conserved in the absence of reactions.]

We have vertices

There is an immediate simplification : there are no loop corrections to $G^{(1,1)}$, so :

$$
\begin{equation*}
\Gamma^{(1,1)}=-i \omega+D_{0} q^{2} \tag{11.3}
\end{equation*}
$$

which implies

$$
\begin{equation*}
Z_{\phi}=Z_{\tilde{\phi}}=1 \quad, \quad Z_{D}=1 \tag{11.4}
\end{equation*}
$$

The only diagrams renormalising the vertices are:

These have a simple physical interpretation : gives the probability of annihilating given that particles have not annihilated in the past.

In principle, we could treat the couplings

as different, in which case we would find

$$
\begin{gather*}
{\left[\begin{array}{c}
\\
\lambda_{R}^{(1)}=\frac{\lambda_{0}^{(1)}}{1+\frac{4 \lambda_{0}^{(2)}}{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{-i \omega+2 D k^{2}}} \\
\lambda_{R}^{(2)}=\frac{\lambda_{0}^{(2)}}{1+\frac{4 \lambda_{0}^{(2)}}{2} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{-i \omega+2 D k^{2}}}
\end{array}\right.}
\end{gather*}
$$

where the 2 's at the denominator of $\frac{4 \lambda_{0}^{(2)}}{2}$ are factors coming from symmetry.
Note that we have to define λ_{R} at $\omega \neq 0$, otherwise we would have an IR divergence for $d<2$. This is different from previous case where we could always renormalise in static limit.

Note also that if $\lambda_{0}^{(1)}=\lambda_{0}^{(2)}$, then $\lambda_{R}^{(1)}=\lambda_{R}^{(2)}$. This is a consequence of probability conservation, $\langle 0| e^{\sum_{i} a} H$ (unshifted) $=0$.

Problem: Consider the processes $A+A \xrightarrow{\lambda_{1}} \emptyset$ and $A+A \xrightarrow{\lambda_{2}} A$, and show that the resulting action can be brought to our form by a suitable transformation of the fields $\phi, \tilde{\phi}$.

We define λ_{R} at $-i \omega=D \mu^{2}$ (since D is unrenormalised this is D_{0}). The integral now gives

$$
\begin{align*}
\frac{1}{(2 \pi)^{d}} \int_{0}^{\infty} d \alpha \int d^{d} k e^{-2 D \alpha k^{2}-D \alpha \mu^{2}} & =\frac{1}{(2 \pi)^{d}} \int_{0}^{\infty} d \alpha\left(\frac{\pi}{2 D \alpha}\right)^{d / 2} e^{-D \alpha \mu^{2}} \\
& =\frac{1}{(2 \pi)^{d}}\left(\frac{\pi}{2}\right)^{d / 2} \Gamma(1-d / 2) \frac{1}{D} \mu^{-\epsilon} \\
& \equiv \frac{k_{d}}{2 \epsilon} \frac{\mu^{-\epsilon}}{D} \tag{11.7}
\end{align*}
$$

$\epsilon=2-d$ (note that k_{d} is regular) and $k_{2}=1 /(2 \pi)$.

From the action we see that

$$
\begin{equation*}
[\tilde{\phi} \phi]=k^{d} \quad \Rightarrow \quad\left[\lambda_{0}\right] k^{d}=k^{d} \omega=[D] k^{d+2} \tag{11.8}
\end{equation*}
$$

So the dimensionless coupling is

$$
\begin{equation*}
g_{R}=\frac{\lambda_{R}}{D} \mu^{-\epsilon} \tag{11.9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
g_{R}=\frac{\left(\lambda_{0} / D\right) \mu^{-\epsilon}}{1+\frac{k_{d}}{\epsilon} \frac{\lambda_{0}}{D} \mu^{-\epsilon}} \tag{11.10}
\end{equation*}
$$

(exact to all orders !)
Hence

$$
\begin{align*}
\beta\left(g_{R}\right) \equiv \mu\left(\frac{\partial g_{R}}{\partial \mu}\right)_{\lambda_{0}, D} & =-\epsilon g_{R}+\frac{\frac{\lambda_{0}}{D} \mu^{-\epsilon} \cdot k_{d} \frac{\lambda_{0}}{D} \mu^{-\epsilon}}{\left(1+\frac{k_{d}}{\epsilon} \frac{\lambda_{0}}{D} \mu^{-\epsilon}\right)^{2}} \\
& =-\epsilon g_{R}+k_{d} g_{R}^{2} \quad \text { exact! } \tag{11.11}
\end{align*}
$$

For $d<2$ we therefore find an IR fixed point at $g_{R}^{*}=\epsilon / k_{d} \approx 2 \pi \epsilon+\mathcal{O}\left(\epsilon^{2}\right)$.
Let us see how to use this to compute the mean density.
In the bare theory, we have $n\left(t, D, \lambda_{0}, n_{0}\right)$ where n_{0} is the initial density. In the renormalised theory, this becomes $n_{R}\left(t, D_{R}, g_{R}, n_{0 R}, \mu\right)$.
But in fact, $n_{R}=n$ since there is no field renormalisation. Similarly, $D_{R}=D$, $n_{0 R}=n_{0}$.
This means we can write down an RG equation :

$$
\begin{gather*}
\left(\mu \frac{\partial}{\partial \mu}\right)_{D, \lambda_{0}, n_{0}} n_{R}\left(t, D, g_{R}, n_{0}, \mu\right)=0 \tag{11.12}\\
{\left[\mu \frac{\partial}{\partial \mu}+\beta\left(g_{R}\right) \frac{\partial}{\partial g_{R}}\right] n_{R}\left(t, D, g_{R}, n_{0}, \mu\right)=0} \tag{11.13}
\end{gather*}
$$

Dimensional analysis tells us that

$$
\begin{equation*}
n_{R}\left(t, D, n_{0}, \mu\right)=\mu^{d} \Phi\left(\mu^{2} D t, n_{0} \mu^{-d}\right) \tag{11.14}
\end{equation*}
$$

so

$$
\begin{equation*}
\mu \frac{\partial}{\partial \mu} n_{R}=\left(d-d n_{0} \frac{\partial}{\partial n_{0}}+2 D t \frac{\partial}{\partial(D t)}\right) n_{R} \tag{11.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[D t \frac{\partial}{\partial(D t)}+\frac{1}{2} \beta\left(g_{R}\right) \frac{\partial}{\partial g_{R}}-\frac{1}{2 d} n_{0} \frac{\partial}{\partial n_{0}}+\frac{d}{2}\right] n_{R}=0 \tag{11.16}
\end{equation*}
$$

The solution of this is :

$$
\begin{equation*}
n_{R}\left(t, D, g_{R}, n_{0}, \mu\right)=\mu^{-d}(D t)^{-d / 2} n_{R}\left(D t=\mu^{-2}, n_{0}=\left(m u^{2} D t\right)^{d / 2}, \tilde{g_{R}}, \mu\right) \tag{11.17}
\end{equation*}
$$

where $\tilde{g_{R}}\left(\mu^{2} D t\right)$ is the running coupling.
As $t \rightarrow \infty, \tilde{g_{R}} \rightarrow g_{R}^{*}=\mathcal{O}(\epsilon)$.
Note that if we can ignore the exploding factor $n_{0}\left(\mu^{2} D t\right)^{d / 2}$, we have $n \propto$ $(D t)^{-d / 2}$, so the exponent is exact for $d<2$. (This may be argued on dimensional grounds if n is independent of λ_{0} — but these ignore the possibility of anomalous dimensions).

To proceed further, we have to evaluate the RHS of (11.17). Fortunately, we can do this since $g_{R}^{*}=\mathcal{O}(\epsilon)$ is small near $d=2$.

What we do is consider all the diagrams for n_{R} (or n) at a given order in n_{0}

To lowest order in $g_{R}=\mathcal{O}(\epsilon)$ the diagrams are tree diagrams.
The sum of these gives the rate equation result. Thus

$$
\begin{align*}
& n_{R}\left(D t=\mu^{-2}, n_{0}\left(\mu^{2} D t\right)^{d / 2}, \epsilon / k_{d}, \mu\right)= \\
& \frac{n_{0}\left(\mu^{2} D t\right)^{d / 2}}{1+2 D \mu^{\epsilon} \frac{\epsilon}{k_{d}} n_{0}\left(\mu^{2} D t\right)^{d / 2} \frac{1}{D \mu^{2}}}+\quad \text { higher orders in } \epsilon \tag{11.18}
\end{align*}
$$

As $t \rightarrow \infty$, we see that indeed $n_{0}\left(\mu^{2} D t\right)^{d / 2}$ drops out and

$$
\begin{equation*}
n_{R}\left(t, D, n_{0}, g_{R}, \mu\right) \sim \frac{1}{(D t)^{d / 2}} \mu^{-d} \mu^{2-\epsilon} \frac{k_{d}}{\epsilon} \quad+\quad \text { higher orders } \tag{11.19}
\end{equation*}
$$

The μ-dependence disappears as it must.
It takes further work to convince oneself that n_{0} drops out to all orders in ϵ, and that

$$
\begin{equation*}
n \sim \frac{A}{(D t)^{d / 2}} \tag{11.20}
\end{equation*}
$$

where the amplitude A is universal and depends only on ϵ.
To lowest order :

$$
\begin{equation*}
A=\frac{1}{4 \pi \epsilon}+\mathcal{O}(1) \tag{11.21}
\end{equation*}
$$

Problem: What happens in $d=2$?

Chapter 12

Conservation laws - The reaction $A+B \rightarrow \emptyset$

Consider now the case of 2 species which undergo the reaction $A+B \rightarrow \emptyset$. For convenience, we suppose they have equal diffusivities, and we begin with a random but statistically homogeneous mixture of equal densities n_{0}.
The chief difference in this system is that the density $n_{A}-n_{B}$ is locally conserved. We might expect this to slow the reaction as in model B. But if we write down the hamiltonian :

$$
\begin{equation*}
H=H_{d i f f u s i o n}-\lambda \int d^{d} x\left[a b-a^{\dagger} b^{\dagger} a b\right] \tag{12.1}
\end{equation*}
$$

we see that $[\lambda]=k^{2-d}$, so apparently $d_{c}=2$ as before.
For $d \geq 2$ we expect the rate equations :

$$
\begin{align*}
\dot{a} & =D \nabla^{2} a-\lambda a b \\
\dot{b} & =D \nabla^{2} b-\lambda a b \tag{12.2}
\end{align*}
$$

to be valid. If we look for a solution which is homogeneous, we find $a=b \propto$ $1 /(\lambda t)$ as before.
This is indeed incorrect as it ignores the fluctuations in the initial state, which do not disappear as in $A+A \rightarrow \emptyset$.
In fact, if we write $\psi \equiv a-b$, it satisfies the diffusion equation

$$
\begin{equation*}
\dot{\psi}=D \nabla^{2} \psi \tag{12.3}
\end{equation*}
$$

so

$$
\begin{equation*}
\psi(x, t)=\int d^{d} x^{\prime} G_{0}\left(t, x-x^{\prime}\right) \psi\left(x^{\prime}, 0\right) \tag{12.4}
\end{equation*}
$$

If a and b have a random initial distribution, then $\psi\left(x^{\prime}, 0\right)$ has a distribution with $\overline{\psi\left(x^{\prime}, 0\right)}=0$ and $\overline{\psi\left(x^{\prime}, 0\right) \psi\left(x^{\prime \prime}, 0\right)} \propto 2 n_{0} \delta^{(d)}\left(x^{\prime}-x^{\prime \prime}\right)$.

Thus $\psi(x, t)$ will have a Gaussian distribution with, in particular :

$$
\begin{align*}
\overline{\psi(x, t)^{2}}=2 n_{0} \int d^{d} x G_{0}\left(t, x-x^{\prime}\right)^{2} & =2 n_{0} \int \frac{d^{d} k}{(2 \pi)^{d}} e^{-2 D t k^{2}} \\
& =2 n_{0} \frac{1}{(2 \pi)^{d}}\left(\frac{\pi}{2 D t}\right)^{d / 2} \\
& \equiv \frac{\Delta}{t^{d / 2}} \tag{12.5}
\end{align*}
$$

Since $\psi(x, t)$ has a Gaussian distribution $\propto \exp \left(-\frac{\psi(x, t)^{2}}{2 \overline{\psi^{2}}}\right)$ we can also compute (for later use)

$$
\begin{align*}
\overline{|a-b|}=\overline{|\psi(x, t)|} & =\int d \psi|\psi| e^{-\psi^{2} /\left(2 \bar{\psi}^{2}\right)} \\
& =\sqrt{\frac{2}{\pi}}\left(\overline{\psi(x, t)^{2}}\right)^{1 / 2} \\
& =\sqrt{\frac{2 \Delta}{\pi}} \frac{1}{t^{d / 4}}=\frac{\left(2 n_{0}\right)^{1 / 2}}{\pi^{1 / 2}(8 \pi)^{d / 4}} \frac{1}{(D t)^{d / 4}} \tag{12.6}
\end{align*}
$$

Note that for $d<4$ this is slower that $1 / t$, indicating that it is not possible that

$$
\begin{equation*}
\bar{a} \sim \bar{b} \sim 1 / t \tag{12.7}
\end{equation*}
$$

This means that locally, either $a(x) \ll b(x)$ or vice-versa, i.e. there is segregation.
Then $|a-b|=\max (a, b)$, so

$$
\begin{equation*}
\bar{a}=\frac{1}{2} \overline{|\psi|} \propto \frac{1}{t^{d / 4}} \quad(t<4) \tag{12.8}
\end{equation*}
$$

Chapter 13

Directed percolation

In the previous example, the steady-state was trivial (but the approach to it exhibited interesting universal behaviour).
In order to get a non-trivial steady-state, we need branching processes as well.
Examples are provided by epidemic processes : consider a lattice where sites may be infected (i.e. occupied by a particle A) or not infected (not occupied). We shall allow multiple occupation, but since the interesting behaviour occurs when the probability of occupation is small, this does not matter.
A given site is occupied (infected) at time $t+\Delta t$ if it or its neighbours were infected at time t, but only with some probability. The disease may just die out locally. Thus the hamiltonian has the form

$$
\begin{equation*}
H=-\sum_{i}\left(a_{i}^{\dagger}-1\right) F\left(a_{i}^{\dagger} a_{i}, \sum_{j \text { n.n. }} a_{j}^{\dagger} a_{j}\right) \tag{13.1}
\end{equation*}
$$

where the -1 ensures conservation of probability.
A simple form to take for F is

$$
\begin{equation*}
F=\lambda_{1} \sum_{j} a_{j}^{\dagger} a_{j}-\lambda_{2}\left(\sum_{j} a_{j}^{\dagger} a_{j}\right)^{2} \tag{13.2}
\end{equation*}
$$

where the sum is over all neighbours including i. We expect $\lambda_{1}>0$ and $\lambda_{2}>0$ - this is because i can be infected only once in Δt.

If we now let $a_{i}^{\dagger}=1+\bar{a}_{i}$ (i.e. make the shift) we find a variety of terms, all proportional to \bar{a}_{i}. We get an effective diffusion term $\bar{a}_{i} a_{j}$ proportional to λ_{1} and terms proportional to $-\lambda_{1} \bar{a} a,-\bar{a}^{2} a$ and $+\bar{a} a^{2}$ (where we have been careful to keep track of the signs). All other terms are later shown to be irrelevant.

Going straight to the field theory, the action is :

$$
\begin{equation*}
S=\int d t d^{d} x\left[\tilde{\phi} \partial_{t} \phi+D_{0} \nabla \tilde{\phi} \nabla \phi+r_{0} \tilde{\phi} \phi+u_{1} \tilde{\phi} \phi^{2}-u_{2} \tilde{\phi}^{2} \phi\right] \tag{13.3}
\end{equation*}
$$

where

$$
\begin{array}{r}
r_{0} \propto-\lambda_{1}<0 \\
u_{1}>0 \quad, \quad u_{2}>0 \tag{13.4}
\end{array}
$$

If we rewrite this as a stochastic equation, we find

$$
\begin{equation*}
\dot{\phi}=D_{0} \nabla^{2} \phi+\lambda_{1} \phi-u_{1} \phi^{2}+\zeta \tag{13.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle\zeta(x, t) \zeta\left(x^{\prime}, t^{\prime}\right)\right\rangle \propto u_{2} \phi \delta^{(d)}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{13.6}
\end{equation*}
$$

Ignoring the noise, we see that there are two possible steady-states :

- $\langle\phi\rangle=0$: the inactive or absorbing state (if the system starts here, it stays here).
- $\langle\phi\rangle=-r_{0} / u_{1}$: the active state.

In the rate equation approximation, the latter state is the dynamically stable one for all $r_{0}<0$ (i.e. $\lambda_{1}>0$). But, once the fluctuations are included, there is a non-trivial critical value of $r_{0 c}<0$.

This action is therefore very general and describes a dynamic transition from an inactive state (with no fluctuations) to an active state (with fluctuations) as a function of a control parameter. For historical reasons, it is called the directed percolation ("DP") universality class.

In DP, "time" is a discrete space dimension, usually on a lattice (see Fig. 13.1).

It is usual to rescale the fields $\tilde{\phi} \& \phi$ so that the coefficients of $\tilde{\phi} \phi^{2}$ and $-\tilde{\phi}^{2} \phi$ are equal. Thus

$$
\begin{equation*}
S=\int d t d^{d} x\left[\tilde{\phi} \partial_{t} \phi+D_{0} \nabla \tilde{\phi} \nabla \phi+r_{0} \tilde{\phi} \phi+\frac{1}{2} u_{0} \tilde{\phi} \phi^{2}-\frac{1}{2} u_{0} \tilde{\phi}^{2} \phi\right] \tag{13.7}
\end{equation*}
$$

In this form, the theory has a remarkable time-reversal symmetry under $t \rightarrow-t, \phi \rightarrow-\tilde{\phi}, \tilde{\phi} \rightarrow-\phi$. This implies that the renormalised versions of these two couplings will be equal.

The Feynman rules for this theory are quite simple :

Figure 13.1: (t, x) is occupied with prob. p if either of $(t, x-1),(t, x+1)$ is occupied - directed site percolation.

Now, however, there are corrections to the propagator

To 1-loop :

$$
\Gamma^{(1,1)}=-i \omega+D_{0} q^{2}+r_{0}-\left(-u_{0}\right)\left(u_{0}\right) \frac{1}{2} \int d k \frac{1}{-i \omega+D_{0} k^{2}+D_{0}(q-k)^{2}+2 r_{0}}
$$

$$
\begin{equation*}
+\cdots \tag{13.8}
\end{equation*}
$$

where now $\int d k$ stands for $\int d^{d} k /(2 \pi)^{d}$.
Notice that the loop corrections act to make $r_{R}>r_{0}$ so that at the critical point where $r_{R}=0, r_{0 c}<0$ as advertised.

Power counting : $[\tilde{\phi} \phi]=k^{d}$ as usual. Because of the symmetry we choose $[\tilde{\phi}]=[\phi]=k^{d / 2}$. Then $\left[u_{0}\right] k^{3 d / 2}=k^{d} \omega=k^{d+2}\left[D_{0}\right]$, so $\left[u_{0} / D_{0}\right]=k^{2-d / 2}$ so
that the upper critical dimension is $d_{c}=4$.
If we study the vertex functions $\Gamma^{(m, n)}$ we find in $d=4$ that

$$
\begin{equation*}
\left[\Gamma^{(1,1)}\right]=\left[D_{0}\right] k^{2} \quad, \quad\left[\Gamma^{(1,2)}\right]=\left[\Gamma^{(2,1)}\right]=\left[D_{0}\right] k^{0} \tag{13.9}
\end{equation*}
$$

so we have to regularise the following quantities: $\left(\operatorname{mass}\left(r_{0}\right)\right.$ renormalisation assumed done) : $\Gamma^{(1,1)}, \frac{\partial \Gamma^{(1,1)}}{\partial k^{2}}, \Gamma^{(1,1)}, \frac{\partial \Gamma^{(1,1)}}{\partial(-i \omega)}$ and $\Gamma^{(1,2)}=-\Gamma^{(2,1)}$.

Because of the form of the bare propagator $\left(-i \omega+D_{0} q^{2}\right.$ rather than $\frac{-i \omega}{D_{0}}+q^{2}$), we demand :

1. $\left(\frac{\partial}{\partial(-i \omega)} \Gamma_{R}^{(1,1)}\right)_{N P}=1 \quad$ to define $Z_{\phi}=Z_{\tilde{\phi}}$
2. $\left(\frac{\partial}{\partial q^{2}} \Gamma_{R}^{(1,1)}\right)_{N P}=D_{R} \equiv Z_{D}^{+1} D_{0}$
3. $u_{R}=\left(-\Gamma_{R}^{(1,2)}\right)_{N P}=\left(\Gamma_{R}^{(2,1)}\right)_{N P}$

SO

$$
\begin{align*}
Z_{\phi}^{-1}=\frac{\partial}{\partial(-i \omega)} \Gamma^{(1,1)} & =1-\frac{u_{0}^{2}}{2} \int\left(\frac{d k}{\left(D_{0} k^{2}+D_{0}(q-k)^{2}\right)^{2}}\right)_{q^{2}=\mu^{2}} \\
& =1-\left(\frac{u_{0}}{D_{0}}\right)^{2} \frac{1}{2} \frac{1}{4} \frac{2 \pi^{2}}{(2 \pi)^{4}} \frac{\mu^{-\epsilon}}{\epsilon}+\mathcal{O}\left(u_{0}^{4}\right) \tag{13.10}
\end{align*}
$$

$$
\begin{align*}
D_{R} & =Z_{\phi} \frac{\partial}{\partial q^{2}} \Gamma^{(1,1)} \\
& =Z_{\phi}\left[D_{0}+\frac{u_{0}^{2}}{2} \frac{\partial}{\partial q^{2}} \int \frac{d k}{D_{0}\left(k+\frac{1}{2} q\right)^{2}+D_{0}\left(k-\frac{1}{2} q\right)^{2}}\right]_{q^{2}=\mu^{2}}+\cdots \\
& =Z_{\phi} D_{0}\left[1-\frac{u_{0}^{2}}{2} \frac{1}{2} \int \frac{d k}{D_{0}\left(k+\frac{1}{2} q\right)^{2}+D_{0}\left(k-\frac{1}{2} q\right)^{2}}+\cdots\right] \\
& =Z_{\phi} D_{0}\left[1-\left(\frac{u_{0}}{D_{0}}\right)^{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{2 \pi^{2}}{(2 \pi)^{4}} \frac{\mu^{-\epsilon}}{\epsilon}+\cdots\right] \tag{13.11}
\end{align*}
$$

$\Gamma^{(1,2)}=$

$$
\begin{gather*}
=-u_{0}+\left(-u_{0}\right)^{2} u_{0} \int \frac{d k}{\left[D_{0} k^{2}+D_{0}\left(q_{1}-k\right)^{2}\right]\left[D_{0} k^{2}+D_{0}\left(q_{1}+q_{2}-k\right)^{2}\right]} \\
\quad+\left(\mathrm{q}_{1} \leftrightarrow \mathrm{q}_{2}\right) \text { term } \\
=-\quad-u_{0}+2 \frac{u_{0}^{3}}{D_{0}^{2}} \frac{1}{4} \frac{2 \pi^{2}}{(2 \pi)^{4}} \frac{\mu^{-\epsilon}}{\epsilon} \tag{13.12}\\
u_{R}=-\Gamma_{R}^{(1,2)}=-Z_{\phi}^{3 / 2} \Gamma^{(1,2)} \tag{13.13}
\end{gather*}
$$

Finally, the dimensionless coupling is

$$
\begin{align*}
g_{R}= & \left(u_{R} / D_{R}\right) \mu^{-\epsilon / 2} \\
= & \frac{\left(u_{0} / D_{0}\right) \mu^{-\epsilon / 2}\left[1-\frac{1}{2} K_{4} \frac{\left(u_{0} / D_{0}\right)^{2} \mu^{-\epsilon}}{\epsilon}\right]}{\left[1-\frac{1}{16} K_{4} \frac{\left(u_{0} / D_{0}\right)^{2} \mu^{-\epsilon} \epsilon}{\epsilon}\right]\left[1-\frac{1}{16} K_{4} \frac{\left(u_{0} / D_{0}\right)^{2} \mu^{-\epsilon}}{\epsilon}+\cdots\right]} \\
= & \left(u_{0} / D_{0}\right) \mu^{-\epsilon / 2}\left[1-\frac{3}{8} K_{4} \frac{\left(u_{0} / D_{0}\right)^{2} \mu^{-\epsilon}}{\epsilon}+\cdots\right] \tag{13.14}\\
& \quad \beta\left(g_{R}\right)=\frac{-\epsilon}{2} g_{R}+\frac{3}{8} K_{4} g_{R}^{3}+\mathcal{O}\left(g_{R}^{5}\right) \tag{13.15}
\end{align*}
$$

As usual, we have a non-trivial IR fixed point, this time with

$$
\begin{gather*}
g_{R}^{* 2}=\frac{4 \epsilon}{3}+\cdots \tag{13.16}\\
Z_{D}=\left(1+\frac{1}{8} K_{4} \frac{\left(u_{0} / D_{0}\right)^{2} \mu^{-\epsilon}}{\epsilon}\right)\left(1-\frac{1}{16} K_{4} \frac{\left(u_{0} / D_{0}\right)^{2} \mu^{-\epsilon}}{\epsilon}\right) \tag{13.17}
\end{gather*}
$$

so

$$
\begin{gather*}
\gamma_{D}=-\frac{1}{16} K_{4} g_{R}^{2}+\cdots \Rightarrow z=2-\frac{\epsilon}{12}+\mathcal{O}\left(\epsilon^{2}\right) \tag{13.18}\\
Z_{\phi}=1+\frac{1}{8} K_{4} \frac{\left(u_{0} / D_{0}\right)^{2} \mu^{-\epsilon}}{\epsilon}+\cdots \tag{13.19}\\
\gamma_{\phi}=-\frac{1}{8} K_{4} g_{R}^{2}+\cdots \tag{13.20}
\end{gather*}
$$

13.0.1 Scaling behaviour

$$
\begin{equation*}
\mu\left(\frac{\partial}{\partial \mu}\right)_{u_{0}, D_{0}, \cdots} Z_{\phi}^{-1} \Gamma_{R}^{(1,1)}=0 \tag{13.21}
\end{equation*}
$$

$$
\left[\begin{array}{c}
\mu \frac{\partial}{\partial \mu}-\underbrace{\frac{1}{Z_{\phi}} \mu \frac{\partial}{\partial \mu} Z_{\phi}}_{-\gamma_{\phi}}+\beta\left(g_{R}\right) \frac{\partial}{\partial g_{R}}+\underbrace{\mu \frac{\partial D_{R}}{\partial \mu} \frac{\partial}{\partial D_{R}}}_{-\gamma_{D} D_{R} \frac{\partial}{\partial D_{R}}}] \Gamma_{R}^{(1,1)}=0 \\
\gamma_{\phi}=\mu \frac{\partial}{\partial \mu} \ln Z_{\phi} \quad \gamma_{D}=\mu \frac{\partial}{\partial \mu} \ln Z_{D} \tag{13.23}
\end{array}\right.
$$

At the fixed point :

$$
\begin{equation*}
\left[\mu \frac{\partial}{\partial \mu}-\gamma_{\phi}^{*}-\gamma_{D}^{*} D_{R} \frac{\partial}{\partial D_{R}}\right] \Gamma_{R}^{(1,1)}=0 \tag{13.24}
\end{equation*}
$$

13.0.2 Dimensional analysis

$$
\begin{equation*}
\Gamma_{R}^{(1,1)}=D_{R} \mu^{2} \Phi\left[\frac{k}{\mu}, \frac{\omega}{\left(D_{R} k^{2}\right)}\right] \tag{13.25}
\end{equation*}
$$

so

$$
\begin{align*}
D_{R} \frac{\partial}{\partial D_{R}} & =1-\omega \frac{\partial}{\partial \omega} \tag{13.26}\\
\mu \frac{\partial}{\partial \mu}+k \frac{\partial}{\partial k}=2-2 \omega \frac{\partial}{\partial \omega} & \tag{13.27}
\end{align*}
$$

Hence

$$
\begin{gather*}
{\left[-k \frac{\partial}{\partial k}+2-\gamma_{\phi}^{*}-\left(2+\gamma_{D}^{*}\right) \omega \frac{\partial}{\partial \omega}\right] \Gamma_{R}^{(1,1)}=0} \tag{13.28}\\
\Gamma^{(1,1)}(\omega, k)=k^{2-\gamma_{\phi}^{*}+\gamma_{D}^{*}} \Phi\left(\frac{\omega}{k^{2+\gamma_{D}^{*}}}\right) \tag{13.29}
\end{gather*}
$$

and we end up with dynamic scaling again.
As $k \rightarrow 0$ we expect $\Gamma^{(1,1)}(\omega, 0) \sim \omega^{1-\gamma_{\phi}^{*} /\left(2+\gamma_{D}^{*}\right)}$ implying that the density of infected sites decays as $\int d \omega e^{i \omega t} \Gamma^{(1,1)-1} \sim t^{-\gamma_{\phi}^{*} /\left(2+\gamma_{D}^{*}\right)}$ and that the dynamic exponent takes the value

$$
\begin{equation*}
z=2+\gamma_{D}^{*} \tag{13.30}
\end{equation*}
$$

13.0.3 Away from the critical point

In DP we have a control parameter r_{0}, like a bare mass. There is another critical exponent associated with this, which may be found by studying the renormalisation of the composite operator $\tilde{\phi} \phi$. The 1-loop diagram is

Denoting $\Delta_{0}=\left|r_{0}-r_{0 c}\right|$ we find the scaling behaviour

$$
\begin{equation*}
\Gamma_{R}^{(1,1)}\left(\omega, k, \Delta_{0}\right)=k^{2-\gamma_{\phi}^{*}-\gamma_{D}^{*}} \Phi\left(\omega / k^{z}, k / \Delta_{0}^{\nu_{\perp}}\right) \tag{13.31}
\end{equation*}
$$

which may be rewritten in various other ways, e.g. $\omega / \Delta_{0}^{\nu_{\|}=2 \nu_{\perp}}$.
For $r_{0}>r_{0 c}, G^{(1,1)}$ decays exponentially like $e^{-t / \tau}$ with $\tau \propto \Delta_{0}^{-\nu_{\|}}$.
For $r_{0}<r_{0 c}$, starting from a single infected site we go to a finite density in the active state. In that case

$$
\begin{equation*}
G^{(1,1)}(t, x) \xrightarrow{t \rightarrow \infty} p\left(\left|\Delta_{0}\right|\right) \tag{13.32}
\end{equation*}
$$

Replacing now $G^{(1,1)}$ and p by their complete expressions, we get

$$
\begin{align*}
\int d \omega d^{d} k k^{-2+\gamma_{\phi}^{*}+\gamma_{D}^{*}} \Phi\left(\frac{\omega}{\left|\Delta_{0}\right|^{\nu_{\|}}}, \frac{k}{\left|\Delta_{0}\right|^{\nu_{\perp}}}\right) & \propto\left|\Delta_{0}\right|^{\nu_{\|}+d \nu_{\perp}-\left(2-\gamma_{\phi}^{*}-\gamma_{D}^{*}\right) \nu_{\perp}} \\
& =\left|\Delta_{0}\right|^{\left(d+\gamma_{\phi}^{*}\right) \nu_{\perp}} \\
& =\left|\Delta_{0}\right|^{\beta} \tag{13.33}
\end{align*}
$$

defining the "order parameter" exponent β.

Chapter 14

The Kardar-Parisi-Zhang equation

This was originally formulated as a model of a growing interface, but it can also be mapped to :

- the "noisy" Burgers equation in hydrodynamics.
- directed polymers in a random medium.

Consider an Ising model below T_{c}, with an interface between \uparrow and \downarrow phases. We use a continuus spin $S=S(\vec{x}, z)$

$$
\begin{equation*}
\mathcal{H}=\int\left[\frac{1}{2}(\nabla S)^{2}+V(S)\right] d^{d} x d z \tag{14.1}
\end{equation*}
$$

The position of the interface is $z=h(\vec{x})$.

In equilibrium we find a flat solution $h=$ const, $S=f(z-h)$ by minimising \mathcal{H}, so

$$
\begin{equation*}
f^{\prime \prime}(z)=V(f(z)) \tag{14.2}
\end{equation*}
$$

Let this solution be $f(\cdot)$.
When the interface fluctuates, we assume that its profile does not vary, only its position and angle. So we write :

$$
\begin{equation*}
S(\vec{x}, z, t)=f\left(\frac{z-h(\vec{x}, t)}{\sqrt{1+\left(\vec{\nabla}_{\perp} h\right)^{2}}}\right) \tag{14.3}
\end{equation*}
$$

where $\vec{\nabla}_{\perp}$ is the derivative in the \vec{x}-directions (note that d is now the number of transverse dimensions).
We now add a magnetic field : $\mathcal{H} \longrightarrow \mathcal{H}+\mu \int S d^{d} x d z$ which will drive the interface (i.e. make it move in the z-direction), and write down model A:

$$
\begin{equation*}
\dot{S}=D\left(\frac{\partial^{2} S}{\partial z^{2}}+\vec{\nabla}_{\perp}^{2} S-V^{\prime}(S)-\mu\right)+\zeta \tag{14.4}
\end{equation*}
$$

Inserting the Ansatz (14.3) :

$$
\begin{equation*}
\frac{-\dot{h}}{\sqrt{ }} f^{\prime}\left(\frac{z-h}{\sqrt{ }}\right)=D\left(\frac{1}{(\sqrt{\cdot})^{2}} f^{\prime \prime}-\frac{\vec{\nabla}_{\perp}^{2} h f^{\prime}}{\sqrt{ }}+\frac{\left(\vec{\nabla}_{\perp} h\right)^{2} f^{\prime \prime}}{(\sqrt{\cdot})^{2}}-V^{\prime}(f)-\mu\right)+\zeta \tag{14.5}
\end{equation*}
$$

where we have ignored some terms with ≥ 3 derivatives.
The first, third and fourth terms in the brackets cancel, because f satisfies (14.2.)

We multiply this equation by $f^{\prime}\left(\frac{z-h}{\sqrt{ }}\right)$ and integrate $\int_{-\infty}^{\infty} d z$:

$$
\begin{equation*}
\dot{h} \int_{-\infty}^{\infty} f^{\prime}(u)^{2} d u=D \nabla_{\perp}^{2} h \int_{-\infty}^{\infty} f^{\prime}(u)^{2} d u+D \mu \sqrt{\cdot} \int_{-\infty}^{\infty} f^{\prime}(u) d u+\tilde{\zeta} \tag{14.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\zeta}(\vec{x}, t)=\sqrt{ } \cdot \int_{-\infty}^{\infty} \zeta(\vec{x}, z, t) f^{\prime}(z) d z \tag{14.7}
\end{equation*}
$$

Expanding out $\sqrt{ } \cdot \approx 1+\frac{1}{2}\left(\nabla_{\perp} h\right)^{2}+\cdots$, we finally obtain an equation of the form :

$$
\begin{equation*}
\dot{h}=v+\frac{1}{2} \lambda\left(\nabla_{\perp} h\right)^{2}+\nu \nabla_{\perp}^{2} h+\eta \tag{14.8}
\end{equation*}
$$

where $v \propto D \mu, \lambda \propto D \mu, \nu \propto D$ and $\left\langle\eta(\vec{x}, t) \eta\left(\vec{x}^{\prime}, t^{\prime}\right)\right\rangle=2 D \delta^{(d)}\left(\vec{x}-\vec{x}^{\prime}\right) \delta\left(t-t^{\prime}\right)$.
We can remove v by going to a moving frame $h \longrightarrow h^{\prime}=h-v t$. This gives the KPZ equation. Note that we have lost detailed balance - the rhs cannot be written as $-D \frac{\delta F}{\delta h}+\eta$.

14.1 KPZ equation : response function formalism

Action :

$$
\begin{equation*}
\int d t d^{d} x\left[\tilde{h}\left(\dot{h}-\frac{1}{2} \lambda(\nabla h)^{2}-\nu \nabla^{2} h\right)-D \tilde{h}^{2}\right] \tag{14.9}
\end{equation*}
$$

Dimensional analysis :

$$
\begin{gathered}
{[\tilde{h} h]=k^{d}, \quad[\nu]=\omega k^{-2}, \quad[\lambda]\left[\tilde{h} h^{2}\right]=k^{d-2} \omega, \quad[D]\left[\tilde{h}^{2}\right]=k^{d} \omega, \quad \text { so }} \\
{\left[\lambda^{2} D\right](\tilde{h} h)^{4}=k^{2 d-4} \omega^{2} k^{d} \omega=[\nu]^{3} k^{3 d+2}}
\end{gathered}
$$

Dimensionless expansion parameter is $\left[\lambda^{2} D / \nu^{3}\right]=k^{2-d}$:

$$
d_{c}=2
$$

In $d>2$: the non-linearity $(\nabla h)^{2}$ is irrelevant (for λ small). We are therefore lead to the Edwards-Wilkinson theory :

$$
\begin{equation*}
\dot{h}=\nu \nabla^{2} h+\zeta \tag{14.10}
\end{equation*}
$$

(which satisfies the detailed balance condition with $D=\nu k T$).
In general :
Dynamic scaling : $\langle h(\vec{x}, t) h(0,0)\rangle=|\vec{x}|^{2 \chi} \Phi\left(\frac{t}{|\vec{x}|^{z}}\right)$

- $\chi>0 \Rightarrow$ interface rough
- $\chi<0 \Rightarrow$ interface smooth

In EW theory, $\langle h(\vec{x}, 0) h(0,0)\rangle=\int \frac{d^{d} q}{q^{2}} e^{i q x} \propto|x|^{-d+2}$ so

$$
\begin{gather*}
\chi_{E W}=1-d / 2 \quad \text { smooth for } d>2 . \tag{14.11}\\
z_{E W}=2 \tag{14.12}
\end{gather*}
$$

14.2 Renormalisation for $d<2$

Propagator: $\longleftarrow<h \tilde{h}\rangle=\frac{1}{-i \omega+\nu k^{2}}$
Vertex $\tilde{h}(\nabla h)^{2}:$

Noise vertex :

1-loop correction to propagator :

$$
\begin{equation*}
\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{[k \cdot(q-k)][-k \cdot q]}{\left(-i \omega+\nu k^{2}+\nu(q-k)^{2}\right)\left(2 \nu k^{2}\right)} \propto q^{2} \int \frac{d^{d} k}{\left[k^{2}\right]} \tag{14.13}
\end{equation*}
$$

Hence $\frac{\partial}{\partial(-i \omega)} \Gamma^{(1,1)}$ is finite in $\mathrm{d}=2$ (but $\frac{\partial}{\partial q^{2}} \Gamma^{(1,1)}$ is not).
There is therefore no field renormalisation. We should only renormalise ν, D, λ.
In addition, there is in fact no renormalisation of λ due to Galilean invariance : If $\vec{u}=\vec{\nabla} h$:

$$
\begin{align*}
\dot{\vec{u}} & =\vec{\nabla}\left(\frac{\lambda}{2} \vec{u}^{2}+\nu \vec{\nabla} u\right)+\vec{\nabla} \zeta \\
& =\lambda(\vec{u} \cdot \vec{\nabla}) \vec{u}+\nu \nabla^{2} \vec{u}+\vec{\nabla} \zeta \tag{14.14}
\end{align*}
$$

If $\lambda=-1$, we can take the first term onto the left-hand side, giving

$$
\begin{equation*}
\dot{\vec{u}}+(\vec{u} \cdot \vec{\nabla}) \vec{u} \equiv \frac{D \vec{u}}{D t} \tag{14.15}
\end{equation*}
$$

is the convective derivative, as for a fluid : this then gives the noisy Burgers equation (which is the Navier-Stokes equation in the absence of vorticity). For this, we expect Galilean invariance.
For general λ, we in fact have invariance under

$$
\begin{equation*}
\vec{x} \longrightarrow \vec{x}-\lambda \vec{v} t \quad, \quad \vec{u} \longrightarrow \vec{u}^{\prime}=\vec{u}(\vec{x}+\lambda \vec{v} t)+\vec{v} \tag{14.16}
\end{equation*}
$$

(where $\vec{v}=$ const). This reflects the tilt-invariance of the original interface model.
Since λ is a parameter in this transformation, it can't be renormalised !
So we are left with

$$
\begin{align*}
\gamma_{D} & \equiv \frac{1}{D_{R}} \mu \frac{\partial}{\partial \mu} D_{R} \\
\gamma_{\nu} & \equiv \frac{1}{\nu_{R}} \mu \frac{\partial}{\partial \mu} \nu_{R} \tag{14.17}
\end{align*}
$$

as non-trivial renormalisation group functions.

Dimensionless coupling :

$$
\begin{equation*}
g_{R}=\frac{\lambda_{R}^{2} D_{R}}{\nu_{R}^{3}} \mu^{d-2} \tag{14.18}
\end{equation*}
$$

so

$$
\begin{equation*}
\beta\left(g_{R}\right) \equiv \mu \frac{\partial}{\partial \mu} g_{R}=g_{R}\left(d-2+\gamma_{D}-3 \gamma_{\nu}\right) \tag{14.19}
\end{equation*}
$$

Hence, at any non-trivial fixed point

$$
\begin{equation*}
\gamma_{D}^{*}-3 \gamma_{\nu}^{*}=2-d \tag{14.20}
\end{equation*}
$$

As usual,

$$
\begin{equation*}
z=2+\gamma_{\nu}^{*} \tag{14.21}
\end{equation*}
$$

The RG equation for $G=\int d^{d} x e^{i k\left(x-x^{\prime}\right)}\left\langle h(x, t) h\left(x^{\prime}, t^{\prime}\right)\right\rangle$ is :

$$
\begin{gather*}
{\left[\mu \frac{\partial}{\partial \mu}+\gamma_{D}^{*} D \frac{\partial}{\partial D}+\gamma_{\nu}^{*} \nu \frac{\partial}{\partial \nu}\right] G=0 \quad \text { at fixed point }} \tag{14.22}\\
G=\frac{D}{\nu k^{2}} \Phi\left(\frac{\mu}{k}\right) \tag{14.23}\\
{\left[-2-k \frac{\partial}{\partial k}+\gamma_{D}^{*}-\gamma_{\nu}^{*}\right] G=0} \tag{14.24}\\
G \propto \frac{1}{k^{2-\gamma_{D}^{*}+\gamma_{\nu}^{*}}} \tag{14.25}\\
\chi=1-\frac{d}{2}+\frac{\gamma_{\nu}^{*}-\gamma_{D}^{*}}{2} \tag{14.26}
\end{gather*}
$$

Hence

$$
\begin{equation*}
z+\chi=2 \tag{14.27}
\end{equation*}
$$

This is a remarkable scaling relation which comes from Galilean invariance and the lack of field renormalisation.

14.3 Exact exponents for $d=1$

Edwards-Wilkinson linear theory satisfies detailed balance :

$$
\begin{align*}
\dot{h} & =\nu \nabla^{2} h+\zeta \quad\langle\zeta \zeta\rangle=2 D \delta(.) \delta(.) \\
& =-\nu \frac{\delta}{\delta h}\left[\int \frac{1}{2}(\nabla h)^{2} d^{d} x\right]+\zeta \tag{14.28}
\end{align*}
$$

Equilibrium distribution :

$$
\begin{equation*}
P[h]=\exp \left(-\frac{1}{k T_{\text {eff }}} \int \frac{1}{2}(\nabla h)^{2} d^{d} x\right) \tag{14.29}
\end{equation*}
$$

where $k T_{\text {eff }}=D / \nu$.
In $d=1$, adding the non-linearity does not affect this !

$$
\begin{align*}
& P\left[h_{0}\right]_{\mathrm{eq}}=\left\langle\delta\left(h-h_{0}(x, t)\right)\right\rangle=\int \mathcal{D} h \delta_{f}\left(h-h_{0}(x, t)\right) \exp \left(-\mathcal{H}_{\mathrm{eff}}[h]\right) \tag{14.30}\\
& \frac{d}{d t} P\left[h_{0}\right]=-\int \mathcal{D} h \sum_{x} \delta^{\prime}\left(h-h_{0}(x, t)\right) \dot{h_{0}} \prod_{x^{\prime} \neq x} \delta\left(h-h_{0}\right) \exp \left(-\mathcal{H}_{\mathrm{eff}}\right) \\
&=-\int d^{d} x \int \mathcal{D} h \delta_{f}\left(h-h_{0}\right) \dot{h}_{0}\left(\frac{\delta \mathcal{H}_{\mathrm{eff}}}{\delta h}\right)_{h=h_{0}} \exp \left(-\mathcal{H}_{\mathrm{eff}}\right) \\
&=\int d^{d} x\left\langle\frac{1}{2} \lambda(\nabla h)^{2} \nabla^{2} h\right\rangle+\cdots \tag{14.31}
\end{align*}
$$

In general, this is non-zero, but in $d=1$

$$
\begin{equation*}
\left(\frac{\partial h}{\partial x}\right)^{2}\left(\frac{\partial^{2} h}{\partial x^{2}}\right)=\frac{1}{3} \frac{\partial}{\partial x}\left[\left(\frac{\partial h}{\partial x}\right)^{3}\right] \tag{14.32}
\end{equation*}
$$

giving a total derivative which integrates to zero.
We know the steady-state for $d=1 \Rightarrow \mathrm{FDT} \Rightarrow \gamma_{D}^{*}=\gamma_{\nu}^{*}$ giving

$$
\begin{equation*}
z=3 / 2 \quad, \quad \chi=1 / 2 \tag{14.33}
\end{equation*}
$$

The interface is rough!

14.4 Directed polymer representation

$$
\begin{equation*}
\dot{h}=\nu \nabla^{2} h+\frac{1}{2} \lambda(\nabla h)^{2}+\zeta \tag{14.34}
\end{equation*}
$$

Let now

$$
\begin{equation*}
h=\frac{2 \nu}{\lambda} \ln w \quad(\text { Cole }- \text { Hopf transformation }) \tag{14.35}
\end{equation*}
$$

then

$$
\begin{gather*}
\frac{2 \nu}{\lambda} \frac{\dot{w}}{w}=\frac{2 \nu^{2}}{\lambda}\left[\frac{\nabla^{2} w}{w}-\frac{(\nabla w)^{2}}{w^{2}}\right]+\frac{2 \nu^{2}}{\lambda} \frac{(\nabla w)^{2}}{w^{2}}+\zeta \tag{14.36}\\
\dot{w}=\nu \nabla^{2} w+\frac{\lambda}{2 \nu} w \zeta \quad \text { linear ! } \tag{14.37}
\end{gather*}
$$

Figure 14.1: A polymer in a random medium (dots represent impurities)

Polymer in a random medium (see Fig. 14.1):
Let $w(\vec{x}, t)$ be the partition function given the ends are at $(0,0)$ and (\vec{x}, t).

$$
\begin{equation*}
w(\vec{x}, t)=\int_{\vec{x}^{\prime}(0)=0}^{\vec{x}^{\prime}(t)=\vec{x}} \mathcal{D} \vec{x}^{\prime} \exp \left(-\frac{1}{k T} \int_{0}^{t} d t^{\prime}\left[\frac{\epsilon}{2}\left(\frac{d \vec{x}^{\prime}}{d t^{\prime}}\right)^{2}+V\left(\vec{x}^{\prime}, t^{\prime}\right)\right]\right) \tag{14.38}
\end{equation*}
$$

with V being a random potential. This is like a Feynman path integral, so w obeys a "Schrödinger" equation :

$$
\begin{equation*}
T \frac{\partial w}{\partial t}=\frac{T^{2}}{2 \epsilon} \nabla^{2} w+V w \tag{14.39}
\end{equation*}
$$

which is the same equation as (14.37) with $\nu=\frac{T}{2 \epsilon}$, and $\zeta=\frac{1}{\epsilon \lambda} V$

14.4.1 Renormalisation for $d>2$

Response function formalism :

$$
\begin{equation*}
\int d^{d} x d t\left[\tilde{w}\left(\dot{w}-\nu \nabla^{2} w\right)-\frac{\lambda^{2} D}{2 \nu^{2}} \tilde{w}^{2} w^{2}\right] \tag{14.40}
\end{equation*}
$$

Feynman rules :

$$
\longleftarrow \quad \frac{1}{-i \omega+\nu k^{2}}
$$

$$
+\frac{\lambda^{2} D}{\nu^{2}}
$$

Renormalisation is simple : just as in $A+A \longrightarrow \emptyset$:

but the coupling constant has now a different sign.

$$
\begin{equation*}
\beta\left(g_{R}\right)=-g_{R}[2-d]-b g_{R}^{2} \tag{14.41}
\end{equation*}
$$

To all orders :

$$
\begin{equation*}
g_{R}^{*}=(d-2) / b \tag{14.42}
\end{equation*}
$$

The interpretation of this is a roughening transition at $g=g^{*}$.

Exactly at the transition, we have

$$
\begin{equation*}
\nu_{\perp}=\frac{1}{d-2} \tag{14.43}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{\text {smooth }} \propto\left(g^{*}-g\right)^{-\nu_{\perp}} \tag{14.44}
\end{equation*}
$$

Unsolved problems :

1. What is the nature of the rough (strong coupling) phase for $d \geq 2$?
2. Is there an upper critical dimension ? [For $d>4, \nu_{\perp}=\frac{1}{d-2}$ violates the rigorous inequality $d \nu_{\perp}>2$]
