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Chapter 1Introdu
tionIn this 
ourse, we shall be 
on
erned with the time-dependent behaviour ofsystems 
lose to a 
riti
al point. These may be equilibrium (or 
lose to equi-librium) systems, or systems maintained in/
lose to some steady-state whi
his not equilibrium, by some driving for
e.These will be the two main parts of the 
ourse. However, it will emerge thatmany of the s
aling properties of su
h systems are similar, whether or notthey are in equilibrium. As a result, the most e�e
tive way of understand-ing these, the renormalisation group (RG) and dynami
 �eld theory are verysimilar.We shall restri
t ourselves to systems at �nite temperature, whi
h turnsout to mean that, in the 
riti
al region, the thermal 
u
tuations are moreimportant than the quantum ones. Thus, the system is in 
onta
t with aheat bath whi
h, in the absen
e of driving for
e, will produ
e dissipationand relaxation toward equilibrium.Hen
e, the e�e
tive equations of motion we shall use have a dire
tion of timebuilt into them. This is not to say that no features of the underlying timereversal invariant dynami
s remain : for example, any 
onservation laws inthe full dynami
s should also be respe
ted by the e�e
tive equations.Conservation laws ! slow modes! a�e
t long-time dependen
e (!; k! 0).Note that there are other me
hanisms for produ
ing slow modes, e.g. Gold-stone bosons, whi
h arise from the spontaneous breaking of a 
ontinuoussymmetry.
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Chapter 2Basi
 Prin
iplesIn dynami
 
riti
al behaviour, there are di�erent kinds of observable quanti-ties. Consider a magneti
 system with s(r; t) being the lo
al, time-dependentmagnetisation.2.1 Correlation fun
tionsC(r � r0; t� t0) � hs(r; t)s(r0; t0)i (2.1)(in equilibrium) wherehs(r; t)s(r0; t0)i � limT!1 12T Z +T�T dt00 s(r; t+ t00)s(r0; t0 + t00) (2.2)hs(r; t)s(r0; t0)i is the stati
 
orrelation fun
tion, and may be 
al
ulated bythe usual equilibrium statisti
al me
hani
s formula :hs(r; t)s(r0; t)i = 1ZTr ns(r)s(r0)e��Ho (2.3)2.2 Response fun
tionsWe may add a time-varying �eld h(r; t) (H �! H�Pr h(r; t)s(r; t)) whi
h
ouples to s(r; t) in the hamiltonian, and measure the response hs(r; t)i. Thelinear response must have the formhs(r; t)i = Z G(r � r0; t� t0)h(r0; t0) ddr0dt0 (2.4)whi
h de�nes G. Note that G = 0 if t < t0 by 
ausality.
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2.3 Flu
tuation-dissipation relationC and G are related byC(t� t0) = kBT Z t0�1G(t� t00)dt00 (t > t0) (2.5)Let us see where this 
omes from for an Ising system in whi
h s(t) = �1 (wesuppress the r-dependen
e for 
larity). We have in equilibrium :hs(t)s(t0)i = 12hs(t)is(t0)=+1 � 12hs(t)is(t0)=�1 (2.6)where hs(t)is(t0)=+1 means then 
onditional expe
tation value of s(t), in
lud-ing only those histories when s(t0) = +1.Now imagine swit
hing on a small �eld h at t = �1 and swit
hing it o� att = t0. At that point the system will be in equilibrium in the presen
e of the�eld h, so the probability that s(t0) = �1 is :exp(�h=kBT )2 
osh(h=kBT ) � 12  1� hkBT +O(h2)! (2.7)Hen
ehs(t)i = 12  1 + hkBT ! hs(t)is(t0)=+1 + 12  1� hkBT ! hs(t)is(t0)=�1= h Z t0�1G(t� t00) dt00 (2.8)and (2.5) follows by equating terms O(h) (note that the O(1) terms 
an
elby symmetry).Problem : Show for this simple model that the nonlinear response is also relatedto C(t� t0).The FDT is usually expressed in terms of frequen
y spa
e :~G(!) = Z +1�1 dtG(t)ei!t G(t) = Z +1�1 d!2� ~G(!)e�i!t (2.9)~C(!) = Z +1�1 dt C(t)ei!t C(t) = Z +1�1 d!2� ~C(!)e�i!t (2.10)C 0(t� t0) = kBT [G(t� t0)�G(t0 � t)℄ (2.11)
7



from whi
h we get ~C(r; !) = 2kBT! Im( ~G(r; !)) (2.12)[ NB : This is the �h! 0 limit of the quantum FDT :~C = 2�h 
oth �h!kBT ! Im( ~G) (2.13)whi
h may be derived using Fermi's golden rule (see Landau & Lifshitz).℄The RHS of equations (2.12),(2.13) is related to the dissipation : the energyis proportional to �Pr;r0 s(r)s(r0)Æ(r � r0), thusdE=dt /Xr;r0 hs(r; t) _s(r0; t)iÆ(r � r0)but hs(r; t) _s(r0; t)i � C 0(0) / Z d! Im ~G(!)Thus Im ~G(!) gives the rate of energy dissipation power spe
trum.FDT follows from very general prin
iples, and any e�e
tive des
ription shouldrespe
t it.
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Chapter 3Models of 
riti
al dynami
s
3.1 Master equation3.1.1 De�nitionThis is an equation of motion for the time evolution of the probability P (�; t)of �nding a system in a mi
rostate �. It has the form :ddtP (�; t) =X� R�!�P (�; t)�X� R�!�P (�; t) (3.1)The model determines the rates R�!�.Note that the probability is 
onserved : ddt P� P (�; t) = 0.If this is supposed to des
ribe the relaxation towards equilibrium, the Gibbsdistribution P (�) / exp(�E(�)=kT ) must be a steady-state solution. Thismeans that X� hR�!�e�E(�)=kT �R�!�e�E(�)=kT i = 0 (3.2)This will 
ertainly be satis�ed if the [�℄ = 0 for ea
h � (detailed balan
e
ondition). It requires R�!�R�!� = e�(E(�)�E(�))=kT (3.3)There are many solutions of this 
onstraint, e.g.R�!� / e+ 12 (E(�)�E(�))=kTe+ 12 (E(�)�E(�))=kT + e� 12 (E(�)�E(�))=kT (3.4)
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As T ! 0 we have zero-temperature dynami
s :R�!� = 8><>: 1 if E(�) < E(�)12 if E(�) = E(�)0 if E(�) > E(�) (3.5)Problem : Show that the Metropolis algorithm satis�es detailed balan
e.3.1.2 Example : the Glauber modelAn example of a master equation is given by the Glauber dynami
s for theIsing model : Let us denote s1; s2; ::: the spins and � = fsg the mi
rostates.The allowed transitions �! � 
orrespond to 
ipping a single spin :Rj("!#) Rj(#!") (3.6)These rates will satisfy detailed balan
e ifRj("!#)Rj(#!") = e�hj=kTe+hj=kT (3.7)where hj is the lo
al �eld 
aused by either the applied �eld or the other spins.A solution is to take Rj("!#) = � e�hj=kTe�hj=kT + e+hj=kT (3.8)where � is a rate with dimensions (time)�1.For example, for the one-dimensional Ising model, the allowed lo
al pro
esses,with their respe
tive rates are, in the absen
e of an applied �eld (Hext = 0) :""" ! "#" � exp(�2J=kT )exp(2J=kT )+exp(�2J=kT )"#" ! """ � exp(+2J=kT )exp(2J=kT )+exp(�2J=kT )""# $ "## �Problem : Show that C & G 
al
ulated in the Glauber model satisfy the FDT.10



These pro
esses are more simply understood in terms of domain walls. Thelast pro
esses 
orrespond to random walks, or di�usion of domain walls.Their density � 
hanges by the �rst two pro
esses, and we 
an write :d�dt = �2� e2J=kTe2J=kT + e�2J=kT �2+2� e�2J=kTe2J=kT + e�2J=kT (3.9)Thus at late times, �! �� = e�2J=kT whi
h is just the 
orrelation length ��1in equilibrium.The relaxation time (time for a single spin to 
ip) is � to the time for adomain wall to di�use a 
orrelation length whi
h is of the order of �2. (Notethat this is di�erent from the relaxation time for �, whi
h s
ales like 1=�� � �).3.2 Langevin-type equationThis is a sto
hasti
 di�erential equation designed to generate the requireddistribution. It works better for systems with 
ontinuous degrees of freedom.The prototype is Brownian motion :Consider a Brownian parti
le of unit mass. The equation of motion for thevelo
ity (in 1-d) is : _v(t) = F (t)� �v(t) + �(t) (3.10)with : F (t) = driving for
e�v(t) = fri
tion�(t) = randomnoise due to 
ollisionsThe dissipative term may be written :���v �H = 12v2; the energy� (3.11)The noise is 
orrelated only over times between mi
ros
opi
 
ollisions. Overlonger times, we 
an therefore write :h�(t)�(t0)i = 2DÆ(t� t0) (3.12)
11



where D is a 
onstant. Its value is determined by the requirement that thesteady-state distribution is Maxwellian, i.e. hv2i = kT .Integrating over a time interval dt yields :v(t+ Æt) � (1� �Æt)v(t) + Z t+Ætt �(t0)dt0 (3.13)Note that both terms in the sum are un
orrelated, hen
e :hv2(t + Æt)i � (1� 2�Æt)hv2(t)i+ 2DÆt (3.14)and �nally D = �kT (Einstein relation) (3.15)NB : From the Langevin equation, we 
an also derive the Fokker-Plan
kequation, whi
h des
ribes the time evolution of the probability distributionP (v(t); t).3.3 Models A and B3.3.1 De�nitionThis is the simplest purely relaxational model of an Ising ferromagnet. Wework in redu
ed units, so kT
 = 1; � = D. The redu
ed Landau-Ginzburghamiltonian is : H = Z �12(rS)2 + V (S)� ddx (3.16)where V (S) = 12r0S2 + 14uS4, r0 / T � TMF .Model A is : �tS(x; t) = �D ÆHÆS(x; t) + �(x; t) (3.17)where ÆHÆS = �r2(S) + V 0(S).The Einstein relation now has the form :h�(x; t)�(x0; t0)i = 2DÆ(d)(x� x0)Æ(t� t0) (3.18)This follows as for Brownian motion : we have :S(x; t+ Æt) ' S(x; t)�DÆt � ÆHÆS(x; t) + Z t+Ætt �(x; t0)dt0 (3.19)
12



so hS(x; t+ Æt)S(x0; t+ Æt)i � hS(x; t)S(x0; t)i ��DÆt "*S(x; t) ÆHÆS(x0; t)++ *S(x0; t) ÆHÆS(x; t)+#+ Z t+Ætt dt0 Z t+Ætt dt00h�(x; t0)�(x0; t00)i (3.20)But, in equilibrium : hS(x; t) ÆHÆS(x0;t)i = Æ(d)(x� x0) by fun
tional integrationby parts, and the left hand side vanishes.In Model A, the total magnetisation R S ddx is not 
onserved. But in somephysi
al systems, it might be (e.g. S=order parameter for liquid-gas 
riti
alpoint, or a binary 
uid). In that 
ase, we have a 
ontinuity equation for S :�tS = �~r � ~J (3.21)where ~J is a 
urrent. To be 
onsistent, we should therefore takeD �! �D0r2 [Question : Why theminus sign ?℄ (3.22)with D0 > 0. The Einstein relation is then :h�(x; t)�(x0; t0)i = �2D0r2Æ(d)(x� x0)Æ(t� t0) (3.23)or equivalently, we 
an think of the noise term as being ~r � ~�, in whi
h 
aseh�i(x; t)�j(x0; t0)i = �2D0Æi;jÆ(d)(x� x0)Æ(t� t0) (3.24)3.3.2 the Gaussian modelIf we negle
t the S4 term in H (whi
h is valid outside the 
riti
al region orfor d > 4), we end up with linear equations :For model A : �tS = �D(�r2S + r0S) + � (3.25)Taking Fourier transforms :_Sk = �D(k2 + ��20 )Sk + �k (3.26)where we have identi�ed the stati
 
orrelation length �0.
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Ea
h mode de
ays independently with hSki � e�t=�k , where�k = 1D0 (k2 + ��20 ) (3.27)Note that �0 / �20 !1 at T = (T
)MF : this is the 
riti
al slowing down.We 
an work out the response fun
tion in this approximation : we add a �eldh(t) to H : h _Ski = �D(k2 + ��20 )hS(k)i �Dhk(t) (3.28)and then Fourier transform with respe
t to time as well :hSk(!)i = hk(!) �G0(!; k) (3.29)where G0(!; k) = 1�i!D + k2 + ��20 (3.30)In the stati
 limit ! = 0 this reprodu
es the Ornstein-Zerni
ke form.Similarly, solving in the presen
e of noise but with h = 0 we �nd :Sk(!) = �k(!)�i! +D(k2 + ��20 ) (3.31)and h�k(!)�k0(!0)i = 2DÆ(! + !0)Æ(d)(k + k0) (3.32)Hen
e, C0(!; k) = 2D!2 +D2(k2 + ��20 )2 = 2! ImG0 (3.33)so FDT is satis�ed.For model B, on the other hand, D �! D0k2, soG0(!; k) = k2�i!D0 + k2(k2 + ��20 ) (3.34)and �k / 1k2(k2 + ��20 ) (3.35)Modes with k � ��10 de
ay therefore with � � �40 .
14



3.4 Response fun
tion formalismThere is a way of writing the Langevin equations in d+1 dimensions so theylook rather like equilibrium models in d + 1 spa
e dimensions, whi
h is verysuggestive.For example, for model A : �tS = �DÆHÆS + � (3.36)We are interested in solving this equation for S(x; t) for a given �(x; t) andthen 
omputing averages of quantities like S(x1; t1)S(x2; t2) over the noise �.We 
an do this by writing�Z DS S(x1; t1)S(x2; t2)Æ[S(x; t) = solution℄�noise (3.37)with Æ[equation℄ = Æ " _S +DÆHÆS � �#� Ja
obian (3.38)A word about this Ja
obian. One way is to write it asdet "�t +D Æ2HÆSÆS # (3.39)and write this as a Grassmann integral over anti
ommuting �elds  (x; t),� (x; t) : Z D D � exp � Z � "�t +D Æ2HÆSÆS # dtddx! (3.40)But in fa
t this is unne
essary if we regularise properly : if we interpret �tSas a forward di�eren
e operator, thenS(t+ Æt) � S(t) + Æt "�D ÆHÆS(x; t) + �(x; t)# (3.41)and it is easy to see that J = 1. But note that this 
hoi
e will have 
onse-quen
es later. We now writeÆ " _S +DÆHÆS � �# = Z D ~S exp � Z "ddxdt ~S  _S +DÆHÆS � �!#! (3.42)(Note that ~S should stri
tly be integrated along the imaginary axis | inpra
ti
e sin
e we almost always do perturbation theory, this is not impor-tant).
15



Finally, we 
an average over � : at ea
h point in spa
e-time,he� ~S�i = e(1=2)h��i ~S2 = eD ~S2 (3.43)The result is that 
orrelation fun
tions like hS(x1; t1)S(x2; t2)i may be eval-uated as fun
tion integrals with a "weight"Z D ~SDS exp � Z "ddxdt ~S  _S +DÆHÆS �D ~S2!#! (3.44)~S is 
alled the response �eld. This is be
ause its 
orrelators give responsefun
tions. If we add a sour
e term +hS to H, this is the same as adding�Dh ~S to the "a
tion". SoÆhS(x0; t0)iÆh(x; t)| {z }=G(x�x0;t0�t) = DhS(x0; t0) ~S(x; t)i (3.45)We 
an easily show FDT from this :Add a sour
e +hS as above. The terms involving ~S are : �Dh ~S, �D ~S2. We
an shift ~S ! ~S � h=2 to get rid of this linear term, but this indu
es a term�h2 � _S +D ÆHÆS �Hen
e G(x0 � x; t0 � t) = �12 *S(x0; t0) " _S(x; t) +D ÆHÆS(x; t)#+= 12 _C(x0 � x; t0 � t)| {z }odd � D2 *S(x0; t0) ÆHÆS(x; t)+| {z }even (3.46)But we know that G = 0 for t0� t < 0, and the last term is an even fun
tionof t0 and t. So it must be thatG(x0 � x; t0 � t) = _C(x0 � x; t0 � t) for t0 � t > 0 (3.47)whi
h is FDT.3.5 Dynami
 s
alingThe simple examples we have looked at so far exhibit simple dynami
 s
aling
lose to a 
riti
al point where ��1 = 0.For model A and the Glauber model, we found that typi
al time s
ales for16



the relaxation of 
u
tuations of the linear size of � behave like � / �z withz = 2.For model B, we found z = 4.Problem : Starting from a mi
ros
opi
 master equation for the 1d Ising modelwhi
h lo
ally 
onserves the magnetisation, argue that z = 3 in this 
ase.This may be generalised to hypothesise dynami
 s
aling forms for dynami

orrelations fun
tions whi
h generalise the stati
 ones.For example ~G(k; !; �) = �2���(�k; �z!) (3.48)(for ! = 0, this is the stati
 
orrelation fun
tion).Similarly, ~C(k; !; �) = �2��+z	(�k; �z!) (3.49)As we shall see, these s
aling forms emerge from an RG analysis, with, how-ever, in general non-trivial values for �, z et
.
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Chapter 4Perturbation theory for ModelALet us start with the model A equation :_S = �DÆHÆS + � (4.1)= �D ��r2S + r0S + uoS3�+ �(x; t) (4.2)where h�(x; t)�(x0; t0)i = 2DÆ(d)(x� x0)Æ(t� t0)We 
an set up a perturbative solution in u0 by writing it as an integralequation : _S �Dr2S +Dr0S = �Du0S3 + � (4.3)or  1D ��t �r2 + r0!S = �u0S3 + 1D� (4.4)whi
h yieldsS(x; t) = Z ddxdt0G0(x� x0; t� t0) "�u0S3(x0; t0) + �(x0; t0)D # (4.5)Note that G0 is just the bare response fun
tion, with Fourier transform1�i!D + k2 + r0 (4.6)We 
an introdu
e a diagrammati
 notation with time running from right to left :
18



�G0(x� x0; t� t0)(x; t) (x0; t0)Thus S(x; t) =
�(x; t) (�u0S3(x0; t0))+
�(x; t) ( 1D�(x0; t0))We 
an now iterate this equation for S :S(x; t) =
�(x; t) ( 1D�(x0; t0))+
�(x; t) (�u0S3 + 1D�(x0; t0))(x0; t0)=
�+
�+ 19



�+ ::: where we integrate over the (x; t) of ea
h vertex of type	�u0 (subje
tto the 
ondition that they are time-ordered), and where ea
h
 means+�=D.To get the response fun
tion we just lop o� one of these x :G(x1; t1; x2; t2) =
�(x1; t1) (x2; t2)+ 3�
�(x1; t1) (x2; t2)+ 3�

+ 2�
Æ20



Note that, sin
e so far all we are doing is solving a partial di�erential equa-tion, the diagrams are simply trees. All 
ounting fa
tors are 1.Loops 
ome in when we average over �, usingh�(x1; t1)�(x2; t2)i = 2DÆ(d)(x1 � x2)Æ(t1 � t2) (4.7)We are then supposed to tie the ends� together, in pairs, in all possibleways, with a fa
tor 1D � 1D � 2D = 2D .Note also that we never get �with our 
hoi
e of regularisation of �t, sin
e the propagator� alwaysgoes forward in time.Problem : Show that h ~S ~Si = 0Thus, to O(u10), we have
��u0(x1; t1) (x2; t2)(x00; t00) 2=�(x0; t0)whi
h represents the term= �6u0D Zt1>t0>t2; t0>t00 ddx0dt0ddx00dt00��G0(x1 � x0; t1 � t0)G0(x0 � x2; t0 � t2)G0(x0 � x00; t0 � t00)2 (4.8)As with all Feynman diagrams, this is simpler in Fourier spa
e :
�(!; ~q)(!0;~k)(�!0;�~k)(!; ~q)

21



standing for= �6u0D  1�i!=D + q2 + r0!2 �� Z d!02� ddk(2�)d 1�i!0=D + k2 + r0 1+i!0=D + k2 + r0| {z }D R ddk(2�)d 12(k2+r0) (4.9)Note that at ! = 0, we get the stati
 
orrelation fun
tion at 1-loop :
�A more interesting diagram is :
�(!2;~k2)
(!1;~k1)(!; ~q) (!; ~q)

whi
h 
omes from sewing in two ways the following diagram :
�The overall fa
tor is 32 � 2 � ( 2D)2 � (�u0)2 and the integral is :1(�i!=D + q2 + r0)2 Z d!12� ddk1(2�)d d!22� ddk2(2�)d� 1�i!1=D + k21 + r0 1+i!1=D + k21 + r0� 1�i!2=D + k22 + r0 1�i(!�!1�!2)D + (q � k1 � k2)2 + r0 (4.10)
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= 1(�i!=D + q2 + r0)2D2 Z ddk1(2�)d ddk2(2�)d� 12(k21 + r0) 1(2k22 + r0)� 1�i!=D + k21 + k22 + (q � k1 � k2)2 + 3r0 (4.11)[ Note that we 
an do !� integrals automati
ally by looking at intermediatestates in "old-fashioned" perturbation theory.At ! = 0 we 
an symmetrise (k3 = q � k1 � k2)1k21 + r0 1k22 + r0 1k21 + k22 + k23 + 3r0�! 13 1k21 + k22 + k23 + 3r0 " 1k21 + r0 1k22 + r0 + perms:#= 13 1k21 + r0 1k22 + r0 1k23 + r0 (4.12)and so re
over the usual 2-loop diagram in the stati
s :�Note that the fa
tors of D all 
an
el in the stati
 limit, as they should.4.1 Diagrammati
 expansion via the responsefun
tion formalismThese diagram may also be read o� from the response formalism : Res
alingS ! ~S=D (so that hS ~Si is the response fun
tion) the a
tion is :S = Z dtddx " ~S  _SD �r2S + r0S + uoS3!� 1D ~S2# (4.13)If we look at the gaussian terms ~S : : : S we see the propagator1�i!=D + k2 + r0�S ~S23



[ Note that we 
ould in
lude 1D ~S2 as part of the gaussian term. This leadsto a matrix  �i!D + k2 + r0+i!D + k2 + r0 � 2D ! (4.14)to be inverted. Its elements are hS ~Si0hS ~Si�0 hSSi0 ! (4.15)where the lower right element is nothing but the bare 
orrelation fun
tion.This introdu
es two kinds of propagators whi
h are indeed related by FDT.In fa
t, sin
e to any �nite order in u0 we only get a �nite number of ~S2verti
es, it is easier to think of ~S2 as part of the "intera
tion". ℄We have verti
es
��3!u0~SS3and
�+2=D~S2
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Chapter 5RG 
al
ulations for Model Aand Model B
5.1 Renormalisation of dynami
 �eld theory(model A)The theory as stands is regularised at large (!; k) by latti
e or other short-time e�e
ts. We 
an examine how the regularisation enters by power-
ounting.For simpli
ity, let us 
hoose a 
ut-o� in jkj < � : later, for elegan
e, we'lluse dimensional regularisation.De�ne G(m;n) ((!1; k1) � � � (!m; km); (!01; k01) � � � (!0n; k0n)) to be the 
onne
tedresponse fun
tion with n ingoing and m outgoing lines :

�n� � �2112� � �mFrom this de�ne the trun
ated 1-parti
le irredu
ible vertex fun
tions �(m;n).As in the stati
 theory, only a �nite number of these 
ontain primitive diver-gen
es near d = 4. These areh�(1;1)i / k2 ; h�(1;3)i / k0 (5.1)Hen
e in d = 4, �(1;1)(!;~k) is quadrati
ally divergent / �2 and �k2�(1;1),�!�(1;1), �(1;3) are log-divergent. Apart from �!�(1;1) these are just the same
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divergen
es met in the stati
 theory. They are removed by mass, �eld and
oupling 
onstant renormalisation.Working for simpli
ity at the 
riti
al point, we may assume that mass renor-malisation has always been done, and �(1;1)(! = ~k = 0) = 0.As usual, we de�ne SR = Z�1=2S S~SR = Z�1=2S ~S (5.2)so �(1;1)R = ZS�(1;1) (5.3)and in general �(m;n)R = Z m+n2S �(m;n) (5.4)where ��k2�(1;1)R �!=0;k=� = 1 (5.5)[ this is inspired by �(1;1) = �i!=D + k2 in free theory ℄In the same way we de�neuR = � ��(1;3)R �!i=0;ki/� (5.6)This suggest that we therefore de�ne1DR =  + ��(�i!)�(1;1)R !!=0;k=� � 1ZDD0 (5.7)The statement of renormalisability of the dynami
 theory is that all responsefun
tions �(m;n)R are �nite as �!1 when expressed in terms of uR and DR.Let us fo
us on �(1;1)R = ZS�(1;1)�(1;1)R (!; k;DR; uR; �) = ZS(uR; �;�)�(1;1)(!; k;D0; u0;�) (5.8)Sin
e �(1;1) does not depend on �, we 
an write � ���!u0;�;D0 Z�1S �(1;1)R = 0 (5.9)
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We de�ne gR|{z}dimensionless = uR��� (5.10)and 
an rewrite it"� ��� + �(gR) ��gR + ZS� ���(Z�1S ) + ��DR�� ��DR #�(1;1)R = 0 (5.11)where as usual �(gR) =  � ���gR!u0;� (5.12)We de�ne now 
s(gR) �  + 1ZS � ���ZS!u0;�
D(gR) �  + 1DR� ���DR!u0;D0;�= 1ZD� ���ZD (5.13)For simpli
ity suppose gR = g� = O(�) and �(g�) = 0.We then have "� ��� � 
�s + 
�DDR ��DR #�(1;1)R = 0 (5.14)Now we have to use a version of dimensional analysis :�(1;1)R (!; k;DR; �) = �2� "k�; !DRk2# (5.15)From this we see that DR�R = �!�! and ��� + k�k = 2� 2!�!, so"�k ��k + 2� 
�s � (2 + 
�D)! ��!#�(1;1)(!; k) = 0 (5.16)�(1;1)(!; k) = k2�
�s� � !k2+
�D � (5.17)whi
h is dynami
 s
aling, with � = 
�s , z = 2 + 
�D.
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5.1.1 Lowest order 
al
ulationNoti
e there are no 1-loop 
orre
tions to Zs or Z� sin
e the only diagram is
� (!; ~q)whi
h, after trun
ating the external lines, is independent of ! and q.To one loop, then, we have only the renormalisation of u0
��u0

(0;�) q (0;�=3) q1(0;�=3) q2(0;�=3) q3
+

�k(�u0)2 � 3� 3� 2� (2=�)
q2q1

The one-loop diagram is therefore(�u0)232 � 22D0 D0|{z}fromR d! � Z ddk(2�)d 1�i0 + k2 + (q1 + q2 � k)2 1�i0 + k2 + k2(5.18)This is log-divergent in d = 4 as expe
ted : in 4� � dimensions the integralgives 14 2�2(2�)4��� �1� +O(1)� (5.19)
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Thus uR = u0 � 32u20��� 2�2(2�)4| {z }�K4 1� +O(u30) (5.20)gR = u0��� �1� 32K4� u0��� + � � �� (5.21)�(gR) �  ��gR�� !u0 = ��gR + u0��� � 32K4u0��� + � � �= ��gR + 32K4g2R + � � � (5.22)g�R = �32K4 +O(�2) (5.23)Problem : Che
k this is the same as in stati
 theory. NB fa
tor of 6 in thede�nition of u0:Now let's 
al
ulate ZD :Z�1D = D0 ��(�i!)�(1;1)R = ZSD0 ��(�i!)�(1;1) (5.24)�(1;1) = �i!D0 + q2 �|{z}NB� + � � �= �i!D0 + q2 � 32 � 2 � (�u0)2 Z dk1dk2 1k21 1k22 �� 1�i!=D0 + k21 + k22 + (q � k1 � k2)2 + � � � (5.25)so thatZ�1D = Zs "1 + 32 � 2 � u20 Z dk1dk2 1k21 1k22 1[k21 + k22 + (q � k1 � k2)2℄2 + � � �#(5.26)at q2 = �2.Problem : Show that this integral gives us ��2�K24 A�
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We then have 
D = �
s + 32 � 2 � u20��2�K24 � 2A (5.27)and sin
e 
�s = � = �254 +O(�3) (5.28)this gives �nally z = 2 + 0:0135�2 + � � � (5.29)Note 1 : We 
hose Z~s = Zs but in prin
iple we 
ould shu�e these fa
torsaround : e.g. 
hoose Z~s = 1. In other theories, we may well 
hoose to dothis.Note 2 : We 
an also get the renormalisation of � by looking at the 
orrelationfun
tion hSSi, whi
h to lowest order is given by
 (�!;�~q)(!; ~q)

equal times2=�whi
h gives the integral= 2D0 Z d!2�i 1�i!=D0 + q2 1+i!=D0 + q2= 1q2 as expe
ted (5.30)
[ or by 
utting! ! 2 � 1�i0+2q2 ℄The 2-loop 
orre
tion to this is :
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Problem : Che
k that this gives the symmetrised version of the previous integral.
5.2 Renormalisation of model BModel B 
orresponds to a 
onserved order parameter, as appropriate to abinary 
uid (ignoring however hydrodynami
 e�e
ts !)In this 
ase, _S = D0r2 ��r2S + r0S + u0S3�+ � (5.31)where h�(x; t)�(x0; t0)i = �2D0r2Æ(d)(x� x0)Æ(t� t0) (5.32)Thus the di�eren
es from model A are :1. The bare propagator is #(!; ~q) = ��i!D0 + q2(q2 + r0)��1

2. The vertex $(!; ~q) = �u0q23. The noise %~q�~q = 2D00 q2Dimensional analysis goes through in the same way for the �(m;n), so in prin-
iple, �(1;1), ��(1;1)�q2 , ��(1;1)�(�i!) and �(1;3) show primitive divergen
es.But ! : The fa
tor q2 in the vertex makes a big di�eren
e. In fa
t, if we lookat the renormalisation of hSSi again, we have
&~q
�~q q2q2hSSi = 1q2(q2 + r0) hq2 + (q2)2u20 � some integral + � � �i (5.33)
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Sin
e u0 is dimensionless at d = 4, this integral 
annot be divergent !Problem : 
he
k that this is indeed true.As a result, then, Z�1D = ZS and 
D = �
S. So,z = 2� � to all orders in � (5.34)Che
k : for d = 1, � = �1 (why ?) and z = 3 ) OK.
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Chapter 6More realisti
 modelsIt turns out to be almost impossible to �nd real physi
al systems a

uratelydes
ribed by models A or B. This is be
ause in real systems, there are otherslow modes whi
h intera
t with the order parameter modes. They do nota�e
t the stati
s, but may have a dramati
 e�e
t on the dynami
s.Two examples :1. E�e
t of slow heat 
ondu
tionSin
e equilibration o

urs via 
onta
t with a heat bath (= phonons), andthey di�use as well as the spin modes, we should in
lude these phonons. Thee�e
tive hamiltonian has the formH = Z ddx�12(rS)2 + 12r0S2 + 14u0S4 + 12�2 + 12g�S2� (6.1)where� � is the energy density of phonons, in units where heat 
apa
ity = 1.� g is the 
oupling between the phonons and the spin degrees of freedom.We 
an ignore terms like (r�)2 sin
e � is not 
riti
al itself.For the stati
s, � makes no di�eren
e, sin
eZ d� exp��12�2 + 12g�S2� / exp �g2S4=8� (6.2)whi
h simply shifts u0 ( This 
orresponds to the diagram' )
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For the dynami
s, we have _S = �DÆHÆS + � (6.3)_� = +D0r2 ÆHÆ� + � (sin
e � is 
onserved)= D0r2 �� + 12gS2�+ � (6.4)showing how the energy of the spin degrees of freedom drives heat 
ondu
tion.In the same way, _S = �D �r2S + r0S + u0S3 + g�S�+ � (6.5)showing that � a
ts like a lo
al variation of T
.From these we also see that [g�℄ = [u0℄[S2℄ = [u0℄[�℄=[g℄, so [g2℄ = [u0℄ and gis also dimensionless in d = 4.Problem : Draw diagrams whi
h renormalise g and u0 to 1-loop. Is D renor-malised now at 1-loop ?2. Isotropi
 ferromagnetAs well as relaxational modes, there may also be organised motion in thesystem whi
h 
orresponds to "real" dynami
s.For example in a Heisenberg ferromagnet, the lo
al magnetization ~S(x; t) willpre
ess in the lo
al �eld ~B a

ording to_~S / ~S � ~B (6.6)Su
h pre
ession may be dedu
ed from the quantum equations of motionand will not disappear on 
oarse-graining. The lo
al �eld ~B depends on~S(x0; t) for x0 near x, hen
e to lowest order in derivatives, in may be written~B / ~S + 
onstr2~S + � � �. Sin
e ~S � ~S = 0, we �nd a term_~S = �~S �r2~S + model B terms + noise (6.7)Note that su
h so-
alled reversible terms do not spoil FDT or the approa
hto the equilibrium distribution : 34



hÆ(S � S0)i = P [S0℄ / e�H[S0℄ (6.8)hÆ(S � S0)i = Z�1 Z DS Æ(S � S0)e�H(S) (6.9)ddtP [S0(t)℄ = �Z�1 Z DSXx Æ0(S � _S0)e�H(S)= Z ddx _S0  ÆÆS e�H(S)!S=S0= � Z ddx * _S0 ÆHÆS0+ (6.10)For model A, this is * �D ÆHÆS0 + �! ÆHÆS0+ = 0 (6.11)If we add the term ~S �r2~S, we haveZ ddx *(~S �r2~S)ÆHÆS + (6.12)whi
h vanishes by symmetry.By looking at the model B terms �D0r4S �D0r2r0S + � � �, we see that[�=D0℄ = k2[S℄�1 = k3�d=2 (6.13)so that �=D0 is relevant when d < 6 !S
aling suggests that sin
e _S = �S �r2S :[!℄ = [k2℄[S℄ = [k2℄k d�2+�2 (6.14)z = d+ 2� �2 (6.15)whi
h is true to all orders due to a Ward identity.
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Part IINon-equilibrium phasetransitions
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Chapter 7Introdu
tionIn the 
ase of 
riti
al dynami
s near equilibrium, we were guided by theprin
iples of detailed balan
e, Einstein relations, FDT, et
. to a form of theLangevin equation whi
h was largely di
tated. But for systems driven (orrelaxing) far from equilibrium, this is no longer valid.For simpli
ity, we shall 
onsider only sto
hasti
 parti
le systems (e.g. rea
tion-di�usion models, simple 
uids, et
.)As a very simple example, 
onsider the rea
tion-di�usion model where asingle spe
ies of parti
les A do random walks on a latti
e and, wheneverthey meet on the same site, undergo the rea
tion A+A! ;(inert) at rate �.(we allow multiple o

upation : if the mean density is small, this is unlikelyanyway).For this pro
ess, we might write down the rate equation for the mean densityn(x; t) : �n�t = Dr2n� 2�n(2) (7.1)where� D is the di�usion 
oeÆ
ient of the A parti
les on the latti
e.� n(2) is the probability of �nding 2 parti
les on the same site.In the spirit of the mean-�eld approximation, we might writen(2) � n2 (7.2)in whi
h 
ase equation (7.1) is easy to solve :n(t) = n01 + 2�n0t (7.3)
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in the homogeneous 
ase. Note that as t!1, n(t) � (�t)�1 independentlyof n0 but not of �.Approximation (7.2) is valid as long as the 
u
tuations n(2)�hni2 are small.These are 
aused by parti
les having been in the same region of spa
e atsome previous time, and are given to lowest order by the diagramRt>t0 ddx0dt0 (kk0(x; t) (x0; t0) / R ddk(2�)d 12Dk2For d > 2, this is �nite (with some UV 
ut-o� / (latti
e spa
ing)�1) but ford � 2 it diverges., due to the re
urren
e property of simple random walks.We might hope to a

ount for su
h e�e
ts by adding a noise term, as inequilibrium problems : _n = Dr2n� 2�n2 + � (7.4)but we have no obvious way of �xing the 
orrelations. As we shall see, (7.4),at least taken literally, is simply wrong.Instead, we will adopt a di�erent approa
h, summarized by the following 
ow
hart :Master eqn �! "Se
ond-quantised"version �! Path integral#Analyse using�eld-th. RG �! Continuumlimit �! interpretationas LangevineqnWe will initially 
onsider the rea
tion A+A! ; for simpli
ity, and generaliselater.

38



Chapter 8Field-theoreti
 representationof the master equation
8.1 Basi
 prin
iplesAs stated before, the master equation has the form :dP (�)dt =X� R�!�P (�)�X� R�!�P (�) (8.1)On a latti
eL, the mi
rostates � are the o

upation numbers fng � fn1; n2; :::gof ea
h site. Equation (8.1) is like the S
hr�odinger equation for a many-bodywave fun
tion in that it is1. linear in the P (�)2. �rst-order in �=�tThis suggests a "se
ond-quantised" formalism :� De�ne p(n1; n2; :::; t) = P (fng; t) (8.2)� Introdu
e annihilation & 
reation operators fai; ayigi2L with [ai; ayi ℄ = 1.� De�ne the j0i state as satisfying aij0i = 0 8i� De�ne now j	(t)i = Pfnig p(fng; t)ayn11 ayn22 :::j0iThen the master equation is 
ompletely equivalent to the S
hr�odinger-likeequation ddt j	(t)i = �Hj	(t)i (8.3)39



where H is an operator depending on the a's & ay's only.Let's now work towards this result with a 
ouple of examples :8.2 Example a : Simple hoppingConsider just 2 sites (1,2) and hopping 1! 2 at rate D. The master equationis : dP (n1; n2)dt = D(n1 + 1)P (n1 + 1; n2 � 1)�Dn1P (n1; n2) (8.4)Noti
e that the a
tual rates are proportional to n1, sin
e ea
h parti
le mayhop independently. [We 
ould modify this if we wanted.℄De�ning j	i = Pn1;n2 ayn11 ayn22 P (n1; n2)j0i we get :dj	idt = D Xn1;n2 [P (n1 + 1; n2 � 1)(n1 + 1)� P (n1; n2)n1℄ ayn11 ayn22 j0i= D Xn1;n2 P (n1 + 1; n2 � 1)ay2a1ay(n1+1)1 ay(n2�1)2 j0i �D Xn1;n2 P (n1; n2)ay1a1ayn11 an22 j0i (8.5)= D(ay2a1 � ay1a1)j	i (8.6)( using ai $ �=�ayi ). So in this 
ase,H � �D(ay2a1 � ay1a1) (8.7)Note that as well as the obvious & intuitive hopping term ay2a1, we have aterm �ay1a1 whi
h ensures probability 
onservation.If we 
onsider also hopping 2 ! 1 at the same rate, we have :H = �D(ay2a1 � ay1a1 + ay1a2 � ay2a2)= D(ay2 � ay1)(a2 � a1) (8.8)8.3 Example b : Simple annihilation at a sin-gle siteHere the master equation is :dP (n)dt = �(n+ 2)(n+ 1)P (n+ 2)� �n(n� 1)P (n) (8.9)40



j	i =Xn P (n)aynj0i (8.10)dj	idt = �Xn (n+ 2)(n+ 1)P (n+ 2)aynj0i � �Xn n(n� 1)P (n)aynj0i= �Xn P (n+ 2)a2ay(n+2)j0i � �Xn P (n)ay2a2aynj0i (8.11)so H = ��(a2 � ay2a2) (8.12)On
e again, as well as the obvious term proportional to a2, there is anotherdiagonal term in H.Putting these together for our latti
e model, we obtain :H = DXhiji (ayi � ayj)(ai � aj)� �Xi (a2i � ay2i a2i ) (8.13)8.4 Aspe
ts of this formalism whi
h di�er fromordinary many-body QM :1. No "i" in the S
hr�odinger equation | like "eu
lidean" QM.2. H is not (ne
essarily) hermitian.Problem : Show that if the rates satisfy detailed balan
e, then H may bemade symmetri
 & real by a similarity transformation.3. Most important : expe
tation values of observables A(n1; n2; :::) areNOT h	(t)jAj	(t)i sin
e this would be bilinear in the p(fnig)Instead, we have :�A = Xfnig p(n1; n2; :::)A(n1; n2; :::)= h0jePi aiA(n1; n2; :::)Xfnig p(n1; n2)ayn11 ayn22 :::j0i= h	0jAj	(t)i= h	0jAe�Htj	(0)i (8.14)where h	0j = h0jePi ai .[ Proof : use [ea; ay℄ = hea;� ��ai = ea and h0jay = 0. ℄
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An immediate 
orollary of this is a 
ondition that H 
onserves probability :1 = �1 = D	0je�Htj	(0)E (8.15)so h	0jH = 0and h	0j	(0)i = 1 (8.16)Sin
e h	0jayi = 1 this is equivalent to the 
ondition that H vanishes if weformally set ea
h ayi to 1.This fa
tor of ePi ai may or may not be a problem, depending on the natureof A(n1; n2; :::).If we are interested in ex
lusive probabilities, e.g. the probability that thereis exa
tly 1 parti
le at site 1 and zero parti
les elsewhere, thenA = Æay1a1;1 Yj 6=1 Æayjaj ;0 (8.17)and the fa
tor h0jePi ai be
omes simply h0ja1.If, however, we are interested in in
lusive probabilities, e.g. the averagenumber of parti
les at site 1 irrespe
tive of other sites, we needh0jePi aiay1a1e�Htj	(0)i = h0jePi aia1e�Htj	(0)i (8.18)In this 
ase, it is easier to 
ommute the fa
tor ePi ai through, usingeaay = (ay + 1)ea (8.19)so to get h0ja1e�H(fay+1;ag)tj~	(0)i (8.20)where H(fay + 1; ag) may be 
alled a "shifted" hamiltonian and j~	(0)i �ePi ai j	(0)i.In our 
ase, the shifted hamiltonian isH = DXi (ayi � ayj)(ai � aj) + �Xi (2ayia2i + ay2i a2i ) (8.21)For an initial state, a suitable 
hoi
e is	(0) = e�n0en0Pi ayi j0i (8.22)
orresponding to a Poisson distribution p(n; 0) = e�n0 nn0n! at ea
h site.In this 
ase, j~	(0)i = en0Pi ayi j0i. 42



Chapter 9Path integral representationOn
e again, for simpli
ity, 
onsider a single site.We want to evaluate e�Ht. We write this as a produ
t :e�Ht = lim�t!0 (1�H�t)t=�t = (1�H�t) � (1�H�t) � � �| {z }t=�t fa
tors (9.1)Into ea
h time sli
e, we insert a 
omplete set of 
oherent states :Z d��d�� e����e�ayj0ih0je��a == Z d��d�� e����Xm;n �m��nm!n! aymj0ih0jan (9.2)Terms with m 6= n give zero on integrating over the phase of �. Lettingj�j � �, we get = 1Z0 2�d� e��2 Xn "(�2)nn! aynpn! j0ih0j anpn!#= Xn aynpn! j0ih0j anpn! = 1 (9.3)Between ea
h sli
e, we have :h0je��(t+�t)a(1��tH)e�(t)ay j0i == e��(t+�t)�(t) ��th0je��(t)aHe�(t)ay j0i+O((�t)2)= e��(t+�t)�(t)e��tH(��;�) +O((�t)2) (9.4)where H(��; �) is obtained by repla
ing a! �, ay ! ��.43



The remaining terms areY e��(t+�t)�(t)���(t+�t)�(t+�t) � e� R dt ���t� (9.5)so we get, in the limit �t! 0, a fun
tional integral (generalising to d 6= 0)Z D��D� e� R dtddx L(��;�) (9.6)where Z Lddx = Z ddx ���t�+H(��; �) (9.7)L = ���t�+D(r��)(r�)� �(�2 � ��2�2) (9.8)or, before taking the 
ontinuum limit,L =Xj ��j�t�j +DXhiji (��i � ��j)(�i � �j)� �Xi (�2i � ��2i �2i ) (9.9)Note that we do not need to 
oarse-grain to get a �eld theory on the latti
e.In the same way, we 
an show that the following fa
tors go over respe
tivelyinto : ePi ai �! ePj �je�n0Pi ayi �! e�n0Pj ��j (9.10)We 
an get rid of the �rst term by shifting��j = 1 + ~�j (9.11)The extra term e� R dt �t�j integrates up to 
an
el e�j .Similarly, observables like A(nj) give A(��j�j) and so on.
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Chapter 10Interpretation as a LangevinequationFor simpli
ity, let us write the 
ontinuum form, with the shift :exp�� Z dtddx [ ~��t�+D(r~�)(r�) + 2�~��2 + �~�2�2℄� (10.1)where the D(r~�)(r�) term 
an be integrated by parts to give �D ~�r2� +surfa
e term.This looks very like the response fun
tion formalism we dis
ussed earlier. We
an undo the quadrati
 ~�2 term by writingexp��� Z dtddx ~�2�2� = Z D� exp ndtddx ~��oP ([�℄) (10.2)where P () is the "probability distribution" for the "noise" �.The a
tion is now linear in ~� and we 
an integrate it out to obtain a Langevinequation : �t� = Dr2�� 2��2 + � (10.3)If we negle
t �, we re
ognise this as the rate equation we wrote earlier, if weinterpret � as the average density. In fa
t this is so, at this level, be
auseaya = h0jeaayaj	i �! h�i (10.4)where h� � �i denotes the average with respe
t to the weight e�S.But, if we are 
areful with the signs, we see thath�(x; t)�(x0; t0)i = �2��2(x; t)Æd(x� x0)Æ(t� t0) (10.5)45



The appearan
e of �2 makes sense : if there are no parti
les, there is nonoise. But the sign means that � is pure imaginary !How 
an this be ? The answer is that although h�i is the average density,�(x; t) is NOT the density. In fa
t,n2 = h0jea(aya)2j	i = h0jea(a2 + a)j	i �! h�+ �2i (10.6)It is easy to 
he
k (Problem) that if all the higher 
umulants h�2i � h�i2et
. of � vanish, as would be true in the absen
e of loops in our �eld the-ory, then the a
tual density n would have a Poisson distribution, as expe
ted.Another reason why � is imaginary 
an be seen by studying the equal-timedensity-density 
orrelation fun
tionn(x; t)n(x0; t0) = h�(x; t)�(x0; t0)i for x 6= x0 (10.7)The lowest order diagram is
)�

� h��iwhi
h is negative. So parti
les are anti-
orrelated. This makes sense : thereis a de�
it of parti
les in the neighbourhood of a given one, sin
e any parti
lesnearby have been "swept up".
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Chapter 11Field theory and RG analysis ofA +A! ;It turns out that this is a very simple �eld theory to analyse. Let us work inthe shifted theory :S = Z ddxdt h~�[�t�℄ +D0(r~�)(r�) + 2�0 ~��2 + �0 ~�2�2i (11.1)We 
an either write this as a sto
hasti
 equation :_� = D0r2�� 2�0�2 + � (11.2)with h�(x; t)�(x0; t0)i = �2�0�2Æd(x � x0)Æ(t � t0) and pro
eed as earlier, orwe 
an write down the Feynman rules by inspe
tion.The bare propagator, from the ~� � � �� terms, is*(!; ~q) = 1�i!+D0q2[ Note that we now write this instead of 1�i!=D0+q2 be
ause1. The stati
 limit (! 6= 0) does not 
orrespond to equilibrium statisti
alme
hani
s.2. The 
oeÆ
ient of �i! being unity means that parti
le number is 
on-served in the absen
e of rea
tions. ℄We have verti
es
+�4�0 ,�4�0
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There is an immediate simpli�
ation : there are no loop 
orre
tions to G(1;1),so : �(1;1) = �i! +D0q2 (11.3)whi
h implies Z� = Z~� = 1 ; ZD = 1 (11.4)The only diagrams renormalising the verti
es are :
- = . +/ +0+ � � �
1 = 2 +3 + � � �
These have a simple physi
al interpretation :4 gives the probabilityof annihilating given that parti
les have not annihilated in the past.In prin
iple, we 
ould treat the 
ouplings5�4�(1)0 6�4�(1)0as di�erent, in whi
h 
ase we would �nd[ 7  ! = 12 R ddk(2�)d 1�i!+2Dk2 ℄�(1)R = �(1)01 + 4�(2)02 R ddk(2�)d 1�i!+2Dk2 (11.5)�(2)R = �(2)01 + 4�(2)02 R ddk(2�)d 1�i!+2Dk2 (11.6)
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where the 2's at the denominator of 4�(2)02 are fa
tors 
oming from symmetry.Note that we have to de�ne �R at ! 6= 0, otherwise we would have an IRdivergen
e for d < 2. This is di�erent from previous 
ase where we 
ouldalways renormalise in stati
 limit.Note also that if �(1)0 = �(2)0 , then �(1)R = �(2)R . This is a 
onsequen
e ofprobability 
onservation, h0jePi aH(unshifted) = 0.Problem : Consider the pro
esses A+A �1�! ; and A+A �2�! A, and show thatthe resulting a
tion 
an be brought to our form by a suitable transformation ofthe �elds �, ~�.We de�ne �R at �i! = D�2 (sin
e D is unrenormalised this is D0). Theintegral now gives1(2�)d 1Z0 d� Z ddk e�2D�k2�D��2 = 1(2�)d 1Z0 d� � �2D��d=2 e�D��2= 1(2�)d ��2�d=2 �(1� d=2) 1D���� kd2� ���D (11.7)� = 2� d (note that kd is regular) and k2 = 1=(2�).From the a
tion we see that[ ~��℄ = kd ) [�0℄kd = kd! = [D℄kd+2 (11.8)So the dimensionless 
oupling isgR = �RD ��� (11.9)whi
h gives gR = (�0=D)���1 + kd� �0D ��� (11.10)(exa
t to all orders !)Hen
e �(gR) � � �gR�� !�0;D = ��gR + �0D ��� � kd �0D ���(1 + kd� �0D ���)2= ��gR + kdg2R exa
t! (11.11)49



For d < 2 we therefore �nd an IR �xed point at g�R = �=kd � 2��+O(�2).Let us see how to use this to 
ompute the mean density.In the bare theory, we have n(t; D; �0; n0) where n0 is the initial density. Inthe renormalised theory, this be
omes nR(t; DR; gR; n0R; �).But in fa
t, nR = n sin
e there is no �eld renormalisation. Similarly,DR = D,n0R = n0.This means we 
an write down an RG equation : � ���!D;�0;n0 nR(t; D; gR; n0; �) = 0 (11.12)"� ��� + �(gR) ��gR #nR(t; D; gR; n0; �) = 0 (11.13)Dimensional analysis tells us thatnR(t; D; n0; �) = �d�(�2Dt; n0��d) (11.14)so � ���nR =  d� dn0 ��n0 + 2Dt ��(Dt)!nR (11.15)and "Dt ��(Dt) + 12�(gR) ��gR � 12dn0 ��n0 + d2#nR = 0 (11.16)The solution of this is :nR(t; D; gR; n0; �) = ��d(Dt)�d=2 nR �Dt = ��2; n0 = (mu2Dt)d=2; ~gR; ��(11.17)where ~gR(�2Dt) is the running 
oupling.As t!1, ~gR ! g�R = O(�).Note that if we 
an ignore the exploding fa
tor n0(�2Dt)d=2, we have n /(Dt)�d=2, so the exponent is exa
t for d < 2. ( This may be argued on dimen-sional grounds if n is independent of �0 | but these ignore the possibility ofanomalous dimensions ).To pro
eed further, we have to evaluate the RHS of (11.17). Fortunately, we
an do this sin
e g�R = O(�) is small near d = 2.What we do is 
onsider all the diagrams for nR (or n) at a given order in n0: 50



8 n0n0n0 n0gRgRgR + 9gRgRgR gR + : + � � �To lowest order in gR = O(�) the diagrams are tree diagrams.The sum of these gives the rate equation result. ThusnR �Dt = ��2; n0(�2Dt)d=2; �=kd; �� =n0(�2Dt)d=21 + 2D�� �kdn0(�2Dt)d=2 1D�2 + higher orders in � (11.18)As t!1, we see that indeed n0(�2Dt)d=2 drops out andnR(t; D; n0; gR; �) � 1(Dt)d=2��d�2��kd� + higher orders (11.19)The �-dependen
e disappears as it must.It takes further work to 
onvin
e oneself that n0 drops out to all orders in �,and that n � A(Dt)d=2 (11.20)where the amplitude A is universal and depends only on �.To lowest order : A = 14�� +O(1) (11.21)Problem : What happens in d = 2 ?
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Chapter 12Conservation laws | Therea
tion A +B ! ;Consider now the 
ase of 2 spe
ies whi
h undergo the rea
tion A + B ! ;.For 
onvenien
e, we suppose they have equal di�usivities, and we begin witha random but statisti
ally homogeneous mixture of equal densities n0.The 
hief di�eren
e in this system is that the density nA � nB is lo
ally
onserved. We might expe
t this to slow the rea
tion as in model B. But ifwe write down the hamiltonian :H = Hdiffusion � � Z ddx[ab� aybyab℄ (12.1)we see that [�℄ = k2�d, so apparently d
 = 2 as before.For d � 2 we expe
t the rate equations :_a = Dr2a� �ab_b = Dr2b� �ab (12.2)to be valid. If we look for a solution whi
h is homogeneous, we �nd a = b /1=(�t) as before.This is indeed in
orre
t as it ignores the 
u
tuations in the initial state,whi
h do not disappear as in A+ A! ;.In fa
t, if we write  � a� b, it satis�es the di�usion equation_ = Dr2 (12.3)so  (x; t) = Z ddx0 G0(t; x� x0) (x0; 0) (12.4)If a and b have a random initial distribution, then  (x0; 0) has a distributionwith  (x0; 0) = 0 and  (x0; 0) (x00; 0) / 2n0Æ(d)(x0 � x00).52



Thus  (x; t) will have a Gaussian distribution with, in parti
ular : (x; t)2 = 2n0 Z ddx G0(t; x� x0)2 = 2n0 Z ddk(2�)d e�2Dtk2= 2n0 1(2�)d � �2Dt�d=2� �td=2 (12.5)Sin
e  (x; t) has a Gaussian distribution/ exp(� (x;t)22 2 ) we 
an also 
ompute(for later use)j a� b j = j  (x; t) j = Z d j  j e� 2=(2 2)= s 2� ( (x; t)2)1=2= s2�� 1td=4 = (2n0)1=2�1=2(8�)d=4 1(Dt)d=4 (12.6)Note that for d < 4 this is slower that 1=t, indi
ating that it is not possiblethat �a � �b � 1=t (12.7)This means that lo
ally, either a(x)� b(x) or vi
e-versa, i.e. there is segre-gation.Then j a� b j= max (a; b), so�a = 12 j  j / 1td=4 (t < 4) (12.8)
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Chapter 13Dire
ted per
olationIn the previous example, the steady-state was trivial (but the approa
h to itexhibited interesting universal behaviour).In order to get a non-trivial steady-state, we need bran
hing pro
esses as well.Examples are provided by epidemi
 pro
esses : 
onsider a latti
e where sitesmay be infe
ted (i.e. o

upied by a parti
le A) or not infe
ted (not o

upied).We shall allowmultiple o

upation, but sin
e the interesting behaviour o

urswhen the probability of o

upation is small, this does not matter.A given site is o

upied (infe
ted) at time t+�t if it or its neighbours wereinfe
ted at time t, but only with some probability. The disease may just dieout lo
ally. Thus the hamiltonian has the formH = �Xi (ayi � 1)F (ayiai; Xj n:n: i ayjaj) (13.1)where the �1 ensures 
onservation of probability.A simple form to take for F isF = �1Xj ayjaj � �20�Xj ayjaj1A2 (13.2)where the sum is over all neighbours in
luding i. We expe
t �1 > 0 and�2 > 0 | this is be
ause i 
an be infe
ted only on
e in �t.If we now let ayi = 1 + �ai (i.e. make the shift) we �nd a variety of terms, allproportional to �ai. We get an e�e
tive di�usion term �aiaj proportional to �1and terms proportional to ��1�aa, ��a2a and +�aa2 (where we have been 
are-ful to keep tra
k of the signs). All other terms are later shown to be irrelevant.
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Going straight to the �eld theory, the a
tion is :S = Z dtddx [ ~��t�+D0r~�r�+ r0 ~��+ u1 ~��2 � u2 ~�2�℄ (13.3)where r0 / ��1 < 0u1 > 0 ; u2 > 0 (13.4)If we rewrite this as a sto
hasti
 equation, we �nd_� = D0r2�+ �1�� u1�2 + � (13.5)where h�(x; t)�(x0; t0)i / u2�Æ(d)(x� x0)Æ(t� t0) (13.6)Ignoring the noise, we see that there are two possible steady-states :� h�i = 0 : the ina
tive or absorbing state (if the system starts here, itstays here).� h�i = �r0=u1 : the a
tive state.In the rate equation approximation, the latter state is the dynami
ally stableone for all r0 < 0 (i.e. �1 > 0). But, on
e the 
u
tuations are in
luded, thereis a non-trivial 
riti
al value of r0
 < 0.This a
tion is therefore very general and des
ribes a dynami
 transition froman ina
tive state (with no 
u
tuations) to an a
tive state (with 
u
tuations)as a fun
tion of a 
ontrol parameter. For histori
al reasons, it is 
alled thedire
ted per
olation ("DP") universality 
lass.In DP, "time" is a dis
rete spa
e dimension, usually on a latti
e (see Fig.13.1).It is usual to res
ale the �elds ~� & � so that the 
oeÆ
ients of ~��2 and �~�2�are equal. ThusS = Z dtddx [ ~��t�+D0r~�r�+ r0 ~��+ 12u0 ~��2 � 12u0 ~�2�℄ (13.7)In this form, the theory has a remarkable time-reversal symmetry undert ! �t, � ! �~�, ~� ! ��. This implies that the renormalised versions ofthese two 
ouplings will be equal.The Feynman rules for this theory are quite simple :55



(t+1,x)

(t,x+1)(t,x-1)

t

x

Figure 13.1: (t; x) is o

upied with prob. p if either of (t; x� 1),(t; x+ 1) iso

upied | dire
ted site per
olation.
Propagator : ; 1�i!+D0q2+r0
Verti
es : <�u0 =+u0

Now, however, there are 
orre
tions to the propagator>To 1-loop :�(1;1) = �i! +D0q2 + r0 � (�u0)(u0)12 Z dk 1�i! +D0k2 +D0(q � k)2 + 2r0+ � � � (13.8)where now R dk stands for R ddk=(2�)d.Noti
e that the loop 
orre
tions a
t to make rR > r0 so that at the 
riti
alpoint where rR = 0, r0
 < 0 as advertised.Power 
ounting : [ ~��℄ = kd as usual. Be
ause of the symmetry we 
hoose[ ~�℄ = [�℄ = kd=2. Then [u0℄k3d=2 = kd! = kd+2[D0℄, so [u0=D0℄ = k2�d=2 so
56



that the upper 
riti
al dimension is d
 = 4.If we study the vertex fun
tions �(m;n) we �nd in d = 4 that[�(1;1)℄ = [D0℄k2 ; [�(1;2)℄ = [�(2;1)℄ = [D0℄k0 (13.9)so we have to regularise the following quantities : (mass(r0) renormalisationassumed done) : �(1;1), ��(1;1)�k2 , �(1;1), ��(1;1)�(�i!) and �(1;2) = ��(2;1).Be
ause of the form of the bare propagator (�i!+D0q2 rather than �i!D0 + q2), we demand :1. � ��(�i!)�(1;1)R �NP = 1 to de�ne Z� = Z~�2. � ��q2�(1;1)R �NP = DR � Z+1D D03. uR = ���(1;2)R �NP = ��(2;1)R �NPso Z�1� = ��(�i!)�(1;1) = 1� u202 Z  dk(D0k2 +D0(q � k)2)2!q2=�2= 1� � u0D0�2 12 14 2�2(2�)4 ���� +O(u40) (13.10)DR = Z� ��q2�(1;1)= Z� "D0 + u202 ��q2 Z dkD0(k + 12q)2 +D0(k � 12q)2#q2=�2 + � � �= Z�D0 "1� u202 12 Z dkD0(k + 12q)2 +D0(k � 12q)2 + � � �#= Z�D0 "1� � u0D0�2 12 12 14 2�2(2�)4 ���� + � � �# (13.11)
�(1;2) = ? + � q2

q1
+ A q2

q1
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= �u0 + (�u0)2u0 Z dk[D0k2 +D0(q1 � k)2℄[D0k2 +D0(q1 + q2 � k)2℄+ (q1 $ q2) term= �u0 + 2 u30D20 14 2�2(2�)4 ���� (13.12)uR = ��(1;2)R = �Z3=2� �(1;2) (13.13)Finally, the dimensionless 
oupling isgR = (uR=DR)���=2= (u0=D0)���=2[1� 12K4 (u0=D0)2���� ℄[1� 116K4 (u0=D0)2���� ℄[1� 116K4 (u0=D0)2���� + � � �℄= (u0=D0)���=2[1� 38K4 (u0=D0)2���� + � � �℄ (13.14)�(gR) = ��2 gR + 38K4g3R +O(g5R) (13.15)As usual, we have a non-trivial IR �xed point, this time withg�2R = 4�3 + � � � (13.16)ZD =  1 + 18K4 (u0=D0)2���� ! 1� 116K4 (u0=D0)2���� ! (13.17)so 
D = � 116K4g2R + � � � ) z = 2� �12 +O(�2) (13.18)Z� = 1 + 18K4 (u0=D0)2���� + � � � (13.19)
� = �18K4g2R + � � � (13.20)13.0.1 S
aling behaviour� ���!u0;D0;���Z�1� �(1;1)R = 0 (13.21)
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26666664� ��� � 1Z�� ���Z�| {z }�
� +�(gR) ��gR + ��DR�� ��DR| {z }�
DDR ��DR
37777775�(1;1)R = 0 (13.22)
� = � ��� lnZ� 
D = � ��� lnZD (13.23)At the �xed point : "� ��� � 
�� � 
�DDR ��DR #�(1;1)R = 0 (13.24)13.0.2 Dimensional analysis�(1;1)R = DR�2� "k�; !(DRk2)# (13.25)so DR ��DR = 1� ! ��! (13.26)� ��� + k ��k = 2� 2! ��! (13.27)Hen
e "�k ��k + 2� 
�� � (2 + 
�D)! ��!#�(1;1)R = 0 (13.28)�(1;1)(!; k) = k2�
��+
�D�� !k2+
�D � (13.29)and we end up with dynami
 s
aling again.As k ! 0 we expe
t �(1;1)(!; 0) � !1�
��=(2+
�D) implying that the density ofinfe
ted sites de
ays as R d! ei!t�(1;1)�1 � t�
��=(2+
�D) and that the dynami
exponent takes the value z = 2 + 
�D (13.30)13.0.3 Away from the 
riti
al pointIn DP we have a 
ontrol parameter r0, like a bare mass. There is another
riti
al exponent asso
iated with this, whi
h may be found by studying therenormalisation of the 
omposite operator ~��. The 1-loop diagram is
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BDenoting �0 =j r0 � r0
 j we �nd the s
aling behaviour�(1;1)R (!; k;�0) = k2�
���
�D�(!=kz; k=��?0 ) (13.31)whi
h may be rewritten in various other ways, e.g. !=��k=2�?0 .For r0 > r0
, G(1;1) de
ays exponentially like e�t=� with � / ���k0 .For r0 < r0
, starting from a single infe
ted site we go to a �nite density inthe a
tive state. In that 
aseG(1;1)(t; x) t!1�! p(j �0 j) (13.32)Repla
ing now G(1;1) and p by their 
omplete expressions, we getZ d!ddk k�2+
��+
�D� !j �0 j�k ; kj �0 j�?! / j �0 j�k+d�?�(2�
���
�D)�?= j �0 j(d+
��)�?= j �0 j� (13.33)de�ning the "order parameter" exponent �.
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Chapter 14The Kardar-Parisi-ZhangequationThis was originally formulated as a model of a growing interfa
e, but it 
analso be mapped to :� the "noisy" Burgers equation in hydrodynami
s.� dire
ted polymers in a random medium.Consider an Ising model below T
, with an interfa
e between " and # phases.We use a 
ontinuus spin S = S(~x; z)H = Z [12(rS)2 + V (S)℄ ddxdz (14.1)

x

z

h(x)

The position of the interfa
e is z = h(~x).
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In equilibrium we �nd a 
at solution h = 
onst, S = f(z� h) by minimisingH, so f 00(z) = V (f(z)) (14.2)Let this solution be f(�).When the interfa
e 
u
tuates, we assume that its pro�le does not vary, onlyits position and angle. So we write :S(~x; z; t) = f 0� z � h(~x; t)q1 + (~r?h)21A (14.3)where ~r? is the derivative in the ~x-dire
tions (note that d is now the numberof transverse dimensions).We now add a magneti
 �eld : H �! H + � R S ddxdz whi
h will drive theinterfa
e (i.e. make it move in the z-dire
tion), and write down model A :_S = D �2S�z2 + ~r2?S � V 0(S)� �!+ � (14.4)Inserting the Ansatz (14.3) :� _hp� f 0  z � hp� ! = D0� 1(p�)2f 00 � ~r2?hf 0p� + (~r?h)2f 00(p�)2 � V 0(f)� �1A+ �(14.5)where we have ignored some terms with � 3 derivatives.The �rst, third and fourth terms in the bra
kets 
an
el, be
ause f satis�es(14.2.)We multiply this equation by f 0( z�hp� ) and integrate R1�1 dz :_h 1Z�1 f 0(u)2 du = Dr2?h 1Z�1 f 0(u)2 du+D�p� 1Z�1 f 0(u) du+ ~� (14.6)where ~�(~x; t) = p� 1Z�1 �(~x; z; t)f 0(z) dz (14.7)Expanding out p� � 1 + 12(r?h)2 + � � �, we �nally obtain an equation of theform : _h = v + 12�(r?h)2 + �r2?h + � (14.8)where v / D�, � / D�, � / D and h�(~x; t)�(~x0; t0)i = 2DÆ(d)(~x�~x0)Æ(t� t0).We 
an remove v by going to a moving frame h �! h0 = h� vt. This givesthe KPZ equation. Note that we have lost detailed balan
e | the rhs 
annotbe written as �D ÆFÆh + �. 62



14.1 KPZ equation : response fun
tion for-malismA
tion : Z dtddx [~h( _h� 12�(rh)2 � �r2h)�D~h2℄ (14.9)Dimensional analysis :[~hh℄ = kd, [�℄ = !k�2, [�℄[~hh2℄ = kd�2!, [D℄[~h2℄ = kd!, so[�2D℄(~hh)4 = k2d�4!2kd! = [�℄3k3d+2Dimensionless expansion parameter is [�2D=�3℄ = k2�d :d
 = 2In d > 2 : the non-linearity (rh)2 is irrelevant (for � small).We are therefore lead to the Edwards-Wilkinson theory :_h = �r2h + � (14.10)(whi
h satis�es the detailed balan
e 
ondition with D = �kT ).In general :Dynami
 s
aling : hh(~x; t)h(0; 0)i =j ~x j2� � � tj~xjz�� � > 0 ) interfa
e rough� � < 0 ) interfa
e smoothIn EW theory, hh(~x; 0)h(0; 0)i = R ddqq2 eiqx /j x j�d+2 so�EW = 1� d=2 smooth ford > 2: (14.11)zEW = 2 (14.12)14.2 Renormalisation for d < 2Propagator : C hh ~hi = 1�i!+�k2Vertex ~h(rh)2 : Dq1q2 / ~q1 � ~q263



Noise vertex : E1-loop 
orre
tion to propagator :
F�kkq � k (!; q)Z ddk(2�)d [k � (q � k)℄[�k � q℄(�i! + �k2 + �(q � k)2)(2�k2) / q2 Z ddk[k2℄ (14.13)Hen
e ��(�i!)�(1;1) is �nite in d=2 (but ��q2�(1;1) is not).There is therefore no �eld renormalisation. We should only renormalise�;D; �.In addition, there is in fa
t no renormalisation of � due to Galilean invarian
e: If ~u = ~rh : _~u = ~r(�2~u2 + � ~ru) + ~r�= �(~u � ~r)~u+ �r2~u+ ~r� (14.14)If � = �1, we 
an take the �rst term onto the left-hand side, giving_~u+ (~u � ~r)~u � D~uDt (14.15)is the 
onve
tive derivative, as for a 
uid : this then gives the noisy Burgersequation (whi
h is the Navier-Stokes equation in the absen
e of vorti
ity).For this, we expe
t Galilean invarian
e.For general �, we in fa
t have invarian
e under~x �! ~x� �~vt ; ~u �! ~u0 = ~u(~x + �~vt) + ~v (14.16)(where ~v = 
onst). This re
e
ts the tilt-invarian
e of the original interfa
emodel.Sin
e � is a parameter in this transformation, it 
an't be renormalised !So we are left with 
D � 1DR� ���DR
� � 1�R� ����R (14.17)
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as non-trivial renormalisation group fun
tions.Dimensionless 
oupling : gR = �2RDR�3R �d�2 (14.18)so �(gR) � � ���gR = gR(d� 2 + 
D � 3
�) (14.19)Hen
e, at any non-trivial �xed point
�D � 3
�� = 2� d (14.20)As usual, z = 2 + 
�� (14.21)The RG equation for G = R ddx eik(x�x0)hh(x; t)h(x0; t0)i is :"� ��� + 
�DD ��D + 
��� ��� #G = 0 at �xed point (14.22)G = D�k2�(�k ) (14.23)"�2� k ��k + 
�D � 
��#G = 0 (14.24)G / 1k2�
�D+
�� (14.25)� = 1� d2 + 
�� � 
�D2 (14.26)Hen
e z + � = 2 (14.27)This is a remarkable s
aling relation whi
h 
omes from Galilean invarian
eand the la
k of �eld renormalisation.14.3 Exa
t exponents for d = 1Edwards-Wilkinson linear theory satis�es detailed balan
e :_h = �r2h + � h��i = 2DÆ(:)Æ(:)= �� ÆÆh �Z 12(rh)2 ddx�+ � (14.28)
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Equilibrium distribution :P [h℄ = exp�� 1kTe� Z 12(rh)2 ddx� (14.29)where kTe� = D=�.In d = 1, adding the non-linearity does not a�e
t this !P [h0℄eq = hÆ(h� h0(x; t))i = Z Dh Æf(h� h0(x; t)) exp(�He� [h℄) (14.30)ddtP [h0℄ = � Z Dh Xx Æ0(h� h0(x; t)) _h0 Yx0 6=x Æ(h� h0) exp(�He�)= � Z ddx Z Dh Æf(h� h0) _h0  ÆHe�Æh !h=h0 exp(�He�)= Z ddx h12�(rh)2r2hi+ � � � (14.31)In general, this is non-zero, but in d = 1 �h�x!2  �2h�x2! = 13 ��x 24 �h�x!335 (14.32)giving a total derivative whi
h integrates to zero.We know the steady-state for d = 1 ) FDT ) 
�D = 
�� givingz = 3=2 ; � = 1=2 (14.33)The interfa
e is rough !14.4 Dire
ted polymer representation_h = �r2h+ 12�(rh)2 + � (14.34)Let now h = 2�� lnw (Cole� Hopf transformation) (14.35)then 2�� _ww = 2�2� "r2ww � (rw)2w2 # + 2�2� (rw)2w2 + � (14.36)_w = �r2w + �2�w� linear ! (14.37)66
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Figure 14.1: A polymer in a random medium (dots represent impurities)Polymer in a random medium (see Fig. 14.1):Let w(~x; t) be the partition fun
tion given the ends are at (0; 0) and (~x; t).w(~x; t) = ~x0(t)=~xZ~x0(0)=0 D~x0 exp � 1kT Z t0 dt0 [ �2(d~x0dt0 )2 + V (~x0; t0)℄! (14.38)with V being a random potential. This is like a Feynman path integral, sow obeys a "S
hr�odinger" equation :T �w�t = T 22�r2w + V w (14.39)whi
h is the same equation as (14.37) with � = T2� , and � = 1��V14.4.1 Renormalisation for d > 2Response fun
tion formalism :Z ddxdt " ~w( _w � �r2w)� �2D2�2 ~w2w2# (14.40)Feynman rules : G 1�i!+�k2H +�2D�267



Renormalisation is simple : just as in A+ A �! ; :I = J +K + � � �but the 
oupling 
onstant has now a di�erent sign.�(gR) = �gR[2� d℄� bg2R (14.41)To all orders : g�R = (d� 2)=b (14.42)
g
R

β

UV fixed point

(d>2)

d

g

z=2, χ=0

rough

smooth

The interpretation of this is a roughening transition at g = g�.Exa
tly at the transition, we have�? = 1d� 2 (14.43)
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where �smooth / (g� � g)��? (14.44)Unsolved problems :1. What is the nature of the rough (strong 
oupling) phase for d � 2 ?2. Is there an upper 
riti
al dimension ? [For d > 4, �? = 1d�2 violatesthe rigorous inequality d�? > 2℄
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