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Chapter 1

Introduction

In this course, we shall be concerned with the time-dependent behaviour of
systems close to a critical point. These may be equilibrium (or close to equi-
librium) systems, or systems maintained in/close to some steady-state which
is not equilibrium, by some driving force.

These will be the two main parts of the course. However, it will emerge that
many of the scaling properties of such systems are similar, whether or not
they are in equilibrium. As a result, the most effective way of understand-
ing these, the renormalisation group (RG) and dynamic field theory are very
similar.

We shall restrict ourselves to systems at finite temperature, which turns
out to mean that, in the critical region, the thermal fluctuations are more
important than the quantum ones. Thus, the system is in contact with a
heat bath which, in the absence of driving force, will produce dissipation
and relaxation toward equilibrium.

Hence, the effective equations of motion we shall use have a direction of time
built into them. This is not to say that no features of the underlying time
reversal invariant dynamics remain : for example, any conservation laws in
the full dynamics should also be respected by the effective equations.

Conservation laws — slow modes
— affect long-time dependence (w, k — 0).

Note that there are other mechanisms for producing slow modes, e.g. Gold-
stone bosons, which arise from the spontaneous breaking of a continuous
symmetry.
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Chapter 2

Basic Principles

In dynamic critical behaviour, there are different kinds of observable quanti-
ties. Consider a magnetic system with s(r, ¢) being the local, time-dependent
magnetisation.

2.1 Correlation functions
Clr—r'it—1t)=(s(r,t)s(r', 1)) (2.1)

(in equilibrium) where

1 T
(s(r.)s, 1)) = Jim o [ e (b4 0)s(0L 0 40)(22)

(s(r,t)s(r',t")) is the static correlation function, and may be calculated by
the usual equilibrium statistical mechanics formula :

(SUyﬂs&ﬂﬂ>::%YW{SUQJTQEWH} (2.3)

2.2 Response functions
We may add a time-varying field h(r,t) (H — H — X, h(r,t)s(r,t)) which

couples to s(r,t) in the hamiltonian, and measure the response (s(r,t)). The
linear response must have the form

@@@>:/G@-ﬂ¢—ﬂm@wqwmﬁ (2.4)

which defines G. Note that G = 0 if t < ' by causality.



2.3 Fluctuation-dissipation relation

C and G are related by
t/
Ot —t') = kT / Gt —t")dt"  (t>1) (2.5)

Let us see where this comes from for an Ising system in which s(¢) = +1 (we
suppress the r-dependence for clarity). We have in equilibrium :

(5(6)5(#)) = 5 (s(ster=in — 5 (5(6))ager=n (2.6
where (s(t))s()=+1 means then conditional expectation value of s(t), includ-
ing only those histories when s(t') = +1.

Now imagine switching on a small field h at t = —oo and switching it off at
t =t'. At that point the system will be in equilibrium in the presence of the
field h, so the probability that s(t') = +1 is :

exp(£h/kgT) 1 h )
2 cosh(h/kpT) ~ 2 (1 + kT +O(h )> (2.7)
Hence
G0 = 5 (14 1) GO+ 5 (1 o) Oy
_ /t G — 1) " (2.8)

and (2.5) follows by equating terms O(h) (note that the O(1) terms cancel
by symmetry).

Problem : Show for this simple model that the nonlinear response is also related
to C(t —1t).

The FDT is usually expressed in terms of frequency space :

Glw) = | Caawe Gt = / A E et (2.0)

% —oo0 2T
Cw) = [ +: acme o= :o ;l—:é(w)e_i“’t (2.10)
C'(t — 1) = knT[G(t — ') — G(t' — ¢)] (2.11)



from which we get

Clr,w) = 2kpT

Im(G(r,w)) (2.12)

W

[ NB: This is the A — 0 limit of the guantum FDT :

C = 2hcoth (Z—MT> Im(G) (2.13)

B
which may be derived using Fermi’s golden rule (see Landau & Lifshitz).]

The RHS of equations (2.12),(2.13) is related to the dissipation : the energy
is proportional to — >, . s(r)s(r')d(r —r'), thus

dE/dt Z (s(r,t)s(r',))o(r — ')

but .
(s(r, £)3(r", 1)) = C'(0) ox / deo TG (w)

Thus ImG (w) gives the rate of energy dissipation power spectrum.

FDT follows from very general principles, and any effective description should
respect it.



Chapter 3

Models of critical dynamics

3.1 Master equation

3.1.1 Definition

This is an equation of motion for the time evolution of the probability P(«,t)
of finding a system in a microstate . It has the form :

%P(Oﬁ t) = RssaP(B,t) = D RaspPlar,) (3.1)
p 8

The model determines the rates R, 3.
Note that the probability is conserved : % Yo Pla,t) =0.
If this is supposed to describe the relaxation towards equilibrium, the Gibbs

distribution P(«) o exp(—F(«)/kT) must be a steady-state solution. This
means that

Y [Raosae PONT — Ry e BONT] — 0 (3.2)
B
This will certainly be satisfied if the [-] = 0 for each B (detailed balance
condition). It requires
Rasp _ —(w(®)-s@)/kr (3.3)
R,B—)a

There are many solutions of this constraint, e.g.

o5 (E(0)~E(B)/kT

et E(B()-EB)/KT o~ 5(B(a)-E())/KT (3.4)

Ra_>6 X



As T'— 0 we have zero-temperature dynamics :

if E(B) < E(a)
it B(B) = E(a) (3.5)
it E(B)> E(a)

Ra—)ﬂ -

Ol —

Problem : Show that the Metropolis algorithm satisfies detailed balance.

3.1.2 Example : the Glauber model

An example of a master equation is given by the Glauber dynamics for the
Ising model : Let us denote si, s, ... the spins and o = {s} the microstates.
The allowed transitions a — 3 correspond to flipping a single spin :

R;(t=))  R;(I=1) (3.6)
These rates will satisfy detailed balance if

Ry(t=d) _ e T
R,(=1) el (37)

where h; is the local field caused by either the applied field or the other spins.

A solution is to take

oy /KT
Ri(1—=4) = Fefh]-/kT T o thi /KT (3.8)

where T' is a rate with dimensions (time)™".

For example, for the one-dimensional Ising model, the allowed local processes,
with their respective rates are, in the absence of an applied field (Hey = 0) :

Xp(—2J/FT)

I Ry e
xp(+2J/kT

/N/T - TTT r exp(?JekEﬂ)+eXp(f2J/kT)

M e 1 I

Problem : Show that C' & G calculated in the Glauber model satisfy the FDT.

10



These processes are more simply understood in terms of domain walls. The
last processes correspond to random walks, or diffusion of domain walls.
Their density p changes by the first two processes, and we can write :

@ - e2J/KT )
dt e2J /KT | o—=2J[KT P
e 2J/KT

+2I'

e2J[KT { o—2J /KT (3.9)

—2J/kT

Thus at late times, p — p* = ¢ which is just the correlation length £ 1

in equilibrium.

The relaxation time (time for a single spin to flip) is ~ to the time for a
domain wall to diffuse a correlation length which is of the order of £2. (Note
that this is different from the relaxation time for p, which scales like 1/p* ~ &

).

3.2 Langevin-type equation

This is a stochastic differential equation designed to generate the required
distribution. It works better for systems with continuous degrees of freedom.
The prototype is Brownian motion :

Consider a Brownian particle of unit mass. The equation of motion for the
velocity (in 1-d) is :
0(t) = F(t) — Tw(t) + () (3.10)

with :

F(t) = drivingforce
Cwv(t) = friction

¢(t) = random noise due to collisions

The dissipative term may be written :
L,
—ro, (’H =3V , the energy) (3.11)

The noise is correlated only over times between microscopic collisions. Over
longer times, we can therefore write :

(C@)C() = 2Ds(t — 1) (3.12)

11



where D is a constant. Its value is determined by the requirement that the
steady-state distribution is Maxwellian, i.e. (v?) = kT.

Integrating over a time interval dt yields :
t+0t
o(t + 8t) ~ (1 — Tot)o(t) + / C(t)dt (3.13)
t
Note that both terms in the sum are uncorrelated, hence :
(V*(t 4 6t)) = (1 — 20'6t) (v*(t)) + 2Dt (3.14)

and finally
D =TkT (Einstein relation) (3.15)

NB : From the Langevin equation, we can also derive the Fokker-Planck
equation, which describes the time evolution of the probability distribution
P(v(t),1).

3.3 Models A and B

3.3.1 Definition

This is the simplest purely relaxational model of an Ising ferromagnet. We
work in reduced units, so kT, = 1, I' = D. The reduced Landau-Ginzburg
hamiltonian is :

n=[ E(VS)MV(S) 'z (3.16)

where V(S) = 3705? + tuS*, 19 x T — Typ.

Model A is : 5
t)=—-D t 1
where 2% = —V2(3) + V/(S).
The Einstein relation now has the form :
(C(z, )¢ (2" 1)) = 2DD (x — 2")6(t — 1) (3.18)
This follows as for Brownian motion : we have :
S ) S Dé OH e d 3.19
t t) ~ t) — t- t"dt' .
(2,t +6t) = S(x,1) 5ot [ ¢t (3.19)

12



SO

(S(x,t+t)S(a',t + t)) — (S(x,t)S(2, 1)) =~
o KS(J“"’” e t>> y <5(3“""t) e >]

t+0t t+0¢
+ /t dt’ /t dt" (¢ (xz, ¢)C (2", ")) (3.20)

But, in equilibrium : (S(z, t)%) = 0@ (z — 2') by functional integration
by parts, and the left hand side vanishes.

In Model A, the total magnetisation [ S d%z is not conserved. But in some
physical systems, it might be (e.g. S=order parameter for liquid-gas critical
point, or a binary fluid). In that case, we have a continuity equation for S :

—

S =-V-J (3.21)
where .J is a current. To be consistent, we should therefore take
D — —D'V? [Question : Why the minussign 7] (3.22)
with D’ > 0. The Einstein relation is then :
(C(z, )¢ (2, 1)) = —2D'v%5@ (x —a")o(t —t) (3.23)
or equivalently, we can think of the noise term as being V- 5, in which case

<Cl(l‘, t)CJ (.l‘l, t,)> = —2D15i7j6(d) (.l‘ — iU’)é(t — t,) (324)

3.3.2 the Gaussian model

If we neglect the S* term in # (which is valid outside the critical region or
for d > 4), we end up with linear equations :

For model A :

Taking Fourier transforms :
Sk =—D(k* + &)k + G (3.26)

where we have identified the static correlation length &.

13



Each mode decays independently with (S;) ~ e*/™  where

1

D, (k* + &%) (3.27)

Ty =
Note that 79 oc £ — oo at T = (T,)yr : this is the critical slowing down.

We can work out the response function in this approximation : we add a field
h(t) to H : ‘
(Sk) = —D(k* + &*)(S(k)) — Dha(t) (3.28)

and then Fourier transform with respect to time as well :
(Sk(w)) = he(w) - Go(w, k) (3.29)

where
1

S AR

Go(w, k) = (3.30)
In the static limit w = 0 this reproduces the Ornstein-Zernicke form.

Similarly, solving in the presence of noise but with A~ = 0 we find :

Ck(w)
S = 3.31
bW = =7 D2+ &2 (3:31)
and
(Cr(w) G (W) = 2D (w + ') D (k + k) (3.32)
Hence,
2D 2
k) = =—I )
Co(w, k) — +D2(k2+§0_2)2 - mG, (3.33)
so FDT is satisfied.
For model B, on the other hand, D — D'k?, so
G K
w,k)=— — 3.34
0( ) —Dz(,u+k2(k2+€0 2) ( )
and )
-_ 3.35
HX R )

Modes with k ~ &' decay therefore with 7 ~ &3

14



3.4 Response function formalism

There is a way of writing the Langevin equations in d + 1 dimensions so they
look rather like equilibrium models in d + 1 space dimensions, which is very
suggestive.
For example, for model A :
OH
oS =-D— + 3.36
5= D24 ¢ (3.30)
We are interested in solving this equation for S(z,t) for a given ((x,t) and
then computing averages of quantities like S(xy,t1)S(x9,t2) over the noise (.
We can do this by writing

< [ DS S, 1) S (s, 1258 (1) = solution]> | (3.37)
with
: : OH :
dlequation] = 4§ | S + DE — (| x Jacobian (3.38)
A word about this Jacobian. One way is to write it as
O*H
det [8,5 +D55(SS] (3.39)

and write this as a Grassmann integral over anticommuting fields (x, ),

P(x,t) :

0565

But in fact this is unnecessary if we regularise properly : if we interpret 9,5
as a forward difference operator, then

/ DYD1) exp (— / Y [at +D i ] wm%) (3.40)

S(t+ 6t) = S(t) + 6t l—D% +((a, t)] (3.41)

and it is easy to see that J = 1. But note that this choice will have conse-
quences later. We now write

§ [S+D%—g] :/DS exp (—/ [ddxdt§<S+D%—g>D (3.42)

(Note that S should strictly be integrated along the imaginary axis — in
practice since we almost always do perturbation theory, this is not impor-
tant).

15



Finally, we can average over ( : at each point in space-time,

(e %) = eL/D(QS? — o DS? (3.43)

The result is that correlation functions like (S(xz1,%1)S(xs,t2)) may be eval-
uated as function integrals with a ”weight”

/ DSDS exp (— / [ddxdtg (S + D%‘ . D§2>D (3.44)

S is called the response field. This is because its correlators give response
functions. If we add a source term +hS to H, this is the same as adding
—DAS to the "action”. So

(S (@', 1))
dh(zx,t)

—_———
=G(z—a',t'—t)

= D(S(«',)S(x, 1)) (3.45)

We can easily show FDT from this : . . 3
Add a source +hS as above. The terms involving S are : —DAhS, —DS?. We
can shift S — S — h/2 to get rid of this linear term, but this induces a term

b (S + D%)

Hence
e e
Loy D /g 2%
_ §C(x ot _t)_5<5(x’t)65’(aj,t)> (3.46)
odd ve ’

even

But we know that G = 0 for ' —t < 0, and the last term is an even function
of t' and ¢. So it must be that

Ga' —x,t' —t) =C(a' —z,t' — 1) fort' —t >0 (3.47)

which is FDT.

3.5 Dynamic scaling
The simple examples we have looked at so far exhibit simple dynamic scaling

close to a critical point where £ = 0.
For model A and the Glauber model, we found that typical time scales for

16



the relaxation of fluctuations of the linear size of & behave like 7 oc £* with
z = 2.
For model B, we found z = 4.

Problem : Starting from a microscopic master equation for the 1d Ising model
which locally conserves the magnetisation, argue that z = 3 in this case.

This may be generalised to hypothesise dynamic scaling forms for dynamic
correlations functions which generalise the static ones.
For example

G(k,w,&) = &P (Ek, Ew) (3.48)
(for w = 0, this is the static correlation function).
Similarly, )
Ck,w,&) = 7MW (Ek, Ew) (3.49)

As we shall see, these scaling forms emerge from an RG analysis, with, how-
ever, in general non-trivial values for 7, z etc.

17



Chapter 4

Perturbation theory for Model
A

Let us start with the model A equation :

. 5H
§ = -D==+¢ (4.1)
= =D (=V25 + 1S + u,S*) +((, 1) (4.2)

where (C(x,t)((z',t)) = 2D (x — 2")5(t — t')

We can set up a perturbative solution in wuy, by writing it as an integral
equation :

S — DV?S 4 DryS = —DuyS® + ¢ (4.3)
or a
1 2 _ 3 i
(5& Y +7"0> S = —uoS* + 5¢ (4.4)

which yields

¢’ 1)

= (4.5)

S(z,t) = /ddxdt' Go(x —2',t — 1) [—uoS?’(x', t') +

Note that Gq is just the bare response function, with Fourier transform

1

_ 4.6
_Tﬁw‘i‘k2+7'0 ( )

We can introduce a diagrammatic notation with time running from right to left :

18



Go(z — 2’5t — 1)

(2:1) ot o (2 1)
Thus S(z, t) =

(2:1) oo (—uy S(': 1)
n

(w;) ® - x (pC(a'st))

We can now iterate this equation for S :

S(z,t) =

(x;t) @ - X (%C(aj’;t’))
_|_

(231)

(z';¢')
) (S + (@ t)
- X

_I_
_I_

19



S

+ ... where we integrate over the (z,t) of each vertex of type s (subject

to the condition that they are time-ordered), and where each —* *means
+(/D.

To get the response function we just lop off one of these x :

G(ajla tla T2, t2) -

(331;t1) (3323752)

(z1311)

_|_

w2

X
/&A

_|_ 3 X (x2;t2)

+ 2X

e A



Note that, since so far all we are doing is solving a partial differential equa-
tion, the diagrams are simply trees. All counting factors are 1.

Loops come in when we average over (, using

<C(.ZU1, tl)C(Jfg, t2)> = 2D6(d) (.CUl — £U2)5(t1 — tg) (47)
—-X
We are then supposed to tie the ends _gx together, in pairs, in all possible

ways, with a factor 5 - 5 -2D = 2.

Note also that we never get

with our choice of regularisation of 0;, since the propagator
goes forward in time.

*+— always

Problem : Show that (SS) =0

Thus, to O(u}), we have

(z";t") 2/T
(x1;t1) H—Q (wo;ts)
T

which represents the term
—6
== d'a’dr' da" dt" x
D Jystv>ty, v >t
X Go(xy — ', t; — ')Go(x' — @9, ' — t2)Go(z' — 2", t' — 1")? (4.8)

As with all Feynman diagrams, this is simpler in Fourier space :

—

(=w'; =)

21



standing for

—611,0 1 2
= . X
D \—iw/D+q¢*+rp
dw' dk 1 1

bt 4.9
271 (2m)4 —iw’/D+k2+ro+iw’/D+k2+ro (4.9)
f (gifd 2(k2+r0)
Note that at w = 0, we get the static correlation function at 1-loop :
A more interesting diagram is :
(wi; /;;1)
(w; ) (w; )
which comes from sewing in two ways the following diagram :
The overall factor is 3% -2 (%)? - (—uo)? and the integral is :
1 dw1 ddkl dw2 ddkg
(—iw/D+q¢*+1r9)? ) 21 (2m)% 27 (2m)
o 1 1
—iwy /D + k} 4+ ro +iwy /D + kI + 1
1 1
(4.10)

X — :
—iwy/D + k3 + 1 ;l(w*gl*wz) + (¢ — k1 — ko)? + 19

22



1 2/ ddkl dde
(—iw/D + ¢% + 19)? (27)4 (27)@
y 1 1
2(k% + 1) (2k3 +10)
1
X
—iw/D + k} + k3 + (¢ — k1 — k2)? + 3rp

(4.11)

[ Note that we can do w— integrals automatically by looking at intermediate
states in ”old-fashioned” perturbation theory.

At w = 0 we can symmetrise (ks = ¢ — k1 — k»)

1 1 1
k¥ +ro k3 +ro k3 + k3 + k3 + 3rg
1 1 1
3k? +k3+k2+3ry | k¥ +1y k2419
1 1 1 1

= - 4.12
3]€%+T0/€%+Tok§+7”0 ( )

+ perms.

and so recover the usual 2-loop diagram in the statics : ©
Note that the factors of D all cancel in the static limit, as they should.

4.1 Diagrammatic expansion via the response
function formalism

These diagram may also be read off from the response formalism : Rescaling
S — S/D (so that (SS) is the response function) the action is :

(S 1 -
S = /dtdd.’lf [S <% - V2S + T[)S + UOS3> - 5521 (413)

If we look at the gaussian terms S ...S we see the propagator

1
—iw/D 4+ k? +rg

S —-— g

23



[ Note that we could include +S? as part of the gaussian term. This leads

to a matrix

L
D

—w 2
D +/€2+T0> (414)

+iw 2
<T+k “+ 710 -D

to be inverted. Its elements are

( (9); Eiii > (4.15)

where the lower right element is nothing but the bare correlation function.
This introduces two kinds of propagators which are indeed related by FDT.
In fact, since to any finite order in ugy we only get a finite number of S2
vertices, it is easier to think of S? as part of the ”interaction”. ]

We have vertices

—3'U0

and

+2/D

24



Chapter 5

RG calculations for Model A
and Model B

5.1 Renormalisation of dynamic field theory
(model A)

The theory as stands is regularised at large (w, k) by lattice or other short-
time effects. We can examine how the regularisation enters by power-counting.
For simplicity, let us choose a cut-off in |k| < A : later, for elegance, we’ll
use dimensional regularisation.

Define G™™ ((wy, k1)« (W, km); (W), KY) -+ - (W), L)) to be the connected

n''n
response function with n ingoing and m outgoing lines :

From this define the truncated 1-particle irreducible vertex functions (™™,
As in the static theory, only a finite number of these contain primitive diver-
gences near d = 4. These are

T00] k2, [F09)] o 49 65.1)

Hence in d = 4, T0D(w, k) is quadratically divergent oc A2 and 8jT'(0D),
9, T(13) are log-divergent. Apart from 9,['bY) these are just the same

25



divergences met in the static theory. They are removed by mass, field and
coupling constant renormalisation.

Working for simplicity at the critical point, we may assume that mass renor-
malisation has always been done, and TtV (w = k = 0) = 0.

As usual, we define

Sp =258
Sp=25'"78 (5.2)
SO
Pt = Zzgry (5.3)
and in general
Pl = 7% plmn) (5.4)
where
(a,@rg’”)w:mk:u =1 (5.5)

[ this is inspired by ') = —jw/D + k? in free theory ]

In the same way we define

F(173)

up = — (I (5.6)

)wizo,ki(x,u

This suggest that we therefore define

1 I 1)> 1
— =+ — S = 2.7
Dgr ( O(—iw) weohep  “0Do 5:7)

The statement of renormalisability of the dynamic theory is that all response
functions F%ﬂ’") are finite as A — oo when expressed in terms of ur and Dg.

Let us focus on T'WY = Zgr(®)
FS{LI) (wa ka ‘DRJ UR, :U’) = ZS(U’RJ K, A)F(l,l) (M, k; D07 Uy, A) (58)

Since 'Y does not depend on p, we can write

G,
(“a_> Z;' T = ¢ (5.9)
/J/ ’LLO,A,DO

26



We define
gr = Upp”© (5.10)
~
dimensionless

and can rewrite it

0 0 o, _ 0Dr 0 (1,1)
— — 4 Zeu— (23" — |y = 11
i T BlaR) Gt Zsg (Z57) + i 8DR] =0 (511
where as usual 5
= | u— 12
B(gr) (uaﬂgfz)um (5.12)

We define now

vs(gr) = <+Z_S/JJ@ZS>
B 19
Yo(9r) = <+—N8_MDR>

= ——u—27p (5.13)
1

For simplicity suppose gr = ¢* = O(¢) and 5(g*) = 0.

We then have

0 N e
Moy ~ s+ D MR (5.14)

Now we have to use a version of dimensional analysis :

'k w
T (W, k, D, p) = 2@ | = 1
R (wa ka Rap“) K -Ma Dsz (5 5)
From this we see that DrOr = —w0,, and pd,, + ko = 2 — 2wd,,, so
AT vE— (247 )w3 Y (w, k) =0 (5.16)
ok s D7 ’ '

w

IO (w, k) = K25 T

(5.17)

which is dynamic scaling, with n =7, 2 =2 + v},
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5.1.1 Lowest order calculation

Notice there are no 1-loop corrections to Z; or Zr since the only diagram is

H—Q(w;(ﬂ

which, after truncating the external lines, is independent of w and q.
To one loop, then, we have only the renormalisation of wu

(05 14/3) g3
(05 ) g (05 14/3) qo

(05 11/3) @1

G2

(—up)? x 3x 3 x2x (2/T)

The one-loop diagram is therefore

,32 .22 / dk 1 1
(2m)? —i0 + k2 + (q1 + g2 — k)? —i0 + k2 + k2

(5.18)
This is log-divergent in d = 4 as expected : in 4 — € dimensions the integral

gives
1 22
4 (2m)*

= E + 0(1)} (5.19)
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Thus

up = g — Sl 2 1, O(ud) (5.20)
=70 0 (2m)t € 0 '
——
=Ky
K
gr = U € (1 — 32?411,0/1_5 + - > (5.21)
_ agR _ —€ 2 —€
Blgr) = "o = —€gr T uop " - 3 Kyuop”" 4 - -
uo
= —egr + 3 Kugp + -+ (5.22)
* € 2

Problem : Check this is the same as in static theory. NB factor of 6 in the
definition of wy.

Now let’s calculate Zp :

0 0

Z-'=D Y — 7. py—— 70D 5.24
D Po(—iw) F O(—iw) (5.24)
F(171) — —_7/(,{) _|_ q2 — < + .
Dy ~—
NB
L —iw o 2/ 11
- = —32.9.(— dkydky— — .
Do +q (—up) 1 Qk%kg
1
S (5.25)

—iw/Dy + k2 + k2 + (q — k1 — ko)
so that

11 !
k2 k3 [k + k3 + (¢ — ky — ky)?]

Z‘I:Zs[1+32-2-u§/dk1dk2 R

(5.26)
at ¢ = u.

Problem : Show that this integral gives us p 2 K74
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We then have

Yo = —7s + 3% -2 udpu K7 - 24 (5.27)
and since )
€
f=p=— + O 5.28
=n= o+ 06 (5.28)
this gives finally
z=2+0.0135¢% + - - - (5.29)

Note 1 : We chose Z; = Z; but in principle we could shuffle these factors
around : e.g. choose Z; = 1. In other theories, we may well choose to do
this.

Note 2: We can also get the renormalisation of I' by looking at the correlation
function (SS), which to lowest order is given by

(w; q)

2/
(—w; —q)

equal times

which gives the integral

2 [dw 1 1
"~ Dy J 2mi —iw/Dy+ q? +iw/Dy + 2
1
= ? as expected (5.30)
[
|
[ or by cutting -2 m ]

The 2-loop correction to this is :
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Problem : Check that this gives the symmetrised version of the previous integral.

5.2 Renormalisation of model B

Model B corresponds to a conserved order parameter, as appropriate to a
binary fluid (ignoring however hydrodynamic effects !)

In this case, ‘
§=D'V? (=V?S + 1S + upS*) +¢ (5.31)

where

(C(z,t)¢(a', 1)) = —2D'V*6 D (x — 2/)6(t — 1) (5.32)

Thus the differences from model A are :

—— . .
1. The bare propagator is  (w;q) = (*D_l;u (P + 7“0))
(w3 q)
2. The vertex = —upq?
—q
: ~ 22
3. The noise q = o4

Dimensional analysis goes through in the same way for the '™ so in prin-
1

. (1,1) ,1) . .. .
ciple, T(tD), 6F6q2 , g(r_iw) and I'™3) show primitive divergences.

But ! : The factor ¢? in the vertex makes a big difference. In fact, if we look
at the renormalisation of (SS) again, we have

(SS) = [qz + (¢*)*up x some integral + - - } (5.33)

(g% + o)
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Since uy is dimensionless at d = 4, this integral cannot be divergent !
Problem : check that this is indeed true.
As a result, then, Z,' = Zg and vp = —vs. So,

z2=2-n to all orders in € (5.34)

Check : ford=1,np=—1 (why ?) and 2 =3 = OK.
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Chapter 6

More realistic models

It turns out to be almost impossible to find real physical systems accurately
described by models A or B. This is because in real systems, there are other
slow modes which interact with the order parameter modes. They do not
affect the statics, but may have a dramatic effect on the dynamics.

Two examples :

1. Effect of slow heat conduction

Since equilibration occurs via contact with a heat bath (= phonons), and
they diffuse as well as the spin modes, we should include these phonons. The
effective hamiltonian has the form

1 1 1 1 1
. d,. (L 2 , Lt o2 1 4, L 2 1 2
H= /d T <2(VS) + 27"05 + 4u05 + 2p + 2gpS> (6.1)

where

e p is the energy density of phonons, in units where heat capacity = 1.

e g is the coupling between the phonons and the spin degrees of freedom.

We can ignore terms like (Vp)? since p is not critical itself.

For the statics, p makes no difference, since
1 1
/dp exp (—5/}2 + 59/}52) X exp (9254/8) (6.2)

which simply shifts u ( This corresponds to the diagram> < )
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For the dynamics, we have

- OH
— _p2*t :
S 59 +¢ (6.3)
p = —l—D'VZ(;—% +7 (since pis conserved)
p
1
= D'V? <p + 5952> +1n (6.4)

showing how the energy of the spin degrees of freedom drives heat conduction.

In the same way,
§ = =D (V28 + 7108 +uoS* + gpS) +¢ (6.5)

showing that p acts like a local variation of 7.

From these we also see that [gp] = [uo][S?] = [uo][p]/[g], so [¢%] = [uo] and ¢
is also dimensionless in d = 4.

Problem : Draw diagrams which renormalise ¢ and uy to 1-loop. Is D renor-
malised now at 1-loop ?

2. Isotropic ferromagnet

As well as relaxational modes, there may also be organised motion in the
system which corresponds to "real” dynamics.

For example in a Heisenberg ferromagnet, the local magnetization S (x,t) will
precess in the local field B according to

Sx§x B (6.6)

Such precession may be deduced from the quantum equations of motion
and will not disappear on coarse-graining. The local field B depends on

S(2',t) for 2’ near x, hence to lowest order in derivatives, in may be written
B o S+ constV2S + ---. Since S x S =0, we find a term

§ =S x V2§ + model B terms + noise (6.7)

Note that such so-called reversible terms do not spoil FDT or the approach
to the equilibrium distribution :
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(6(S — Sp)) = P[S,] ox 1%l

<6(S — SO)> = Z_l /D56(S . So)e—H(S)

d
dt

)
_ d —H(S)
= /d xSy (—556 )
. OH
_ d
= /d x <SO—6SO>

OH OH
(o5 +e) i) =

If we add the term S x V2S5, we have

/d% <(§ x V2 “)(;—7;>

which vanishes by symmetry.

S=5So

For model A, this is

By looking at the model B terms —D'V*S — D'V?ryS + - -

[)\/DI] — k2[s]71 _ k37d/2
so that A\/D’ is relevant when d < 6 !

Scaling suggests that since S = \S x V23 :

d—2+n

[w] = [¥*)[S] = [K*]k =

d+2—n
z2=——"
2
which is true to all orders due to a Ward identity.
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(6.11)

(6.12)

-, we see that

(6.13)

(6.14)

(6.15)



Part 11

Non-equilibrium phase
transitions
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Chapter 7

Introduction

In the case of critical dynamics near equilibrium, we were guided by the
principles of detailed balance, Einstein relations, FDT, etc. to a form of the
Langevin equation which was largely dictated. But for systems driven (or
relaxing) far from equilibrium, this is no longer valid.

For simplicity, we shall consider only stochastic particle systems (e.g. reaction-
diffusion models, simple fluids, etc.)

As a very simple example, consider the reaction-diffusion model where a
single species of particles A do random walks on a lattice and, whenever
they meet on the same site, undergo the reaction A+ A — ()(inert) at rate A.
(we allow multiple occupation : if the mean density is small, this is unlikely
anyway).

For this process, we might write down the rate equation for the mean density
n(z,t) :

0
a—TtL = DV*n —2\n? (7.1)

where

e D is the diffusion coefficient of the A particles on the lattice.

2) is the probability of finding 2 particles on the same site.

o 1/
In the spirit of the mean-field approximation, we might write
n® =~ n? (7.2)
in which case equation (7.1) is easy to solve :

n(t)

o

= 7.3
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in the homogeneous case. Note that as ¢t — oo, n(t) ~ (M\)~! independently
of ng but not of \.

Approximation (7.2) is valid as long as the fluctuations n(®) — (n)? are small.
These are caused by particles having been in the same region of space at
some previous time, and are given to lowest order by the diagram

k
(z;t) «<g>e (2';1')
ft>tl ddl‘ldt, kl X f % ﬁ

For d > 2, this is finite (with some UV cut-off o (lattice spacing)™') but for
d < 2 it diverges., due to the recurrence property of simple random walks.
We might hope to account for such effects by adding a noise term, as in
equilibrium problems :

i = DV?n —2\n* + ¢ (7.4)

but we have no obvious way of fixing the correlations. As we shall see, (7.4),
at least taken literally, is simply wrong.

Instead, we will adopt a different approach, summarized by the following flow
chart :

Master eqn — ”Second- — Path integral
quantised”
version

!

Analyse using — Continuum — interpretation
field-th. RG limit as Langevin
eqn

We will initially consider the reaction A+A — () for simplicity, and generalise
later.
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Chapter 8

Field-theoretic representation
of the master equation

8.1 Basic principles

As stated before, the master equation has the form :

) S ByouP(8) - X RupPla) (5.1
B B

On a lattice £, the microstates a are the occupation numbers {n} = {n, no, ...}
of each site. Equation (8.1) is like the Schrédinger equation for a many-body
wave function in that it is

1. linear in the P(«)
2. first-order in 0/0t

This suggests a ”second-quantised” formalism :

e Define
p(ny,ng,...;t) = P({n},1) (8.2)

e Introduce annihilation & creation operators {a;, a }ic, with [a;, a}] = 1.
e Define the |0) state as satisfying a;|0) = 0 Vi
e Define now |¥(t)) = ¥ p({n}, t)a™al™...|0)

{ni}

Then the master equation is completely equivalent to the Schrodinger-like

equation ;
1Y) = —H[¥(®) (8.3)
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where H is an operator depending on the a’s & a'’s only.

Let’s now work towards this result with a couple of examples :

8.2 Example a : Simple hopping

Consider just 2 sites (1,2) and hopping 1 — 2 at rate D. The master equation
is :
dP(TLl, 7’1,2)
dt

Notice that the actual rates are proportional to n;, since each particle may
hop independently. [We could modify this if we wanted.]

= D(’I’Ll + 1)P(n1 + 1, No — 1) — Dan(nl, ’I'Lg) (84)

Defining |¥) = ¥ al™alP(ny,ns)|0) we get :

ni,ng
o) _ DY [P(ni+1,n—1)(ny+1)—P ™m0
- 1 y 2 ny +1) (n1, n2)n1] a1 ay"?|0)
_ o T f(ri+1) f(n2—1)1n\
= D> P(ni+1,ny — 1)abaia; a, |0)
D Y P(ny,ns)alaal™a3?|0) (8.5)
= D(aba, — ala))|®) (8.6)
((using a; <> 8/dal). So in this case,
= —D(aba, — alay) (8.7)
Note that as well as the obvious & intuitive hopping term agal, we have a

term —aﬂ;al which ensures probability conservation.

If we consider also hopping 2 — 1 at the same rate, we have :

H = —D(ala, —dla, +alay — alay)
= D(a} —al)(az — ay) (8.8)

8.3 Example b : Simple annihilation at a sin-
gle site

Here the master equation is :

%in) = A(n+2)(n+1)P(n+2) — An(n —1)P(n) (8.9)
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[¥) =3 P(n)a™|0) (8.10)

n

|
% = A (n+2)(n+1)P(n+2)a™|0) — Z (n — 1)P(n)a™|0)
= A P(n+2)a*a™)0) — A" P(n)aa*a™|0) (8.11)
S0
H = —\(a* — a'%a?) (8.12)

Once again, as well as the obvious term proportional to a?, there is another
diagonal term in H.
Putting these together for our lattice model, we obtain :

H=DY (af —al)(a; )\Z al’a?) (8.13)
(i)

8.4 Aspects of this formalism which differ from
ordinary many-body QM :
1. No 74" in the Schrodinger equation — like ”euclidean” QM.

2. H is not (necessarily) hermitian.
Problem : Show that if the rates satisfy detailed balance, then H may be
made symmetric & real by a similarity transformation.

3. Most important : expectation values of observables A(ny,no,...) are
NOT (W(t)|A|W¥(t)) since this would be bilinear in the p({n;})

Instead, we have :

A = > p(ni,ng,...)A(ng, ny, ...

{n:}
= <0|eZ “A(ni,ng,...) > p(ni, n2)a 1agm...|0>
{n:}
= (Wo|A[(2))
= (WolAe "W (0)) (8.14)

where (W,| = (0] %

[Proof: use [e?,al] = [e“, _a%] =e¢® and (0]a" = 0. ]

41



An immediate corollary of this is a condition that H conserves probability :

1=1=(Wole "|w(0)) (8.15)
(Wo|H =0
and  (U,|0(0)) =1 (8.16)

Since (Wolal = 1 this is equivalent to the condition that H vanishes if we
formally set each ag to 1.

This factor of e2=i may or may not be a problem, depending on the nature
of A(ny,ng,...).

If we are interested in exclusive probabilities, e.g. the probability that there
is exactly 1 particle at site 1 and zero particles elsewhere, then

A= 5aJ{a1,1 H 5afaj,0 (817)
7

and the factor (0[e2=i% becomes simply (0]a; .
If, however, we are interested in inclusive probabilities, e.g. the average
number of particles at site 1 irrespective of other sites, we need

(0leXi %alare W (0)) = (0]eX: “a e[ (0)) (8.18)
In this case, it is easier to commute the factor 2o v through, using
eal = (a' +1)e” (8.19)

so to get B

(0]ase HUa"+1aD1 G (0)) (8.2
where H({a' + 1,a}) may be called a ”shifted” hamiltonian and |¥(0)) =
e2i %W (0)).

In our case, the shifted hamiltonian is

=)
~—

H = DZ(a}L — a})(ai —a;) + A Z (Qa}Laz2 + a?a?) (8.21)
For an initial state, a suitable choice is
T(0) = e m0e™ i |0) (8.22)

corresponding to a Poisson distribution p(n,0) = e*”‘)%{f at each site.
In this case, |\if(0)> — o X0 0).
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Chapter 9

Path integral representation

Once again, for simplicity, consider a single site.
We want to evaluate e *. We write this as a product :

e = lim (1— HAt)YA = (1 — HAt)- (1 — HAt) - - (9.1)

At—0

t/ At factors

Into each time slice, we insert a complete set of coherent states :
[ ooy ole

- / WA w0 3 0L at o) 0l 9.2

In!
mn T

Terms with m # n give zero on integrating over the phase of ¢. Letting
6] = p, we get

_ /depepZ[ nji|o><0|f

aTn a®
= Z 10)(0 =1
Vn! \/_
(9.3)
Between each slice, we have :
(0]e? (4011 AtH) a*|o> =
= IR _ Ap(0]e? D H e |0) + O((At)?)
e?" (tHANG(Y)  —ALH(¢",¢) (’)((At) ) (9.4)

where H(¢*, ¢) is obtained by replacing a — ¢, a’ — ¢*.
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The remaining terms are

[ e? (Hanem-ottranstran oo Jdte o (9.5)

so we get, in the limit At — 0, a functional integral (generalising to d # 0)

/D¢*D¢ o [ dtd%e £(67,9) (9.6)

where
/ L% = / ' O+ H (4", b) (9.7)
L= 4§09+ D(V6") (V) — A(§ — 626 (0.8)

or, before taking the continuum limit,

L=¢:00;+ D> (6] — ) — d) — AD_ (87 — 61%07)  (9.9)
j (i5) ¢

Note that we do not need to coarse-grain to get a field theory on the lattice.

In the same way, we can show that the following factors go over respectively
into :

eit oy 2
emXial oy XY (9.10)

We can get rid of the first term by shifting
¢ =1+ 0, (9.11)
The extra term e~ J #99i integrates up to cancel % .

Similarly, observables like A(n;) give A(¢;¢;) and so on.
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Chapter 10

Interpretation as a Langevin
equation

For simplicity, let us write the continuum form, with the shift :
exp { = [ ddls (60,0 + D(VE)(V6) + 2667 + A5} (10.1)

where the D(V)(V@) term can be integrated by parts to give —D¢V2¢ +
surface term.

This looks very like the response function formalism we discussed earlier. We
can undo the quadratic ¢? term by writing

exp {—)\/dtddx ¢32¢2} = [ D¢ exp {atats 6} P(C) (10.2)
where P() is the ”probability distribution” for the "noise” (.

The action is now linear in ¢ and we can integrate it out to obtain a Langevin

equation :
Oup = DV?p — 20¢* + ( (10.3)

If we neglect (, we recognise this as the rate equation we wrote earlier, if we
interpret ¢ as the average density. In fact this is so, at this level, because

afa = (0|e“a’alV) — (4) (10.4)

where (---) denotes the average with respect to the weight e=5.

But, if we are careful with the signs, we see that

(C(z, )¢ (2", 1)) = —20¢* (w,1)0%(x — 2")6(t — ') (10.5)
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The appearance of ¢? makes sense : if there are no particles, there is no
noise. But the sign means that ( is pure imaginary !

How can this be ? The answer is that although (¢) is the average density,
¢(z,t) is NOT the density. In fact,

n? = (0]e"(a'a)?|¥) = (0l (a® + a)|¥) — (¢ + ¢?) (10.6)

It is easy to check (Problem) that if all the higher cumulants ($?) — (¢)?
etc. of ¢ vanish, as would be true in the absence of loops in our field the-
ory, then the actual density n would have a Poisson distribution, as expected.

Another reason why ( is imaginary can be seen by studying the equal-time
density-density correlation function

n(z, t)yn(x’, t') = (¢p(z, t)p(’,¢"))  for x # 2 (10.7)

The lowest order diagram is

¢

€9,

which is negative. So particles are anti-correlated. This makes sense : there
is a deficit of particles in the neighbourhood of a given one, since any particles
nearby have been ”"swept up”.
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Chapter 11

Field theory and RG analysis of
A+A— 0

It turns out that this is a very simple field theory to analyse. Let us work in
the shifted theory :

S = / d'edt [$[0i6] + Do(V) (V) + 2X066” + o] (11.1)

We can either write this as a stochastic equation :
¢ = DoV?p — 2X0¢* + ¢ (11.2)
with (C(z,t)C(2', 1)) = —2Xgp20%(x — 2')5(t — t') and proceed as earlier, or

we can write down the Feynman rules by inspection.

The bare propagator, from the é -- ¢ terms, is

(w; §) _ 1

— = TiwtDog?

[ Note that we now write this instead of because

S

—iw/D0+q2

1. The static limit (w # 0) does not correspond to equilibrium statistical
mechanics.

2. The coefficient of —iw being unity means that particle number is con-
served in the absence of reactions.

—4)
—4)
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There is an immediate simplification : there are no loop corrections to G
SO :

Y = —jw + Dyg? (11.3)

which implies
Zy=Zy;=1 , Zp=1 (11.4)

The only diagrams renormalising the vertices are :

KX

These have a simple physical interpretation : : gives the probability
of annihilating given that particles have not annihilated in the past.

In principle, we could treat the couplings

. ; ><_4)\61)
4\

as different, in which case we would find

_ 1 _d% 1
[ <:> —w =3/ 2m)? Ziwt2Dk? ]

)\(1)
1
Y e sdk : (11.5)
L+ 5= | oo —mrope
)\(2)
A2 = . (11.6)

N 4>\f) dik 1
L+ 2 f (2m)¢ —iw+2Dk?
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@)
where the 2’s at the denominator of % are factors coming from symmetry.

Note that we have to define A\g at w # 0, otherwise we would have an IR
divergence for d < 2. This is different from previous case where we could
always renormalise in static limit.

Note also that if )\(()1) = )\(()2), then )\g) = )\g). This is a consequence of
probability conservation, (0]e2=:®H (unshifted) = 0.

Problem : Consider the processes A+ A % ) and A+ A 2 A, and show that
the resulting action can be brought to our form by a suitable transformation of
the fields ¢, ¢.

We define A\g at —iw = Dp? (since D is unrenormalised this is Dg). The
integral now gives

o d/2
dj. ,—2Dak?—Dap® _ —Dap?
/dke o= do/da <2Da> e T
1 T d/2
= — 1—d/2
G (3) 104
kg p™*
= — 11.7
2¢ D ( )
¢ = 2 — d (note that k4 is regular) and ky = 1/(27).
From the action we see that
(0] = k% = [A]k = k%w = D]k (11.8)
So the dimensionless coupling is
A
g = (11.9)
which gives
(Ao/D)pu
Jr = 1+—¢)‘°M (11.10)
(exact to all orders !)
Hence
O9r 200 kg22p
Blg EM<—> = —egr+ 7
=), O ER e
= —egr + kagy exact! (11.11)
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For d < 2 we therefore find an IR fixed point at ¢}, = €/kq ~ 2me + O(€?).

Let us see how to use this to compute the mean density.

In the bare theory, we have n(t, D, Ay, ng) where ng is the initial density. In
the renormalised theory, this becomes ng(t, Dg, gr, nor, tt)-

But in fact, ng = n since there is no field renormalisation. Similarly, Dr = D,
Nor = Nyo.

This means we can write down an RG equation :

0
(Na—> ng(t, D, gr,no, 1) =0 (11.12)
P/ D xomo
2+[3’( )i ngr(t,D, gr,no,pt) =0 (11.13)
Ha,u 9gr D9n RrR\L, LV, gR, N, 1) = .
Dimensional analysis tells us that
nr(t, D,ng, 1) = p®(p>Dt, nopu %) (11.14)
0 0 0 0
—ng = |d—dngy=— 4+ 2Dt———— 11.1
'uﬁunR ( 1o dny N 8(Dt)> e (11.15)
and 0 1 9, 1 J d
Dt——— + - —— —nyg— + = =0 11.16
[ 300 2 IR g T 2 Fng T 2] n (11.16)

The solution of this is :

ne(t, D, gr,no, 1) = p~ (D)~ np (Dt = =2, ng = (muDt)*"?, g, 1)
(11.17)
where gp(p?Dt) is the running coupling.

As t — 00, gr — g5 = O(e).

Note that if we can ignore the exploding factor ng(u?Dt)%?, we have n o
(Dt)=%2 5o the exponent is exact for d < 2. ( This may be argued on dimen-
sional grounds if n is independent of A\j — but these ignore the possibility of

anomalous dimensions ).

To proceed further, we have to evaluate the RHS of (11.17). Fortunately, we
can do this since g5 = O(€) is small near d = 2.

What we do is consider all the diagrams for ng (or n) at a given order in ny
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o

Ny

+ + + -
) o

To lowest order in gr = O(¢) the diagrams are tree diagrams.

The sum of these gives the rate equation result. Thus

ng (Dt = p=2,no (2 Dt)*?, e/ky, 1) =
ng(,u2Dt)d/2
1+ QDMéng(ﬁDt)d/ZD%ﬂ

+  higher ordersin e  (11.18)

As t — oo, we see that indeed ng(p2Dt)%? drops out and

1 k
nr(t, D,no, gr, 1) ~ Wudﬁef +  higher orders (11.19)

The p-dependence disappears as it must.

It takes further work to convince oneself that ny drops out to all orders in ¢,

and that
A

where the amplitude A is universal and depends only on e.

To lowest order : 1
A= — + 1 11.21

Problem : What happens ind =27
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Chapter 12

Conservation laws — The
reaction A+ B — ()

Consider now the case of 2 species which undergo the reaction A + B — ).
For convenience, we suppose they have equal diffusivities, and we begin with
a random but statistically homogeneous mixture of equal densities ng.

The chief difference in this system is that the density ny, — npg is locally
conserved. We might expect this to slow the reaction as in model B. But if
we write down the hamiltonian :

H = Huif fusion — A / d[ab — a'btab) (12.1)

we see that [A\] = k2%, so apparently d. = 2 as before.
For d > 2 we expect the rate equations :

= DV?a— \ab
b = DV? — \ab (12.2)

to be valid. If we look for a solution which is homogeneous, we find a = b
1/(\t) as before.

This is indeed incorrect as it ignores the fluctuations in the nitial state,
which do not disappear asin A + A — 0.

In fact, if we write ¢ = a — b, it satisfies the diffusion equation

i) = DV*y (12.3)

SO

Wz, t) = /dda:’ Golt,z — ') (', 0) (12.4)

If a and b have a random initial distribution, then (z’,0) has a distribution
with ¢(2/,0) = 0 and (2, 0)1) (2", 0) o 216 (2’ — 2").
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Thus 1 (x,t) will have a Gaussian distribution with, in particular :

3 d
Y(x,t)? = 2n0/ddx Go(t,r —2')* = Qno/ (dk o—2Dth?

2m)d
5 1 T\ /2
= 255 (5757)
A
= az (12.5)
Since ¢ (x,t) has a Gaussian distribution o exp(— w(;;;_I;)Q ) we can also compute

(for later use)

[a=b]=T0@ 0] = [dv |¢|e/E)

= @(W)W
2A 1 (2n0) '/ 1
- \/7#1/4 T 72(8m) WA (Dt)d/t (12.6)

Note that for d < 4 this is slower that 1/t, indicating that it is not possible
that

1/t (12.7)

~ b~
This means that locally, either a( ) < b(x) or vice-versa, i.e. there is segre-
gation.
Then | @ — b |= max (a, b), so
1

%| B (12.8)
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Chapter 13

Directed percolation

In the previous example, the steady-state was trivial (but the approach to it
exhibited interesting universal behaviour).
In order to get a non-trivial steady-state, we need branching processes as well.

Examples are provided by epidemic processes : consider a lattice where sites
may be infected (i.e. occupied by a particle A) or not infected (not occupied).
We shall allow multiple occupation, but since the interesting behaviour occurs
when the probability of occupation is small, this does not matter.

A given site is occupied (infected) at time ¢ + At if it or its neighbours were
infected at time ¢, but only with some probability. The disease may just die
out locally. Thus the hamiltonian has the form

H=- (af —1)F(ala;, > a}aj) (13.1)

3 jn.n.i

where the —1 ensures conservation of probability.
A simple form to take for F'is

2
F = )\1 ZCL;[CLJ' - )\2 (Z CL}CLJ') (132)
J J

where the sum is over all neighbours including ¢. We expect A\; > 0 and
A2 > 0 — this is because 7 can be infected only once in At.

If we now let a} = 1+ @, (i.e. make the shift) we find a variety of terms, all
proportional to @;. We get an effective diffusion term @;a; proportional to A
and terms proportional to —\aa, —a%a and +aa® (where we have been care-
ful to keep track of the signs). All other terms are later shown to be irrelevant.
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Going straight to the field theory, the action is :

S = / dtd% (30,6 + DoV IV S + 1o + 1106 — usd?d] (13.3)

where

ro X —A1 <0
up >0 ,  Ug > 0 (134)

If we rewrite this as a stochastic equation, we find
b= DyV2h+ Mp — u1d® + ¢ (13.5)

where

(C(z,1)C(a", 1)) o< uppd D (z — 2)o(t — 1) (13.6)
Ignoring the noise, we see that there are two possible steady-states :

e (¢) = 0 : the inactive or absorbing state (if the system starts here, it
stays here).

e (¢) = —ry/uy : the active state.

In the rate equation approximation, the latter state is the dynamically stable
one for all 7y < 0 (i.e. Ay > 0). But, once the fluctuations are included, there
is a non-trivial critical value of r¢. < 0.

This action is therefore very general and describes a dynamic transition from
an inactive state (with no fluctuations) to an active state (with fluctuations)
as a function of a control parameter. For historical reasons, it is called the
directed percolation ("DP”) universality class.

In DP, "time” is a discrete space dimension, usually on a lattice (see Fig.
13.1).

It is usual to rescale the fields ¢ & ¢ so that the coefficients of ¢¢? and —p?¢
are equal. Thus

- - ~ 1 - 1 -
S = [ dtd's (06 + DyV OV + b + Suedd’ — Swd'e]  (13.7)
In this form, the theory has a remarkable time-reversal symmetry under
t— —t, ¢ - —¢, @ - —¢. This implies that the renormalised versions of

these two couplings will be equal.

The Feynman rules for this theory are quite simple :
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Figure 13.1: (¢, ) is occupied with prob. p if either of (¢,z — 1),(¢,x + 1) is
occupied — directed site percolation.

1
—iw+Dog?+ro

Vertices : : :

Now, however, there are corrections to the propagator <_C>‘

To 1-loop :

Propagator :

1 1

POD = iw 4 Dod® 4 o — (— —/dk
o Dog” o = (=) (wo) 5 [ Ak e Bt — R T 2o
4. (13.8)

where now [ dk stands for [ d%/(2m).
Notice that the loop corrections act to make rip > ry so that at the critical
point where rg = 0, ro. < 0 as advertised.

Power counting : [¢¢] = k% as usual. Because of the symmetry we choose
(] = [¢] = k¥2. Then [ug)k®¥? = k%w = k¥2[Dy), so [ug/Dy] = k*~%? so
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that the upper critical dimension is d. = 4.

If we study the vertex functions I'™™ we find in d = 4 that

V)= [Dolk? , [P02] = [[@D] = [Dy]#° (13.9)
so we have to regularise the following quantities : (mass(ro) renormalisation
assumed done) : (D), %, INCDN g(r(l D oand T2 = @1

Because of the form of the bare propagator (—iw + Dyg? rather than _D—";’ +q?
), we demand :

1,1
1. (%F% ))NP =1 to define Z, = Z;

iw)

2. (ZTR"), = Dr=Z5'Dy

dq
_ (1,2) _ (121D
3. ur = (_FR )NP - (FR )NP
S0
Z—lzip(l,l) — _u_% dk
o) 2 ) \D# +Dola =07
up\211 272 e )
= 1—-|—=) == 13.1
<D0> 24 (2m) € +Olu) (13.10)
0
Dy = Z¢%F(“)
dk
= Z,|Dy+ 2 TR
¢[ ‘ 2 aq Dy(k + Q) +D0(k_%Q)2] P
u? 1 dk
= ZyDy |1 -2 + -
up\2111 272
= ZyDp|1— () 22T 13.11
¢ Ol <D0> 224 (2m)" € (13.11)

q1 q1
I = : + : + :
q2 q2
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dk
[Dok? + Do(q1 — k)?|[Dok? + Do(q1 + g2 — k)?]

= —ug+ (—u0)2uo/

+ (q1 <> q2) term

—€

uy 1 27° p

oMl 13.12
to D34 (2m)* € ( )
1,2 3/2
ug = —Iy? = — 2312 (13.13)
Finally, the dimensionless coupling is
gr = (ur/Dr)p"*
B (UO/DO)M_€/2[1 _ %K4 (UO/DS)ZIFE]
[1 N %K4 (uo/Dte))zH_E][l _ 1_16K4 (uo/Dg)Zu_E 4 .. ]
3 D 2, —€
= (uo/ Doyt — Sie, WP (13.14)
—¢ 3 3 5
Blgr) = S 9rT §K49R + O(gr) (13.15)
As usual, we have a non-trivial IR fixed point, this time with
4
9 = 56 T (13.16)
1 D 2,,—€ 1 D 2,,—€
2 = (14 L, /Dol n=e\ (1 1 o (uo/Do)"p™* (13.17)
8 € 16 €
SO
R O S (13.18)
LA Tt BT '
1 D 2,,—€
Zy=1+ §K4M 4o (13.19)
1 2
Yo = —gKagi + - (13.20)
13.0.1 Scaling behaviour
[ <3> z;'rh = (13.21)
R = :
01t ) o pyoe

28



0 1 0 0 0Dp 0

- _Z F(171)
on " 7" o ¢+B(9R)89R+u on 9Dy
N———— N—————
¢ _’YDDR%
0 0

Vo M(‘)u NZg YD Mau nzp

At the fixed point :
0 0 (1,1)
— = —vpDp=— T3 =0
/’Lalu 7({) D RaDR] R

13.0.2 Dimensional analysis

k
Tyt = Drp*® l = l

1’ (Drk?)
SO
0 0
= 1-w=
DR@DR waw
0 0 0
il ) S Y
“on T ok “ow
Hence 5 5
. _*_2 * _F(l,l):
k8k+2 o (+7D)waw] R 0

9% * w
FY(w, k) = k> %0 @ <k2+72>>

and we end up with dynamic scaling again.

=0

(13.22)

(13.23)

(13.24)

(13.25)

(13.26)

(13.27)

(13.28)

(13.29)

As k — 0 we expect 5D (w,0) ~ w'™7%/H5) implying that the density of
infected sites decays as [ dw e TMD-1 ~ ¢7%/ZH7b) and that the dynamic

exponent takes the value
2=2+7p

13.0.3 Away from the critical point

(13.30)

In DP we have a control parameter ry, like a bare mass. There is another
critical exponent associated with this, which may be found by studying the
renormalisation of the composite operator ¢¢. The 1-loop diagram is
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Denoting Ay =| ro — ro. | we find the scaling behaviour

T3 (w, b, Ag) = K2 %700 (w/k?, k/AY) (13.31)
which may be rewritten in various other ways, e.g. w/ AS”ZQVL.

For 79 > e, GV decays exponentially like e~%/7 with 7 oc A, .

For ry < rg., starting from a single infected site we go to a finite density in
the active state. In that case

GOt 2) =% p(| Ao |) (13.32)

Replacing now G and p by their complete expressions, we get

d =245 +7 w k VH+dVJ_*(2*’Y*7"/* Wi
/dwdkk 4 D®<|A0|V”7|A0|VL> X |A0| o p

= | A |(d+"/;3)u

= A )P (13.33)

defining the ”order parameter” exponent [3.
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Chapter 14

The Kardar-Parisi-Zhang
equation

This was originally formulated as a model of a growing interface, but it can
also be mapped to :

e the "noisy” Burgers equation in hydrodynamics.
e directed polymers in a random medium.

Consider an Ising model below T, with an interface between 1 and | phases.
We use a continuus spin S = S(Z, z)

H = / [%(vsﬁ + V(8)] d%dz (14.1)

The position of the interface is z = h(Z).
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In equilibrium we find a flat solution h = const, S = f(z — h) by minimising
H, so

f(2) =V(f(2)) (14.2)
Let this solution be f(-).
When the interface fluctuates, we assume that its profile does not vary, only
its position and angle. So we write :

S(@, z,t) = f (%) (14.3)
1+ (V_0h)?

where V| is the derivative in the Z-directions (note that d is now the number

of transverse dimensions).

We now add a magnetic field : H — H + p [ S d%dz which will drive the

interface (i.e. make it move in the z-direction), and write down model A :
0*S

S=D (ﬁ + VIS —V'(S) — u) +¢ (14.4)

Inserting the Ansatz (14.3) :

—h (2= (L VR (R
\/f<\/>_D((\ﬁ)2f VAR VA EA “)”

(14.5)
where we have ignored some terms with > 3 derivatives.
The first, third and fourth terms in the brackets cancel, because f satisfies
(14.2.)
We multiply this equation by f’(%) and integrate [*°_dz :

h/f’(u)mu:Dvih/f’(u)2du+Du\//f'(u)du+5 (14.6)

where
o0

C(Tt) = / (T, 2, 0) f'(2) dz (14.7)

Expanding out /- ~ 1+ %(VLhV + -+, we finally obtain an equation of the
form :

. 1
h=v+ EA(VLhY +vVih+1 (14.8)
where v oc Dy, A oc Dy, v oc D and (n(Z, t)n(2, ")) = 2D (Z —F)5(t —t').

We can remove v by going to a moving frame h — h’ = h — vt. This gives
the KPZ equation. Note that we have lost detailed balance — the rhs cannot
be written as —D% + 1.
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14.1 KPZ equation : response function for-
malism

Action : )
/ dtd's [R(h = SA(Vh)? = vV*h) = DI (14.9)

Dimensional analysis :

[hh] = kd, [V] — wk‘Q, [A][iﬂﬂ] _ kd_2w, [D] [ib2] _ kdw, 0
[AzD](iLh)4 — f2d—4, 2pd , [V]3k3d+2

Dimensionless expansion parameter is [\>D/v?] = k>4

de =2

In d > 2 : the non-linearity (Vh)? is irrelevant (for A small).
We are therefore lead to the Edwards-Wilkinson theory :

h=vV2h+¢ (14.10)

(which satisfies the detailed balance condition with D = vkT).

In general :
Dynamic scaling : (h(&,1)h(0,0)) =| & |** & ()

|72

e x>0 = interface rough
e Y <0 = interface smooth
In EW theory, (h(Z,0)h(0,0)) = [ 'Z—?ei‘m o| @ [+ so
Xew =1—4d/2 smooth ford > 2. (14.11)

14.2 Renormalisation for d < 2

Propagator : _g— (hh) = —_iwiyw

G2

Vertex h(Vh)? : T X i 2
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Noise vertex :

1-loop correction to propagator :

k
—k
(w3 q)
q—Fk
L SV 2y [ d%
/ (2m)d (—iw + vk? +v(q — k)?)(2vk?) / k2] (14.13)

Hence 8(_‘9Z.w)F(1’1) is finite in d=2 (but %F(U) is not).
There is therefore no field renormalisation. We should only renormalise
v,D,\.

In addition, there is in fact no renormalisation of A due to Galilean invariance
I i =Vh:

A, e

V(Eu +vVu) + V¢

= @ - V)i + vV + V¢ (14.14)

SR
I

If A= —1, we can take the first term onto the left-hand side, giving

: > D
U+ (0-V)i=— 14.15
@ V=7, (14.15)
is the convective derivative, as for a fluid : this then gives the noisy Burgers
equation (which is the Navier-Stokes equation in the absence of vorticity).
For this, we expect Galilean invariance.

For general A\, we in fact have invariance under

T— T\t |, d—u =u(@+\ot)+0 (14.16)
(where ¥ = const). This reflects the tilt-invariance of the original interface
model.
Since A\ is a parameter in this transformation, it can’t be renormalised !
So we are left with

1 0
= —pu—D
D DRMO/J, R
1 0
L= —p— 14.17
Y VRM&UVR ( )
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as non-trivial renormalisation group functions.

Dimensionless coupling :
2
_ AeDr 4o
Jdr = 3
VR
SO

0
B(gr) = oI = 9r(d —2+vp — 37)
Hence, at any non-trivial fixed point
Yo =31 =2—d

As usual,
2=2+7,

The RG equation for G' = [ d%x e*@==)(h(z,t)h(a’, 1)) is :

0 0 0
[ua + ’ﬁ)Da—D + 7;]/%] G=0 at fixed point
D _ p
- ot
vk? (k)
2 /c2 + 7 |G =0
ak /YD 71/ -
1
G o k2=7pT7
Y, — 7D
=1-=
X SR
Hence
z+x=2

(14.18)

(14.19)

(14.20)

(14.21)

(14.22)

(14.23)

(14.24)

(14.25)

(14.26)

(14.27)

This is a remarkable scaling relation which comes from Galilean invariance

and the lack of field renormalisation.

14.3 Exact exponents for d =1
Edwards-Wilkinson linear theory satisfies detailed balance :

h = vV2h+ (¢ (CC) =2D3(.)d(.)

— —y% [/%(Vh,)Qddx] +¢
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Equilibrium distribution :

P[h]zexp( M{QH / (Vh)? d%) (14.29)

where kTys = D/v.
In d = 1, adding the non-linearity does not affect this !

Plholeq = (6(h — ho(x,1))) = / Dhés(h — ho(z, 1)) exp(—Heg[h])  (14.30)

d
—Plh] = —/Dh }j(s’h ho(z, £))ho [T 6(h — ho) exp(—Hen)
&' £x

: 6%
- _ d _ eff _
/d x /’Dhéf(h ho)ho < 5h >h . exp( Heg)

- /dd A(VR)2V2hY + - (14.31)

In general, this is non-zero, but in d =1

on\* (o*h\ 10 |[on)’
bl === 14.32
(833) <8x2> 3 0x [<8x> ] ( )
giving a total derivative which integrates to zero.
We know the steady-state for d =1 = FDT = ~}, = v, giving

2=3/2 , x=1/2 (14.33)

The interface is rough !

14.4 D