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ABSTRACT Identifying the basic module of enzymatic amplification as an irreversible cycle of messenger activation/
deactivation by a “push-pull” pair of opposing enzymes, we analyze it in terms of gain, bandwidth, noise, and power
consumption. The enzymatic signal transduction cascade is viewed as an information channel, the design of which is
governed by the statistical properties of the input and the noise and dynamic range constraints of the output. With the
example of vertebrate phototransduction cascade we demonstrate that all of the relevant engineering parameters are
controlled by enzyme concentrations and, from functional considerations, derive bounds on the required protein numbers.
Conversely, the ability of enzymatic networks to change their response characteristics by varying only the abundance of
different enzymes illustrates how functional diversity may be built from nearly conserved molecular components.

INTRODUCTION

One of the requirements of life at the single-cell or multi-
cellular level is the ability to detect external stimuli and
convert them into biologically meaningful intracellular sig-
nals. Such events underlie unicellular chemotaxis, sensory
reception by specialized cells, and the intercellular commu-
nications that are necessary for the development and func-
tioning of multicellular animals. In the majority of these
cases, the external signal is a molecular ligand that, by
binding to a specific membrane receptor protein, triggers a
cascade of enzymatic reactions that ultimately lead to the
activation of an effector. The resulting cellular response is
capable of adapting to the level of the external signal and
may be contingent on the presence or absence of other
signals (Koshland, 1980; Gerhart and Kirschner, 1997).
Enzymatic signal transduction pathways are characteristi-
cally heavily regulated through feedback and multiple mod-
ulators. The control of gene expression, for example, typi-
cally involves the integration of many signals and employs
complex enzymatic networks, which effectively implement
logical functions (Bray, 1995; Wray, 1998; Ptashne, 1992).
In contrast, olfaction and photoreception involve simpler
enzymatic cascades which may be thought of as adaptive
amplifiers or transducers (Reed, 1990; Stryer, 1991;
Koshland, 1980) that detect an extracellular stimulus and
convert it into an intracellular signal that can effectively
control the information content of the cellular output signal,
i.e., neurotransmitter release. Photoreceptors—the rod and
cone cells of the retina—are unique because instead of
molecular ligands they transduce a particularly potent input,

the visible light quanta, which carry;50 kcal of energy.
However, downstream from the specially adapted 7-helix
transmembrane receptor protein, rhodopsin, the enzymatic
cascade responsible for phototransduction employs molec-
ular elements that are ubiquitous and standard components
in biological signaling pathways. These include a heterotri-
meric G-protein (transducin) (Alberts et al., 1994; Stryer,
1995; Simon et al., 1991), an effector enzyme (phosphodi-
esterase, PDE), and intracellular signals that are carried by
changes in a cyclic nucleotide (cGMP) and Ca. In addition,
the components of this cascade are organized in a way that
is similar to many other chemical signal transduction path-
ways. Below we shall take advantage of the great deal of
knowledge of the electrophysiology and biochemistry of
rods and cones and use photoreceptors as a case study in our
discussion of the general engineering principles of signal
transduction.

Modern genetic and biochemistry methods have led to the
discovery of a multitude of signaling cascades. The identi-
fication of the molecular elements and their interactions has
provided detailed information about “how” a wide variety
of specific pathways work. But little attention has been
given to considering broader questions about the general
system-level properties of signaling cascades and “why”
they are designed the way they are. Such an approach might
start with the formulation of the engineering requirements
and the physical constraints on signal transduction and, by
identifying common biochemical modules and their regula-
tory motifs, demonstrate how these functional requirements
are met. The ultimate goal is to provide a unified view of the
comparative physiology and biochemistry of signal trans-
duction in the context of evolution (Gerhart and Kirschner,
1997) and to give quantitative insight into the regulatory
mechanisms and the system-level consequences of the mod-
ulation/modification of the components.

Below, with the example of vertebrate phototransduction
in mind, we shall examine an enzymatic cascade in general
engineering terms. Following Stadman (Stadman and
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Chock, 1977; Chock and Stadman, 1977) and Koshland
(Koshland et al., 1978), we identify the amplifier modules
of the cascade as irreversible messenger activation loops
with “push-pull” control by opposing enzymes. We then
characterize this enzymatic amplifier in terms of the engi-
neering parameters such as gain, bandwidth (i.e., inverse
characteristic time of the response), and noise and demon-
strate how these parameters may be “tuned” by adjusting
enzyme concentrations. We will make clear the competition
between the gain and bandwidth and the relation between
the noise (due to fluctuations in reactions), bandwidth, and
dissipated power. These are the engineering characteristics
that determine the rate of information transfer in the signal
transduction channel, and we provide the information the-
oretic considerations which govern the optimization of the
design of the cascade; e.g., we determine the gain require-
ments and the optimal input/output relation. We shall also
discuss the role of adaptation, which corresponds to a slow
change in the optimal input/output mapping in response to a
change in the statistical properties of the input.

With the framework of the engineering description in
place, one can inquire how a cell controls the basic param-
eters of its transduction pathway. In the past, much of the
discussion of enzymatic cascades has focused on the often
remarkable properties of its molecular components (e.g., the
impressive catalytic efficiency of phosphodiesterase; Stryer,
1995). Yet the time scale for protein evolution is slow, and
the relevant engineering parameters of the transduction sys-
tem would be more readily modified through the adjustment
of molecular concentrations rather than their kinetic con-
stants. We shall explicitly identify the parametric depen-
dence of the engineering characteristics of the phototrans-
duction cascade on the concentration of its key protein
elements. This has allowed us to obtain bounds on the
minimal amount of enzymes required to achieve the ob-
served functional performance of rods which are consistent
with prior measurements and to identify different means of
controlling and regulating their performance characteristics.

In the next section, a generic enzymatic amplifier unit is
described and analyzed in terms of gain, bandwidth, and
power dissipation. The following section presents a general
treatment of noise in the enzymatic amplifier. The section,
Enzymatic Cascade, deals with general properties of ampli-
fier cascades, and the following section discusses and pa-
rameterizes the effect of feedback. The section, Minimal
Required Gain and Minimal Messenger Concentration,
shows how the signal-to-noise considerations lead to a
minimal gain requirement and to a bound on the necessary
amount of transduction messenger molecules. The section,
Optimization of Input/Output Relation and Adaptation, out-
lines the information theoretic considerations governing the
design of the signal transduction system and discusses op-
timization and adaptation. Enzymatic Amplifier Cascade in
Phototransduction analyzes the organization of the verte-
brate rod phototransduction cascade from the engineering

point of view, identifies the way in which all of the relevant
engineering parameters are controlled by enzyme concen-
trations, and gives bounds on the required numbers of
enzymes. The final section summarizes the lessons of the
analysis and suggests avenues for future work. The sum-
mary of the chemical kinetics equations describing the
phototransduction cascade may be found in Appendix A;
Appendix B discusses the Ca feedback loop of rod photo-
transduction; Appendix C lists relevant biochemical param-
eters; and Appendix D provides details of the information
theoretic arguments.

BASIC ENZYMATIC AMPLIFIER

In this section we consider the basic module of an enzy-
matic amplifier where the input is converted into a change
in the number of messenger molecules. We show that this
amplifier can be characterized by a static number gain and
the response time. Signal transduction cascades can be
understood as a series of such modules coupled to each
other.

Let us begin by considering the basic step of chemical
signal transduction: the mechanism by which the input
signal—a change in the concentration of some messenger
molecule—modulates the activity of the effector enzyme.
The detection of weak signals requires that the input signal
be converted into a significant and macroscopic change in
the output level. Therefore, amplification and not just faith-
ful transduction is necessary. No stoichiometric equilibrium
mechanism can, by itself, provide such amplification.

To show this, let us consider the simplest example of a
generic receptor (Lauffenburger and Linderman, 1993),R,
which upon binding the messenger ligandL undergoes
conformational change to an enzymatically active stateR*L.
Consider how a small change in the total number of ligand
molecules may be detected. In response to a small change in
the total number of ligands, dLtot, no more than that many
additional activated receptors, dR*L, can be produced. Thus,
the number gain,g0 5 dR*L/dLtot, is necessarily smaller than
1. (Changing the stoichiometry and going to cooperative
binding of n ligands (i.e., high Hill coefficient) may offer
higher sensitivity to the fractional changes of the input
d ln[R*L]/d ln[L] 5 n. However, in this case the gain is even
lower: dR*L/dL , 1/n.)

The amplification can be achieved in an enzymatic push-
pull loop (Stadman and Chock, 1977; Koshland et al., 1978)
where a messengerX is activated toX* in a nearly irrevers-
ible reaction (e.g., phosphorylation or GDP/GTP exchange)
catalyzed by an activating enzymeEa andX* is deactivated
back to X via another nearly irreversible reaction (e.g.,
hydrolysis) catalyzed by a deactivating enzymeEd (see Fig.
1). The push-pull module is described by

d

dt
X* 5 GaX 2 GdX*, (1)
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whereGa,dare the rates of activation and deactivation which
depend on the concentrations of the enzymes and substrates.
We shall arbitrarily take the activating enzymeEa (which
controls the activation rateGa) to be the input signal. We
will show that the response ofX* to small modulations in
the input,Ea, are characterized by the static gaing0 and the
time constantt. In this case,g0 can be made as large as one
wants because a single signal molecule can excite many
messenger molecules. However, as we will see, this comes
at the cost of increasingt and the energy consumption.

In the simplest case of Michaelis-Menten kinetics one
would have

Ga 5
ka@Ea#

1 1 Ka
21@X#

, (2)

with Ka being the Michaelis constant andkaKa being the
catalytic velocity. The dependence of the reaction on the
concentration of energy-supplying molecules (e.g., ATP/
ADP or GTP/GDP) is subsumed into the effective reaction
rateka. We assume the reaction to be far from equilibrium
and proceed unidirectionally. Here and in Eq. 1 [A] denotes
the concentration of molecule A, whileA refers to the total
number:A 5 [A] p Volume. The deactivation rateGd is
taken to be of the same form as Eq. 2 but dependent on [Ed]
and [X*] with different parameters,kd andKd. Finally, Eq.
1 is supplemented by a constraint on the total number of the
messenger moleculesX 1 X* 5 Xtot.

In the steady state,

X# * 5
GaXtot

Ga 1 Gd
<

ka@E# a#Xtot

ka@E# a# 1 kd@E# d#
, (3)

where the quantities with bars represent their steady-state
values. The approximate expression holds for low substrate
concentrations, when the saturation effects are negligible.
Below, for the sake of simplicity, we shall restrict ourselves
to this regime (unless stated otherwise).

Note that the ratio of active and inactive messenger
concentrations in the steady state depends on the ratio of

enzyme concentrations: [X# *]/[ X# ] 5 ka[E# a]/kd[E# d]. This
steady state must be contrasted with the thermodynamic
equilibrium, where this ratio would be fixed by the free
energy difference and thus would be independent of [E# a,d].
Thus the signal transduction capability of this enzymatic
circuit is entirely due to its nonequilibrium, dissipative
nature. Each activation-deactivation event dissipates
DGcycle worth of energy; our neglect of reverse reactions is
consistent only to the extent that this energy is large com-
pared tokBT (wherekB is the Boltzmann constant andT is
temperature). The total power dissipation in the steady state
is

P 5 DGcycleGaX# . (4)

Let us now consider the enzymatic circuit set in a certain
steady state—i.e., at a certain “operating point”—and con-
sider the behavior of small deviations about it:DX* [ X* 2
X# * in response to small fluctuations of the “input,”DEa [
Ea 2 E# a. Linearizing Eq. 1 yields

d

dt
DX* 5 2t21~DX* 2 g0DEa!, (5)

where

t ; S Ga

1 1 Ka
21@X# #

1
Gd

1 1 Kd
21@X# * #D

21

< ~ka@E# a# 1 kd@E# d#!
21

(6)

is the time constant of the response which controls how fast
the perturbation decays back to the steady state and

g0 ;
dX# *

dE# a

5
tka@X# #

1 1 Ka
21@X# #

< tka@X# # (7)

is the differential static gain, defined as the change in the
steady stateX# * in response to a small increment inE# a.
Equation 5 can be solved explicitly by Fourier transform.
The response to input modulation at frequencyv: DEa(t) 5
* dveivtDÊa(v) defines frequency-dependent gain:

g~v! ;
DX̂* ~v!

DÊa~v!
5

g0

1 1 ivt
. (8)

(Note thatg(v) is defined as a complex number, the phase
of which fixes the time lag between the input and output
oscillations.) The amplitude of the frequency-dependent
gain decreases rapidly at frequencies higher thant21, so
that high amplification is limited to the frequencies within a
bandwidthDv 5 t21. The maximal gaing0 is achieved at
v 5 0. Note that bothg0 and t depend on the operating
point of this enzymatic amplifier, which is characterized by
(X# , E# a, E# d). From Eq. 8, we see that small, time-dependent

FIGURE 1 Schematic representation of a push-pull amplifier loop. The
messenger moleculeX is activated to the by enzymeEa and deactivated by
enzyme Ed. The activation-deactivation cycle is driven by ATP as a
metabolic energy source.
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variations inEa produce changes inX* according to

DX* ~t! 5 g0E
2`

t

dt9e2(t2t9)/tDEa~t9!. (9)

The beauty and the presumed evolutionary advantage of
the push-pull scheme are in its tunability. Assumingka,dand
Ka,dto be fixed molecular “hardware” parameters leaves the
concentrations [E# a,d], [X# tot] available for tuning. For exam-
ple, the ratio [E# a]/[E# d] controls the fraction of activated
messenger [X# *]/[ Xtot] in the steady state, while the response
time constant may be tuned independently by scaling both
Ea,d concentrations up or down. The gain may be increased
in two ways: 1) by decreasing enzyme concentrations [E# a,d]
and thereby increasing the time constant, or 2) by increasing
the total messenger concentration [Xtot] and hence [X# ]. In-
creasingt corresponds to the longer lifetime of the active
messenger, resulting in larger cumulative changes inX* in
response to a change inEa. However, longt also means that
theX* cannot follow rapid changes inEa: high gain comes
at the expense of sluggish behavior. The compromise be-
tween high gain and fast response is quantified by the
gain-bandwidth product,g0t21, which is bounded because

g0t
21 5

ka@X# #

1 1 Ka
21@X# #

, kaKa. (10)

The productKaka is just the catalytic velocity of the enzyme.
Increasing [Xtot] and therefore [X# ] regulates the gain directly
but ineffectively once the saturation regime [X# ] . Ka is
reached. Also from (4) it is clear that scaling up the total
messenger concentration increases the rate of dissipation.

Phototransduction cascade provides two examples of en-
zymatic amplifier loop (Stryer, 1995) (see Figs. 2 and 3). In
its first (membrane) stage, the activated rhodopsin (Rh*)—
the photoreceptor protein—catalyzes GDP/GTP exchange
and the consequent activation ofa-transducin, G*a (a mem-
ber of the G-protein family). The deactivation of G*a via
GTP hydrolysis is catalyzed by the inhibitory subunit of the
phosphodiesterase PDEg to which G*a binds. Thus Ga plays
the role ofX, Rh* plays the role ofEa, and PDEg plays the
role of Ed. Of course, viewed in full detail, the G-protein
mechanism is more complex than the push-pull cartoon: in
particular, the loop involves the release and recovery of Gbg

subunits. This complication, however, is inessential (which
does not mean that Gbg, itself in many cases (Stryer, 1995)
acting as a messenger, is irrelevant!), while the presence of
the activation/deactivation loop powered by the out-of-equi-
librium GTP/GDP ratio is fundamental.

The “readout” of the G-protein stage (see Fig. 3) is
provided via the activation of the catalytic subunit of PDE
through G*a-PDEg binding. Active PDE* enzymatically hy-
drolyzes cGMP—the active messenger of the second (cyto-
plasmic) stage—down to GMP. cGMP is resynthesized by
a guanylyl cyclase (GC) from the constant supply of GTP

and plays the role ofX* in Eq. 1. Even though in this case
the full messenger activation/deactivation loop, GTP3
cGMP3 GMP, is only closed via a metabolic pathway, the
quantitative analogy with the “push-pull” scheme is unmis-
takable. The quantitative description of the two-stage pho-
totransduction cascade may be found in Appendix A; we
shall discuss its engineering aspects in detail in the section
Enzymatic Amplifier Cascade in Phototransduction.

FLUCTUATIONS AND NOISE

Chemical reactions are stochastic processes, and hence there
are random fluctuations in the number of excited messenger
molecules. The noise caused by these fluctuations deter-
mines how small a signal can be transduced faithfully. The
design of any signal transduction system cannot be under-
stood without considering its noise characteristics.

To that end, let us describe the fluctuations in the push-
pull amplifier loop illustrated in Fig. 1. This amplifier loop
consists of a forward reaction, exciting the messengerX at
a rater1, and a backward reaction involving the deexcita-
tion of X* at a rater2. In Eq. 1, r1 is just GaX and r2 is
GbX*. The fluctuations in the number ofX andX* molecules
are due to the Poisson nature of chemical reactions. Let us
say that during a time intervalDt, the forward reaction
producesn1 more molecules, while the backward reaction
leads to a loss ofn2 molecules ofX*. The net production of

FIGURE 2 Phototransduction cascade. The incident photon activates
rhodopsin, which in turn activated G-protein to form G*GTP. The activated
G-protein binds to PDE and activates it, PDE*. These reactions take place
on the surface of a disc. Activated PDE hydrolyzes cGMP in the cyto-
plasm. The drop in cGMP concentration causes some of the cyclic nucle-
otide-gated channels in the surface membrane of the outer rod segment to
close, reducing the current into the cell and repolarizing it. Synthesis of
cGMP by GC restores its concentration.
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X* is n1 2 n2. The forward and backward reactions are
independent statistical processes. The average number ofX*
produced is just̂n1 2 n2& 5 (r1 2 r2)Dt. Because these
processes are Poissonian, the variance ofn1 is ^(n1 2
^n1&)2& 5 ^n1& 5 r1Dt, and, similarly, that ofn2 is ^(n2 2
^n2&)2& 5 ^n2& 5 r2Dt. The variance of the total increment
of X* is the sum of the two variances, i.e., (r1 1 r2)Dt. This
statistical behavior can be captured mathematically by in-
troducing a time-dependent random noise variableh(t) into
the chemical kinetics equation (Eq. 1),

d

dt
X* 5 GaX 2 GdX* 1 h~t!, (11)

written here for the total number of molecules in a fixed
volume. When this number is large and on a time scale
longer than the microscopic time scale (time scales of order
1/(r1 1 r2), on which single molecules are produced),h(t)
is a Gaussian random function of time with a zero average
^h(t)& 5 0 and a “white noise” autocorrelation:

^h~t!h~t9!& 5 ~GaX 1 GdX* !d~t 2 t9! (12)

(where,d(z) is a Dirac delta function whose value is zero
everywhere except in the infinitesimal vicinity ofz 5 0 and
whose integral overz is 1. The coefficient of the delta
function, which is the strength of the noise, is determined by
equatinĝ *Dt dth(t) *Dt dt9h(t9)& to (GaX 1 GdX*)Dt, which

is the total variance of increment ofX* during the interval
Dt. Equation 11 could be written more generally for the
spatially dependent concentrations with the inclusion of
molecular diffusion, but here we will neglect this effect.
Small stochastic fluctuations about the uniform steady state
(Eq. 3) dX* are governed by the linearization of Eq. 11:

d

dt
dX* 5 2t21~dX* 2 g0dEa! 1 h~t!. (13)

This equation is very similar in structure to Eq. 5, except
that dEa stands for the noise in the input. The contribution
to the variance of the fluctuations,dX*( t), due toh(t) is

^~dX* !2& 5
1

2
t~GaX# 1 GdX# * ! 5

t

Ga
21 1 Gd

21 Xtot, (14)

with ^ & representing the average over the noiseh. This
expression can be obtained using Eq. 12, and the fact that
X# 5 XtotpGd/(Ga 1 Gd) and X# * 5 XtotpGa/(Ga 1 Gd). Note
that here we have not included the fluctuations in the
number of the activating/deactivating enzymes. If substrate
saturation can be neglected in the enzymatic rates, expres-
sion (14) for the variance reduces to (1/X 1 1/X*)21, which
also holds in equilibrium. SinceX* serves as a “readout,”
the left-hand side of Eq. 14 is identified as the output noise
Nout. Note that the r.m.s. fluctuation normalized to the mean
=^(dX*)2&/X# * decreases with increasing total messenger
number,Xtot. Of course, just like an increase in the gain-
bandwidth product, noise reduction comes at a price of
increasing energy dissipation, because the number of acti-
vation/deactivation events per unit time increases withXtot.

In addition to the above output noise, the total variance of
X* includes the contribution of the fluctuation in the en-
zyme number,dEa, which is amplified by the gain factor
and should be thought of as the input noise of the amplifier.
The total variance is given by

^~dX* !2&tot 5 E dv

2p
ug~v!u2^udÊa~v!u2& 1 Nout. (15)

Here, Nout is given by Eq. 14,̂ udÊa(v)u2& is the power
spectrum of the fluctuations in number of active input
enzymes, andg(v), given by Eq. 8, is the frequency-depen-
dent gain. For example, if the activating enzyme is itself
governed by the push-pull process with a time constanttEa

,
one would havêudÊa(v)u2& 5 2tEa

^dEa
2&/(1 1 v2 tEa

2 ). The
frequency integral in Eq. 15 reflects the low-pass filtering
property of theX* response: the magnitude of the gain
ug(v)u2 5 g0

2/(1 1 t2v2) decreases withv. If the bandwidth
of the amplifying stage,t21, is small compared with the
bandwidth of input fluctuations,tEa

21, input noise variance
will be suppressed by a factor oftEa

/t. This is just the effect
of time averaging, because, in that case, the amplifier re-
sponse sums overt/tEa

independent samples of the input.

FIGURE 3 The two amplifying modules in phototransduction. (a) Acti-
vated rhodopsin catalyzes activation of transducin (the G-protein). This
loop is powered by the GTP-GDP hydrolysis. (b) Active phosphodiesterase
hydrolyzes cyclic GMP to 59-GMP; cGMP is synthesized by GC; the loop
is closed by the metabolic process which maintains GTP concentration.
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Noise reduction can be achieved at the price of sluggish
response, i.e., by increasingt.

ENZYMATIC CASCADE

Why does cellular signal transduction often involve multi-
ple steps? The primary engineering benefit of having a
cascade of amplifiers is the ability to achieve higher gain
without compromising the time constant of the response.
Consider, for example, a cascade constructed from a se-
quence of enzymatic loops (Chock and Stadman, 1977) (Eq.
1), with the identification of the activated messenger output
X(n)* of the nth stage with the “input” enzyme of then 1 1st
stage,Ea

(n11). Each stage is endowed with its own set of
kinetic parameterska,d

(n) (andKa,d
(n)) and tunableXtot

(n) andEd
(n).

With the latter two parameters per stage one can control
both the time constanttn (via Ed

(n)) and the static gain,g0
(n)

5 tn(ka
(n)[X# (n)]/(1 1 (Ka

(n))21[X# (n)])) in each stage. If the
cascade performance specifications require a certain overall
zero frequency gain,g̃0, how should the parameters of the
individual stages be set to achieve maximum bandwidth for
the cascade?

As long as we consider only linear response to small
inputs, the overall gain of the cascade is just the product
over the stages:

g̃~v! 5 P
n51

nc

g(n)~v! 5 P
n51

nc g0
(n)

1 1 itnv
, (16)

wherenc is the number of cascade stages. Our requirement
for the overall gain implies)n51

nc g0
(n) 5 g̃0. Because each of

the stages obeys the bound (Eq. 10), we obtain a constraint
on the time constants,

P
n51

nc

tn
21 #

)n51
nc ka

(n) Ka
(n)

g̃0

. (17)

We can generally define the overall time constant as the
maximum of the time constants of the individual stages, i.e.,

t̃ 5 max~t1, . . . ,tn!. (18)

The total bandwidth,t̃21, is maximized, under the con-
straint of Eq. 17, by making all time constants equal:

tn 5 t̃.

Thus, the maximum bandwidth, which is achieved by set-
ting all of the time constants to be equal, is

t̃21 5
~)n51

nc ka
(n) Ka

(n)!1/nc

g̃0
1/nc

.

When the catalytic velocities,ka
(n)Ka

(n), are all comparable,
increasing the number of stages,nc, increases the bandwidth
or equivalently decreases the response time. The “speed”

comes at a price of higher energy dissipation in the case of
the cascaded amplifier because every stage requires an
energy supply.

Another hidden “cost” of the cascade is the noise. As we
have seen in the previous section, the gain in each stage has
to be sufficiently large for the signal-to-noise not to deteri-
orate because of the shot noise introduced in every stage.
That precludes the temptation to build a cascade with a large
number of steps and a small gain per stage.

ENZYMATIC AMPLIFIER WITH FEEDBACK

Response characteristics of the amplifier may be controlled
and modified via feedback. Imagine, for example, that the
output [X*] of the push-pull circuit affects the “production”
or influx of molecular speciesC:

d

dt
@C# 5 2tC

21@C# 1 F~@X* #!, (19)

which in turn regulates the activity of, say, deactivating
enzyme, so thatEd 5 Ed

totH([C]) (i.e., only a fraction,
H([C]), of the total numberEd

tot are active). FunctionF in
(19) denotes the influx (or production) ofC, and tC

21 de-
notes the rate of its outflux (or destruction). In phototrans-
duction, as well as in many other cases, the feedback signal
is Ca21 (see Appendix A), which regulates enzymatic ac-
tivity via an intermediary Ca-binding proteins. Including the
C dependence in Eq. 1 and linearizing it together with (19)
yields

t
d

dt
DX* 5 2DX* 1 gXCDC 1 g0DEa (20)

tC

d

dt
DC 5 2DC 1 gCDX* (21)

with gxc 5 2tkd[Ed
tot]X# *dH/d[C] andgC 5 tCdF/d[X*]. The

above equations can be solved using Fourier transforms.
The response ofDX as a function ofDEa in Fourier space is
given by

DX̂~v! 5 gf~v!DÊa~v!,

with the effective gain,gf, given by

gf~v! 5
g0~1 1 ivtc!

2ttcv
2 1 iv~t 1 tc! 1 1 2 gcgxc

. (22)

At very low frequencies the gain is

gf~0! 5
g0

Y
. (23)

Therefore the static gain is divided by a gain reduction
factor,

Y 5 1 2 gcgxc. (24)
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Negative feedback corresponds to eithergxc or gc negative,
so thatgxcgc , 0 andY . 1, in which case the effective
static gain is reduced.

Because of the additional dynamical variable,C, the
temporal response ofDX* becomes more complex and
involves two time constants. Consider the response to a
small step inDEa. Suppose for simplicitytC .. t. In that
case the feedback effect is slow and the response peaks at
DX*peak ' g0DEa (the static response value without feed-
back) at the time of ordert. Relaxation to the lower,
asymptotic value,DX*s 5 gf(0)DEa, occurs as the feedback
switches on, on the time scale oftfbk 5 tC/Y. In the
opposite limit of fast feedback,tC ,, t, there is no peak in
the step response, which goes directly towardDX*s with a
time constantt/Y. The two limits are compared in Fig. 4.
(For t ' tc the system has damped oscillatory response.)

The static input-output mapX*(Ea) and the dependence
of the differential gain on the signal level involve the details
of feedback coupling,F([X*]) and Ed

totH([C]).
We saw here that the feedback loop is characterized by

two parameters: the feedback factorY and the time constant
tC. In the case of Ca feedback (discussed in Appendix A)
the latter is controlled by the number of Na/K/Ca exchang-
ers which pump Ca out of the cell. The gain, on the other
hand, is controlled by the number of Ca-binding proteins
which mediate its effect on the push-pull loop enzyme
(guanylyl cyclase in the case of phototransduction). Most
significantly, the introduction of feedback allows one to
decouple the fast and slow responses by introducing a slow
time scale. In the case of phototransduction, the slow time
scale is associated not with Ca recoverytc (as in the above
example) but with the intermediate Ca-binding proteins
acting as Ca buffers (see Appendix B).

MINIMAL REQUIRED GAIN AND MINIMAL
MESSENGER CONCENTRATION

How much gain should a signal transduction cascade have?
The input signal must generate a significant change at the
output, which means a change that is unlikely to be pro-
duced by a spontaneous fluctuation of the output substance.
Hence, amplification must be sufficiently strong for the
signal to be larger than the root mean square (r.m.s.) noise
of the output,=Nout. On the other hand, the minimal
significant input signal is set by the r.m.s. input noise=Nin.
(Here, Nin is not quite the fluctuations in the input but
includes the frequency dependence of amplification and is
defined as*(dv/2p)^udÊ(v)u2&/(1 1 v2t2).) Detectability of
this signal requires

g0 .
ÎNout

ÎNin

, (25)

which puts a lower bound on required gain. Of course, the
noise may always be reduced by increasing the time con-
stant t of the amplifier, but this comes at a price of a
sluggish response to interesting stimuli. Therefore in our
discussion we assumet to be fixed at its upper bound
determined by the temporal response requirements. Under
this condition, both signal and noise inX* fluctuate with the
same time scale, namelyt. Thus, further filtering of this
output does not improve signal detection.

For the push-pull enzymatic circuit, the input noise would
be set by spontaneous fluctuations of the input enzyme
concentration^d[Ea]

2& and the output noise bŷd[X* ]2&.
Because gain is proportional to the concentration of mes-
senger molecules, Eq. 25 implies a lower bound on the
required messenger concentration:

@X# .
1

tka
ÎNout

Nin
(26)

(with the saturation effect included, one finds that Eq. 26
can be satisfied only if=Nout/Nin does not exceed the
maximal gaintkaKa (Eq. 10). Note that although the vari-
ance of both input and output noise scales linearly with the
total number of participating molecules (as appropriate for a
Poisson process), their ratio depends only on concentrations
and is independent of the cell volume. Let us estimateNout

according to Eq. 14 and assume for simplicity that the time
constant ofdEa fluctuations,tEa

, is equal tot, so thatNin '
^dEa

2&. In the regime below saturation, [X# ] ' tkd[E# d][Xtot]
(according to Eq. 3), and one finds explicitly

@Xtot# .
1

tka

1

tkd@E# d#

E# a

^dEa
2&

. (27)

Note that the right-hand side of Eq. 27 depends on the
“operating point,” i.e., the steady-state concentrations [E# a].
In the limit of [E# a] 3 0, t21 ' kd[E# d] from Eq. 6 and with

FIGURE 4 Frequency response with feedback: amplitude of the frequen-
cy-dependent gain,ugf(v)u, as a function of frequency,v. Slow feedback
response, i.e., largetc, is shown by the solid line; the fast feedback
response is shown by the dashed line; and the case with no feedback is
shown by the dot-dashed line.
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the Poisson statistics assumption (^dEa
2& 5 E# a), the bound

reduces to [Xtot] . kd[E# d]/ka. We shall return to this inequal-
ity and the role it plays in constraining the relative abun-
dance of enzymes in a signal transduction cascade in the
section Enzymatic Amplifier Cascade in Phototransduction.

OPTIMIZATION OF INPUT/OUTPUT RELATION
AND ADAPTATION

In the previous section we established the lower bound on
the gain necessary to resolve the smallest significant input.
More generally, one must consider the performance of the
transduction system over the full range of stimuli. It is
typically desirable to transduce as broad a dynamic range of
the input signal as possible. Setting the amplification gain
too high is bad, as it will reduce the dynamic range by
causing the output to saturate. While detectability of weak
stimuli puts a lower bound on the differential gain at low
background stimulus, the dynamic range consideration con-
strains the gain over the whole input range. Under condi-
tions of a wide input dynamic range, a compromise between
the two is required. The optimal input/output relation for a
transduction system is determined by information theoretic
considerations (Cover and Thomas, 1989), which formalize
and extend the argument given in the previous section.
Some of the details are relegated to Appendix D.

Generalizing the discussion in the previous section, we
consider signal transduction as a mapping of an input vari-
able, sayy, measurable with an accuracy set by the r.m.s.
noise =Nin(y) to an output variablez 5 f(y) measurable
with accuracy=Nout(z). In phototransduction, the input is
the light intensity with the measurement uncertainty set by
the photon shot noise, and the output is the neurotransmitter
with uncertainty set by shot noise in the vesicle release.
Information theoretically, the “quality” of signal transduc-
tion can be quantified via mutual information, which mea-
sures the degree of certainty about the input valuey gained
from observing outputz. The optimal input/output mapping
is the one which maximizes this mutual information. It
depends not only on the noise properties but on the statis-
tical distribution of inputs, i.e., probabilityP(y) of input
value being betweeny andy 1 dy. The r.m.s. noise levels,
Nin

1/2(y) and Nout
1/2(z), define just noticeable differences iny

andz, respectively, and provide the natural units for these
quantities; e.g., dy/Nin

1/2(y) counts the number of distinguish-
able input states in a small interval dy. In the limit where the
number of distinguishable output states is much smaller
than the number of distinguishable input states, it has been
demonstrated (Laughlin, 1981) that the optimal input/output
mapping is the one which makes all distinguishable states of
the output occur with equal probability. The latter is
achieved ifz(y) is chosen to satisfy dz/dy 5 cNout

1/2(z)P(y)
(with the constantc fixed by imposing the output dynamic
range constraint:* dy dz/dy 5 zMax).

To illustrate the relation of the input signal statistics with
the optimal input/output relation, let us consider the case of
phototransduction under the high light (photopic) conditions
handled by the cones. It has been argued forcefully (e.g., see
Shapley, 1989) that the natural variation in light intensity is
due to the variable reflectivity of objects and hence occurs
on a logarithmic scale. Assuming for the number of photons
absorbed per characteristic timet a log-normal distribution
P(y) 5 (=psy)21 exp(2s22(ln(y/y#))2) (parameterized by
the median intensityy# and a dimensionless variances ' 1)
would lead to an input/output relation with the formz ' z0

ln(y/y#) 1 const., in some intermediate range ofy. This
implies dz/dy ' z0/y, i.e., progressive desensitization with
increasing input intensity. The latter is known empirically
as the Weber law (Naka et al., 1987; Normann and Perlman,
1979).

Now suppose that the statistical properties of the input
vary slowly in time. For example, the statistics of light
intensity may be measured over a single scene but will
change slowly as the sun rises. Instead of “tuning” the
response on the basis of the full-time independent distribu-
tion, which lumps together the intensity data at all times of
day, it would be beneficial to tune in accordance with the
“current conditions” quantified by the short-term statistics.
The slow time evolution of the short-term statistics is plau-
sibly well parameterized by mean intensity (over immediate
past), which is readily measurable. To remain optimal at all
times, the input/output mapping of the transduction cascade
must be able to change along with the change in the input
distribution—the system must adapt—and equation relating
the desired input/output relation with input statistics gives a
precise and quantitative definition of optimal adaptation.
The notion of adaptation as a slow change in the input/
output mapping in response to a change in input statistics
must be contrasted with the dependence of the differential
response on input level, which simply reflects the nonlin-
earity of the input/output mapping. Adaptation in general
must also not be confused with the often desirable property
of not responding to static input; e.g., gradient detection in
bacterial chemotaxis requires a purely transient response,
which is often referred to as “absolute adaptation”
(Koshland et al., 1978).

To confront this engineering view of adaptation with
biological reality, we replot in Fig. 5 the data of Normann
and Perlman (1979) for the turtle cone voltage response to
light pulses on different light backgrounds,Ib, and compare
it with the input/output curves optimized for the log-normal
distribution,P(I/I#), parameterized by its medianI#. Ignoring
variation in the base level and saturation voltages, the re-
sponse curves are related by a horizontal shift parameterized
entirely by I#. This shift of the response is the adaptation
effect and may be accounted for by a change in overall
cascade gain. However, while for the intermediate back-
ground intensities the response is close to optimal, the
readjustment of the median responseV(I#) is smaller than
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what would be expected for the ideal adaptation to the input
with median intensityIb. The adaptation is imperfect!

ENZYMATIC AMPLIFIER CASCADE
IN PHOTOTRANSDUCTION

We have already invoked phototransduction as an example
at several key points of our discussion. In brief, phototrans-
duction (Stryer, 1995) in retinal rods and cones of the
vertebrates involves down-regulation of neurotransmitter
release in response to light which proceeds via a number of
steps, as shown in simplified form in Fig. 2. Photoactivated
rhodopsin, Rh*, catalyzes GDP/GTP exchange activating
transducin-a, G*, which in turn activates phosphodiesterase
(PDE)—this, as discussed earlier, constitutes the first stage
of amplification. In the second stage, the increased activity
of PDE reduces the concentration of cyclic GMP, causing
the closure of cGMP-gated Na channels and the repolariza-
tion of the cell. The response recovery involves deactivation
of the Rh*, which proceeds via phosphorylation by rhodop-
sin kinase followed by arrestin binding. The complex of
transducin-a with the inhibitory subunit of PDE decays via
hydrolysis of bound GTP, causing deactivation of PDE. The
concentration of cGMP is restored through the action of GC.
The deactivation processes are regulated by Ca concentra-

tion (Koutalos and Yau, 1996), which provides the major
feedback signal; the temporary closure of the CNG channels
causes a rapid drop in Ca level thanks to continuous action
of the Ca/K/Na exchanger. All of the above processes, at
least in rods, have been characterized in considerable quan-
titative detail (for reviews see Stryer, 1991; Baylor, 1996;
Lamb and Pugh, 1992; Bownds and Arshavsky, 1995;
Koutalos and Yau, 1996).

What determines the design characteristics of the rod
cell? What are the engineering considerations which set the
operating point of the amplifier, its gain, and time constant?
How can the appropriate tuning be achieved through adjust-
ing concentrations of enzymes?

Under the low light conditions relevant to rod phototrans-
duction, the main consideration is the gain required for
single photon resolution. As emphasized earlier, the mini-
mum gain depends on the noise characteristics of different
stages and ultimately on the noise in the readout, the vesicle
release rate. Unfortunately, whereas the enzymatic cascade
leading to repolarization of the rod outer segment (ROS) is
well documented, the mechanism by which the changes in
the membrane potential are transduced into the modulation
of the neurotransmitter-containing vesicle release is less
clear (Rieke and Schwartz, 1996). However, we will only
need an order-of-magnitude estimate of the minimal signif-
icant modulation of the ROS membrane potential, and we
shall circumvent the lack of detailed knowledge of the
processes in the inner rod segment by assuming that relative
change in the release rate is of the same order as the
fractional change of ROS current (proportional to the num-
ber of open channels Ch*).

Let us first consider the setting of the operating point of
the ROS, defined by the number of channels open in the
dark state and the corresponding membrane potential. As-
suming each open channel has a conductancesCh, the total
conductance of the outer segmentsout 5 sChCh*. The cell
potential is determined by the condition that charge influx
into the ROS is balanced by the charge outflux from the
inner segment. Quite generally (a special case is discussed
in Appendix A),V 5 vf(Rin sout), with membrane potential,
V, defined relative to the saturation voltage corresponding
to a high incident light level.V is a function of the ratio of
resistance of the inner segment,Rin, to that of the outer
segment,sout

21, with v setting the dynamic range for the
variation ofV. By our definition, as channel closesout3 0
the functionf3 0 andV3 v (i.e., f3 1) assout3 `. One
expects that the half-maximum ofV occurs forRinsout ;
o(1) (meaning “of order 1”). Hence, the operating point of
the rod in the dark should be set so that the resistance of the
outer segment is of the same order of magnitude as the
resistance of the inner segment, which provides an order-
of-magnitude estimate for the number of open channels in
the dark: Ch*dark; 1/RinsCh. Based onsch ' 0.1 pS (Bodoia
and Detwiler, 1985) andRin ' 0.4 GV (Rieke and
Schwartz, 1994), one arrives at Ch*dark ; 4 3 103—quite

FIGURE 5 Adaptation in turtle cones: adaptation data for turtle cones
from Normann and Perlman (1979). Points correspond to a peak voltage
response to short pulses with intensityI (in arbitrary units) superimposed
on the steady backgrounds.{, Dark-adapted response;h, lnIb 5 24.4;‚,
lnIb 5 23.2; p, lnIb 5 22.1;E, lnIb 5 21. Fitting curves have the form
of the optimal input/output function for log-normal input intensity distri-
butions:V(I) 5 aErf(s21ln(I/I#)) 1 b. Parameters 5 1.15 is the same for
all fits, while a and b adjust for the drift of the base and the saturation
voltage of the experiment. The horizontal translation of the fitting functions
is controlled byI#. Data in order of increasingIb fit by curves withlnI# are
24.4, 23.8, 23, 22.3, 21.3. To the extent thatI# is not exactly the
background intensity, adaptation is not perfect.
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comparable with estimates based on resting dark current
(Rispoli et al., 1993). The setting of the operating point is
dictated by impedance matching! (An additional constraint
is the time constant of the voltage response limited byRinC
(whereC is the membrane capacitance), which should not
exceed;1 s required of the overall response. HenceRin

cannot be too large, and therefore Ch* and the dark current
cannot be made too small.)

Next we address the issue of the minimal required cas-
cade gain, for which we need an estimate of the readout
noise. In the dark, the vesicle release rate (Rieke and
Schwartz, 1996),rv, is ;103 s21. As the intensity of light
increases and the cell repolarizes, this rate eventually falls to
zero. Assuming Poisson noise in the release process and a
;1 s time scale for the response, we estimate the minimal
significant modulation to be on the order of 1/=103, or
;1/30 of the dark rate. Because we assume that relative
change in the release rate is of the same order as the
fractional change in Ch*, the minimum significant modula-
tion of Ch* is given by

dCh*

Ch*
,

1

30
. (28)

This condition will determine the minimal required cascade
gain. The fractional modulation of the open channel number
compares well with experimental observations in many
species (Stryer, 1991).

Let us compute the voltage response to a small change in
the number of active rhodopsins. If the relevant output is the
fractional change in Ch*, we should define “photosensitiv-
ity” as the change in ln Ch* in response to an incremental
change in the number of active Rh receptors:

d ln Ch*

dRh*
5

d ln Ch*

dPDE*

dPDE*

dRh*
, (29)

reflecting the multiplicative nature of gain in the cascade
(see Enzymatic Cascade, above). The first and second fac-
tors on the right-hand side of Eq. 29 are directly related to
the static gain factors of the cGMP and the G-protein
amplification stages.

The gain factors for the two stages are calculated in
Appendix A. We have

dCh*

dPDE*
5

dCh*

dcGMP
g2 5 3

Ch*

cGMP
g2, (30)

where, from Eq. 41,g2 5 tcGk*cG[cGMP] is the gain of the
cGMP stage (tcG is the time constant for cGMP andk*cG is
the rate constant for cGMP hydrolysis by PDE*). This
expression for the gain of the first stage is given by

dPDE*

dRh*
5 g1 5

tHkRh*@G#

1 1 KG
21@G#

, (31)

where g1, defined in Eq. 37, is the static gain of the G-
protein stage, wheretH is the time constant for active G*a
and kRh* is the rate constant for Ga activation by Rh*.
Curiously, the total gain is independent of [cGMP] and of
the total number of channels Ch and depends only on the
cell volume, Vol. This is because only the combination
Ch*21dCh*/dPDE* 5 3tcGk*cG/Vol enters (Eq. 29). The
same change in the number of cGMP molecules would have
a greater effect on the [cGMP] and hence on the fraction of
open channels if it were distributed over a smaller cell
volume. In deriving the above expressions for the gain we
assumed that the time constant of Ca feedback is consider-
ably longer than the;1 s characteristic time of the weak
flash response. In that case the peak response can be esti-
mated from the static gain in the absence of feedback (see
Enzymatic Amplifier with Feedback, above).

Equation 28 implies a lower bound on the required am-
plification gain, which we shall write in the form

d ln Ch*

dRh*
5

3tcGk*cG

Vol
g1 .

1

30
. (32)

With tcG ' 1 s andk*cG ' 50mM21s21, the lower bound on
the gain of the G-protein stage isg1 . Vol(mm3)/10 ' 102.
The gain of the G-protein stage is given by (see Appendix
A) g1 5 tHkRh*KRh*/(1 1 KRh*[G]21). The maximum gain
g1 Max 5 tHkRh*KRh* ' 1000 (whereKRh ' 20 mM (Stryer,
1991), assumingtH ' 1 s) is achieved in the limit of
[G]/KRh3 `. We arrive atg1 . 102, which requires that
concentration of transducin must satisfy [G] $ 0.13 KRh '
2 mM. The reported value of [G] ' 100 mM (Lamb and
Pugh, 1992) is well above the bound. Our bound becomes
tighter if we include in the estimate the reduction of the gain
due to negative feedback. The known Ca feedback pathway
operating via GC reduces the gain of the second stage by
factor Y ' 5–10. In that case one findsg1 . 102Y, which
implies [G] . KRh.

One must also compare the amplified signal to the spon-
taneous fluctuations. For instance, the number ofG* mol-
ecules produced by the single Rh isomerization must exceed
the root mean square spontaneous fluctuation ofG*. Pro-
ceeding along the lines described above (see Minimal Re-
quired Gain and Minimal Messenger Concentration), we
find that g1 . =G* . The rate of spontaneous (i.e., in the
dark) activation of Ga is believed to be;2 3 1025/s (Fawzi
and Northrup, 1990). Conservatively assumingG*/G '
1024 and takingG 5 4 3 108 (Lamb and Pugh, 1992)
results ing1 . 200, which as we just saw above is indeed
satisfied. It is clear, however, that sufficiently low sponta-
neous activation of Ga is essential for single-photon detection.

Next we compared ln V to the spontaneous fluctuations
which arise in the outer segment. It may be shown that the
thermal fluctuations ofV and the fluctuations of Ch* are
irrelevant (e.g., the r.m.s. voltage fluctuations are of order
=2kBT/C ' 132 25mV, which is small compared to;400
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mV in single-photon responses. (The ROS capacitance de-
pends on the total area of the cell membrane with a capac-
itance of;0.01 pF/mm2. The total capacitance is species
dependent and is;15–50 pF. In lizards, this is;40–50 pF
(Rispoli et al., 1993).) TheV output noise due to the
fluctuations of cGMP (Rieke and Baylor, 1996) is
(d ln Ch*/dcGMP)dcGMPr.m.s. ' 3/=cGMP ' 1023 (ob-
tained by using the observed concentration of [cGMP] in
rods ' 5 mM or 3 3 106/ROS) (Stryer, 1991; Lamb and
Pugh, 1992). Evidently this output noise is well below the
required significant modulation. Had the number of cGMP
molecules been less than;104, this contribution to output
noise would have been nonnegligible. The observed con-
centration of cGMP clearly satisfies the bound imposed by
the minimal signal-to-noise condition. The major constraint
on [cGMP] comes from the impedance matching condition
discussed earlier, which fixes Ch*dark. Because Ch*dark '
Ch([cGMP]/KcG)3 (see Appendix A), reducing [cGMP]
while keeping Ch*dark constant would require a drastic in-
crease in the total number of channels.

Now, let us examine the tuning of the time constantstH,
tcG of the two amplification stages and of the time constant,
tRh*, governing Rh* shut-off. The time constants of the two
amplification stages enter the gain productg1g2 ' tHtcG. In
the low light regime, the gain is to be maximized. Hence,
the optimal choice is to settcG 5 tH and make it as large as
is consistent with the required response bandwidtht21, as
we showed earlier (Enzymatic Cascade, above). Having
input tRh* . t would compromise the bandwidth, while
tRh* , t would reduce the peak response to flash stimulus.
(By considering the full-time dependent response one can
show that the peak is controlled by the second slowest time
constant. The first slowest time constant sets the recovery
time scale.) We conclude that optimal tuning would be
tcG 5 tH 5 tRh*. The appearance of three comparable time
constants corresponds to a particularly simple response time
course: (t/t)2e2t/t, which provides a reasonable fit to the
measurements (see Fig. 6) (Baylor et al., 1974; Lamb and
Pugh, 1992; Rieke and Baylor, 1998). In fact a more careful
fit of the single response data from Rieke and Baylor (1998)
indicates that there are four matching time constants. The
possible origin of the fourth equal time constant will be
discussed in an upcoming paper (Ramanathan et al., manu-
script to be published). The equality of time constants
provides a perspective on the debate (Nikonov et al., 1998;
Pepperberg et al., 1992) concerning the limiting step in the
response recovery. The disagreement in the literature stems
from the observation that slowing down either the Rh*
inactivation process (increase intRh*) or the hydrolysis of
Ga

GTP (i.e., deactivation ofG* and increase intH) prolongs
the flash response. Both observations of course are consis-
tent with the case of time constant matching. We emphasize
that the above analysis has identified the relevant slow time
scales specifically as those necessary for the achievement of
sufficient gain: the detailed kinetics of the G-protein loop or

the CNG channel would introduce many additional fast time
scales which are not essential. In contrast, reducing any of
the time constantstcG, tH, tRh* reduces the transduction
gain.

Let us now consider the role of feedback. We have
discussed the flash response under the simplifying assump-
tion that the feedback time scale is much longer than the
characteristic response time,t ' 1. To be precise, in the
context of the previous discussion (Enzymatic Amplifier
with Feedback, above), one needs the characteristic time of
the feedback to satisfytC .. 4Yt. In that limit, the effect of
Ca feedback only enters in the steady-state response, estab-
lishing the steady-state [cGMP]ss as a function of back-
ground light intensity. The response to a step stimulus will
exhibit a peak followed by slow relaxation to a new steady
state—a behavior which may be thought of as adaptation. If
tc is close to 4Yt, there is no clear separation of time scales
between the transient forward cascade and the onset of
feedback. In this case, the feedback also attenuates the peak
response. Thus, in general, feedback affects the response to
weak flashes in two ways: 1) changes of the steady state
(i.e., adaptation) and 2) direct reduction of peak response
(i.e., attenuation). We have seen above that the maximum
gain available in the cascade is about an order of magnitude
higher than that required for single-photon detectability,
which allows for a gain reduction factorY , 10. It can be
shown from the steady-state conditions that the introduction
of feedback not only reduces the differential gain at low
light intensity, but also generates a compressive nonlinear-
ity V ' Ia of the input/output relation (e.g., see Fig. 7). For
example, assuming Ca feedback acting only through the GC
rate, kGC(Ca) ' [Ca]2n, yields a 5 1/(n 1 1/3), with n
between 2 and 4 (Koch and Stryer, 1996). The compressive

FIGURE 6 Single-photon response: measured average single-photon re-
sponse of a rod cell and the fitting function. The solid curve is the
experimental data from Rieke and Baylor. The dot and dashed line shows
the best fit to the form (t/t)2e2t/t with t 5 0.92 s. A fit to the form,
(t/t)3exp(2t/t), is shown by the dotted line witht 5 0.66 s.
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nonlinearity may be desirable, as it extends the dynamic
range of the flash response. This could be advantageous
when there are intermittent high-intensity bursts of light on
an otherwise low-light-intensity background.

Remarkably, all of the engineering parameters, gains and
time constants, that have appeared in this discussion depend
explicitly on the concentration of one or another molecular
species and therefore can be independently tuned. We con-
clude this section by summarizing these dependences de-
rived in Appendix A, in Table 1.

CONCLUSION

In the preceding sections we have attempted to present a
general view of enzymatic signal transduction, first by
breaking up the complex biochemistry into amplifier mod-
ules; second, by characterizing the modules in terms of the
relevant engineering parameters; and third, by identifying
the information theoretic considerations which govern the
“tuning” of these parameters. An enzymatic push-pull cir-
cuit provides the simplest example of a chemical amplifier

and illustrates the fundamental requirement for energy dis-
sipation and the equally fundamental tradeoff between high
gain and fast response. The key engineering criterion gov-
erning the design of the amplifier concerns its noise char-
acteristics compared with the noise level of the input signal.
The enzymatic amplifier noise is due to the Poisson nature
of chemical reactions and can be controlled by increasing
either the total number of messenger molecules at a cost of
increased dissipation or by increasing the time constant at
the expense of fast response. The noise considerations lead
to the minimal gain requirement and establish a lower
bound on the necessary messenger concentration. These
requirements are quite general in nature and arise in the
information theoretic analysis of signal transduction when
one attempts to determine the form of the input/output
relation which maximizes the rate of information transfer.

Applying our reasoning to rod cells, we demonstrated
how the engineering constraints of phototransduction at low
incident light intensity can be met by a suitable choice of
enzyme concentrations. It appears that all of the relevant
parameters (i.e., gains and time constants) can be regulated
in this way. Conversely, functional requirements put bounds
on the concentrations of various enzymes. These bounds
establish a domain of concentrations which provide viable
engineering performance, i.e., information transfer from
input to output. One could minimize energy dissipation for
a given rate of information transfer by optimizing the ratio
of enzyme concentrations. However, we found that such
minima tend to be shallow and are likely to be superseded
by other constraints arising in the process of cell develop-
ment. This extended domain of viable performance may
allow for diversity in the enzymatic composition of cells.

To the extent that noise-induced fluctuations are small
compared with the steady-state concentrations, they can be
discussed within the linear response framework (see Basic
Enzymatic Amplifier, and Fluctuations and Noise, above).
The minimal gain requirement is the constraint on the
differential gain, i.e., amplification of small changes in the
input. The consideration of weak input detectability is com-
plemented by the considerations of the dynamic range:

FIGURE 7 Static response with feedback: the dependence of the static
input/output relationship on the feedback. The curve on the top is in the
absence of feedback and saturates at a much smaller value ofEa.

TABLE 1 Parameter dependence on molecular species

Engineering
parameters Control parameter Dependence

g1 (Eq. 37) [G] at fixed tH tH

kRh*@G#

1 1 @G#/KRh*

g2 (Eq. 41) [GC] at fixedtcG and [Ca] tcGk*cG[cGMP]
tH [RGS9-1 protein] Unknown
tcG (Eq. 40) [PDE] (kPDE[PDE])21

tRh* [Rhodopsin kinase], [arrestin] Unknown
sout (Eq. 42) Number of CNG channels, at fixed [cGMP] sChCh([cGMP]/KcG)3

tfbk [GC activating protein] See Appendix B

Y (Eq. 47)
[Ca], controlled by number of Ca/Na/K exchangers,

at fixed [cGMP]; [GCAP] via KD (Eq. 49) 1 1 6
@Ca#2

KD
2 1 @Ca#2
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because output saturation limits the response to strong in-
puts, the overall information throughput of the signal trans-
duction system is maximized when the differential gain is
kept at the minimum set by the noise level. This balance is
made quantitative (Optimization of Input/Output Relation
and Adaptation, above, and Appendix D) via information
theory. The resulting “theoretically optimized” differential
gain varies with input in a nontrivial way which depends on
the statistics of external stimuli. Quite generally, the optimal
input/output relation is sublinear, so that the differential
gain decreases with signal level. Tailoring the shape of the
input/output relation requires more tunable parameters than
the simplest push-pull circuit can provide; this is achieved
by a cascade of amplifier loops with negative feedback.
Furthermore, as the required input/output relation depends
on input statistics, better performance is achieved if the
system can adapt to the prevailing conditions as they change
with time (e.g., average light level). This adaptation requires
that there be a “memory” of the recent input. In the simplest
form, adaptation can be implemented by a feedback loop
which is capable of modifying the temporal response of the
amplifier and allows one to independently control the in-
stantaneous and steady-state responses. Hence in the section
Enzymatic Amplifier with Feedback, we discussed the
properties of a generic enzymatic feedback circuit, and in
Appendix A, the properties of one of the Ca mediated
negative feedback loops in phototransduction. Negative
feedback provides both the attenuation of the instantaneous
differential response to strong stimuli and the decrease in
sensitivity (to small input increments) as the background
gets stronger. Adaptation, as we see it, goes beyond atten-
uation of response to stronger stimuli. It is the capacity of
the system to modify its characteristics (e.g., gain) on a slow
time scale, in response to a change in the statistical prop-
erties of the input. Thus the fundamental issue in adaptation
is its time-scale dependence. It is likely that within the
phototransduction cascade, adaptation occurs on a broad
range of time scales ranging from seconds to minutes to
perhaps days. The different Ca feedback loops (Koutalos
and Yau, 1996) may correspond to different relatively short
time scales (less than a minute), and this issue deserves
further investigation. It is conceivable that other, yet un-
known feedback mechanisms operate in rod cells on even
longer time scales.

The “tunability” of signal transduction characteristics of
an enzymatic cascade via concentrations of its molecular
components has been the main theme of the present work.
Whereas biochemical systems are often studied and dis-
cussed with the emphasis on kinetic constants and often
remarkable catalytic efficiencies of their key enzymes, it is
evident that on the time scale short compared with signifi-
cant evolution of individual proteins, the behavior of an
enzymatic system is “controlled” by the concentrations of
its molecular components. The latter are the only parameters
available to evolution in constructing, from nearly con-

served components, signal transduction systems functioning
under diverse conditions. Thus it will be interesting to
compare enzyme concentration levels between rods and
cones, between different species, and ultimately between
different G-protein-coupled cGMP mediated cascades (e.g.,
taste transduction; Kolesnikov and Margolskee, 1995).

An amusing example of this “tunability principle” is
provided by the time constant ofG*a, a key parameter
determining the gain in the first stage of phototransduction.
It is controlled by the rate of GTPase activity ofG*a, which,
in the preliminary version of this manuscript, entered as a
kinetic parametertH

21. Recent work (Chen et al., 2000) has
demonstrated thattH

21 is in fact regulated by the RGS9-1
(“regulator of G-protein signaling” protein) and thus can be
controlled by its concentration! Because decreasingtH is
one of the most direct ways of reducing the transduction
gain, it may turn out to play a role in adaptation (perhaps in
cones, where attenuation of the static response is more
pronounced).

Feedback effects regulate transduction characteristics
through allosteric modification of enzymatic activity. Ulti-
mately, however, the system properties are “encoded” in
total amounts of different proteins, which are determined
via complex mechanisms of transcription and translation
control competing with protein degradation. Is it possible
that the set of enzyme concentrations is not entirely deter-
mined as a heritable property subject to selection, but is
controlled at least in part by some form of intracellular
feedback linking gene expression with the functional state
of the cell? For example, could prolonged saturation of ROS
result in changes in enzyme concentrations so as to reduce
transduction gain and bring the cell out of saturation? It is
not too difficult to imagine a biochemically plausible real-
ization of such a mechanism. The result of such “functional
feedback” would be self-tuning of the cascade. An example
of such self-tuning has been described (Turrigiano, 1994) in
a different context. This issue may be addressed through the
study of genetically modified animals. For example, over-
expression of GC in rods is expected to result in higher
cascade gain. It may be counteracted, however, in a number
of ways: e.g., reduction of the number of channels, increase
in [PDE], GCAP-mediated shift in the Ca feedback gain,
etc. An observation of any such compensatory change
would indicate the existence of “intracellular plasticity.”
Quantitative understanding of the basic enzymatic cascade
opens the way to the study of potentially more complex
regulatory processes underlying robust functionality.

APPENDIX A: QUANTITATIVE DESCRIPTION OF
PHOTOTRANSDUCTION IN THE ROD
OUTER SEGMENT

In this appendix, we review the chemical kinetic equations governing the
cascade (Lamb and Pugh, 1992; Tranchina et al., 1991). The light detection

Engineering Aspects of Signal Transduction 2813

Biophysical Journal 79(6) 2801–2817



step is modeled by

d@Rh*#/dt 5 ~s2I 1 gs!@Rh# 2 tRh*
21 @Rh*#, (33)

whereI is the incident light intensity,s2 is the absorption cross section, and
[Rh] and [Rh*] are the concentrations of rhodopsin and metarhodopsin II,
respectively. The spontaneous activation rate of Rh,gs ' 10211 s21, is
very small (Stryer, 1991). Though the deactivation of excited rhodopsin
involves multiple steps, here we will assume that it effectively occurs in a
single step with a time constanttRh*. This time constant is set by the
activity of rhodopsin kinase and arrestin, which are modulated in turn by
intracellular [Ca] (Koutalos and Yau, 1996).

The encounter and interaction of excited rhodopsin with many G protein
molecules causes each of them to release GDP and bind GTP to produce
Ga-GTP (G*) at a ratekRh[G]/(1 1 [G]/KRh). Ga-GTP then activates
cGMP phosphodiesterase (PDE) with a rate constantK2. The rate equation
for the concentration of Ga-GTP, [G*] is thus

d@G* #/dt 5
kRh@G#

1 1 @G#/KRh
@Rh*# 2 K2@PDE#@G* #. (34)

The kinetics of PDE* production is given by

d@PDE*#/dt 5 K2@PDE#@G* # 2 tH
21@PDE*#, (35)

where [PDE*] is the concentration of activated PDE andtH
21 is the rate of

hydrolysis of excited PDE-Ga and the consequent inhibition of PDE
activity (Stryer, 1991, 1995). The G-protein loop amplifies the changes in
Rh* into the changes in the number of active phosphodiesterase molecules
PDE*, given by,

PDE* 5 tH

kRh@G#

1 1 @G#/KRh
@Rh*#. (36)

The static gain,g1 [ dPDE*/dRh*, is given by the prefactor of Rh* on the
r.h.s. of Eq. 36,

g1 5 tH

kRh@G#

1 1 @G#/KRh
. (37)

In the second stage, the activated PDE molecules (PDE*) hydrolyze
cGMP in the cytoplasm. The rate of change of cGMP concentration, [cG],
is given by

d@cGMP#/dt 5 2k*cG@PDE*#@cGMP#

2 kcG@PDE#@cGMP# 1 gGC@GC#. (38)

Here, k*cG[PDE*][cGMP] is the rate of hydrolysis of cGMP by [PDE*],
kcG[PDE][cGMP] is the rate of hydrolysis of cGMP by PDE, andgGC[GC]
is the rate of production of cGMP by GC. In a steady state,

@cGMP# 5 tcGgGC@GC#, (39)

with the time constant

tcG 5 ~kcG@PDE# 1 k*cG@PDE*#!21. (40)

(The factor of 1023 ratio of the catalytic rates of inhibited and unin-
hibited phosphodiesterasekcG/k*cG may alternatively be thought of as the
spontaneous activation equilibrium ratio.) The rate of cGMP resynthesis
gGC by GC strongly depends (Koch and Stryer, 1988) on [Ca] via inter-
mediary Ca-binding protein(s) (Gorczyca et al., 1994; Klenchin et al.,
1995), providing a handle for feedback and regulation. Note that [cGMP]
depends on the input light intensity via [PDE*] dependence oftcG, and the

static gain of this second transduction stage is

g2 ; dcGMP/dPDE*5 2tcGk*cG@cGMP#. (41)

As we remarked in the second section for the general case, gain can be
increased either at the expense of the “bandwidth”tcG

21 or by increasing
[cGMP] (through an increase in [GC]). Using (Stryer, 1991)k*cG 5
50 mM21 s21 and [cGMP] 5 5 mM, we estimate the maximalug2u
(assumingtcG , 1 s) to be;250.

Next we discuss the transduction of the cGMP messenger signal into
membrane potentialV. The number of open channels, Ch*, depends on
[cGMP] through

Ch* 5 ~@cGMP#/KcG!3Ch, (42)

where Ch is the total number of channels andKcG ' 12 mM is estimated
from the observed fraction of open channels in the dark (i.e., Ch*/Ch5
0.05 for the toad with [cGMP]5 5 mM in the dark). It is assumed that the
dynamics of channel opening and closure is fast on the scale oftcG or tRh*.

The simplest model for the ionic current flow in the rod cell is one in
which the inner and outer segments are at the same potential and have
membrane resistancesRin andsout

21, respectively. The potential difference
between the interior and exterior of the rod cell,V, is maintained by ion
pumps which produce a potential-dependent current,Ip. This current has to
be balanced by the leak current through the membranes, which is just
(sout 1 Rin

21)V. This determines the voltageV to beIp/(sout 1 Rin
21). When

Ip is not strongly dependent onV, to produce a strong dependence of the
voltage onsout (which in turn depends on the number of open channels)
and to maximize sensitivity, we needsout ' Rin

21. When all of the channels
are closed andsout 5 0, the voltage,v 5 Vsat 5 IpRin. Thus,

V 2 Vsat5 v 3 soutRin/~1 1 soutRin!, (43)

with v 5 IpRin.
Calcium flow through the open channelsICa is proportional to Ch*. The

change in the calcium concentration with time as a result of the incident
photon is given by

d@Ca#/dt 5 ICa 2 tca
21@Ca#, (44)

wheretCa is the calcium time constant. The terms involving the calcium
buffers have not been explicitly included in the equation. The Ca/Na/K
exchanger pumps Ca out at a high rate (Gray-Keller and Detwiler, 1994),
which sets the time constanttCa ' 1022 s, so that on the time scale of the
response, [Ca] concentration closely follows the number of open channels.
(It is known that only a small fraction (0.04) of Ca in ROS is free (Koutalos
and Yau, 1996; Gray-Keller and Detwiler, 1994); the rest is bound. It is
reasonable to assume that the dynamics of “buffered” Ca is slow (on the
scale oftRh*) and is neglected here.) However, the presence of calcium
buffers may slow the response. The calcium current can be related to the
concentration of cGMP through

ICa 5 s@Ca#ext

@cGMP##3

KcG
3 , (45)

wheres[Ca]ext 5 1.53 103 mM/s andKcG 5 12mM. The resulting change
in calcium concentration affects the resynthesis of cGMP by GC and can
be modeled by a functional dependence ofgGC on the calcium concentra-
tion as

gGC 5
gGC

0

1 1 ~@Ca##/KD!2
. (46)
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From this one can compute the effective gain for the second stage with
calcium feedback, which is just given by Eq. 22 with

gc 5 3@Ca##/@cGMP##,

gxc 5 2
@cGMP##

@Ca##

~@Ca##/KD!2

1 1 ~@Ca##/KD!2
,

t 5 tcG andtc 5 tca. Thus, the zero frequency gain is given by Eq. 23 with

Y 5 1 1 6
@Ca##2

KD
2 1 @Ca##2

. (47)

This gain reduction factor in the dark is close to 7. Depending on the
relative values oftcG andtfdbk, one could get different scenarios described
in Fig. 4. We have already mentioned the [Ca] concentration dependence
of the GC rate (Koch and Stryer, 1988) and oftRh, which provide the
feedback regulation (Koutalos and Yau, 1996). The gain factorY can be
tuned by adjusting the concentration of GCAP proteins or the number of
exchangers, and the feedback time constant,tfdbk, can be changed by
adjusting the GCAP concentration, as shown in the next appendix. Thus,
again, the parameters of the cascade can be tuned by changing the con-
centrations of various enzymes.

APPENDIX B: CALCIUM FEEDBACK

In this appendix we consider in more detail a minimal model of calcium
feedback (Koutalos and Yau, 1996) to elucidate Eq. 46 and to demonstrate
again how the parameters of the cascade (the gain factor and time constant)
can be controlled by relative concentrations of various enzymes. This is
true generically and is independent of the details of our model. Let us
assume that Ca enters the cell at a rateIcaand is pumped out at a rategexEx
proportional to the number of exchangers. It is taken up in 2:1 stoichiom-
etry by GC activating protein (GCAP). For the sake of simplicity we omit
other possible Ca buffers. The rate equation governing the calcium dynam-
ics can be written as

d@Ca#

dt
5 2gexEx@Ca# 1 Ica

2 ~kgcap@Ca#2@GCAP# 2 k9gcap@GCAPCa#!, (48)

whereIca is the calcium current given by Eq. 45, [GCAP] is the concen-
tration of calcium-binding GCAP protein, [GCAPCa] is that of the calcium-
GCAP complex, andkgcapandk9gcapare rate constants. GCAP protein binds
to and activates GC but GCAPCa complex does not. The dynamics of GC
activation can be modeled by

d@GC*#

dt
5 kGC@GCAP#@GC# 2 k9GC@GC*#,

with only [GC*] responsible for the production of cyclic GMP. From these
kinetic equations, one obtains

KD < k9GCAPkGC@GCAPtot#/~kGCAPk9GC! (49)

(assuming, for simplicity,k9GCAP ,, kGCAP[Ca]2) and hence is tunable by
alteration of the concentration of the GCAP proteins. Similarly, we find
that tCa can be varied independently ofKD, through the number of
exchangers, becausetCa ; Ex. We also see that the gain factorY in Eq. 47
can be tuned both by changingKD through [GCAPtot] and by changing
[Ca] via tca, controlled by the number of exchangersEx. The characteristic
time of the feedback is dominated by the slowest time scale, which, since,
according to Rispoli et al. (1993),tCa is fast, must be the response time of

[GC*], and thus tfdbk 5 kGC[GCAP] 1 kGC, which can be tuned by
changing the total concentration of GCAP alone. Thus, the feedback time
scale and the gain factor can be independently tuned.

APPENDIX C: BIOCHEMICAL PARAMETERS

The table below contains the values of the various parameters defined in
the text. Some of the parameters (e.g., those in Eq. 48) are not known and
are not included here.

tH
21 k1 K2 k*cG kcG gGC

0 [GC]

10/2 103/s 1 mm2/s 50mM21/s 0.05mM21/s 60mM/s

[cG] [Rh] [G] [ PDE] KD s[Ca]ext KcG

5 mM 5000 mM 500 mM 20 mM 0.2 mM 1.5 3 103 mM/s 12 mM

APPENDIX D: INFORMATION THEORY ON THE
OPTIMAL INPUT/OUTPUT RELATION

Let inputy $ 0 occur with probabilityP(y) and let the range of the output
be restricted to 0# z # zM, e.g., because the number of vesicles that may
undergo exocytosis in timet is finite. If the noise of transduction is small
compared with the amplified input noise, the mutual information is

Mzuy < EdyP~y!lnFÎNz~f~y!!G22~y! 1 Ny~y!P~y!G21

, (50)

whereG(y) 5 dz/dy 5 f9(y) is the differential gain, which may be chosen
so as to maximizeMzuy. (We assume a Gaussian distribution ofx and y
fluctuations.) The meaning of this is made clear by considering the limit
when the amplified input noiseNyG

2 is much larger than the readout noise
Nz: in that case the transduction is perfect andMyux is maximized (equal to
the entropy or information content of the input corrected for the input
noise). AsNyG

2/Nz decreases, so does the mutual information, indicating
the loss in information transfer capacity. However, because the gain cannot
be set arbitrarily large because of the dynamic range considerations, there
is a nontrivial trade-off, and the optimal solution can be shown to satisfy

Î Ny~y!

Nz~f~y!!

dz

dy
1 SÎ Ny~y!

Nz~f~y!!

dz

dyD
3

5 cP~y!ÎNy~y!, (51)

with the arbitrary constantc fixed by imposing the constraint of the output
dynamic range* dy dz/dy 5 zM. Equation 51 is simplified ifz, y are
measured in their natural units, the r.m.s. fluctuations=Nz,y; i.e., du 5
dy/=Ny(y) and dv 5 dz/=Nz(z), in terms of which dv/du 1 (dv/du)3 5
cP̃(v). Theseu, v variables effectively label the “distinguishable” input and
output states. If the initial distribution were uniform over a finite rangeuM

which equals the output rangev(zM), i.e., if the number of distinguishable
input and output states were equal, then dv/du 5 1. The optimal transduc-
tion would just map the “distinguishable states” onto each other.

In general, when the input and output dynamic ranges—in the sense of
the number of “distinguishable” states—do not agree, the available reso-
lution of the transduction process is allocated in a nontrivial manner, which
depends on input statisticsP(y). Two distinct regimes are apparent: 1)
when the effective range of inputs is smaller than the output dynamic range
and 2) when the effective range of inputs is large.

In the first regime, the gain setting is high, so thatNyG
2 . Nz and all

of the input fluctuations are well resolved. In the context of phototrans-
duction, this regime corresponds to low light (scotopic) conditions, where
the number of absorbed photons per rod per second is not greater than;10,
which, accounting for the photon shot noise, corresponds to only=10
distinguishable states—a modest dynamic range. (Note that the scotopic
range extends downward to photon fluxes nearly 1024 times smaller
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(Shapley, 1989); however, the response to such low light levels is a
network and not a single rod cell property. Perception under low light
conditions appears to average the response of;103 rods.) It is well known
(Baylor et al., 1974) that rods respond to a single-photon absorption event
and absorb nearly all incident photons and thus fully resolve input fluctuations.

The second, wide-input dynamic range regime requires a lower setting
of the gainNyG

2 , Nz and hence does not resolve input fluctuations. In this
limit, Eq. 51 reduces to

Î Ny~y!

Nz~f~y!!

dz

dy
5 cP~y!ÎNy~y!. (52)

This equation just says that the probability distribution ofv defined
previously is uniform. This is used in the text.

Finally we make a note on information transfer for the case of the
time-dependent signals in the nonlinear model. Let the system respond to
a change in a signal in a typical time,tnl. For very small changes from a
certain steady state,tnl is justt in this steady state, as defined in Eq. 6. The
total information transfer is the sum of the information transferred over
intervals of lengthtnl or larger. In principle, one could use the argument
about matching distinguishable states of the input and output to maximize
information transfer over that period (given by Eq. 50). The information
transfer rate calculated would be the channel capacity (Cover and Thomas,
1989). In a cascade, this capacity is limited by the stage with the minimal
information transfer rate. For phototransduction the bottleneck is at the
vesicle release stage. Our estimate shows this to result in a bit rate on the
order of 5 bits/s.
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discussions. PBD thanks Bell Laboratories for its hospitality and acknowl-
edges support from the National Institutes of Health (grant EY-02048).

REFERENCES

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson. 1994.
Molecular Biology of the Cell. Garland, New York.

Alon, U., M. Surette, N. Barkai, and S. Leibler. 1999. Robustness in
bacterial chemotaxis.Nature.397:168–171.

Atick, J. J. 1992. Could information theory provide an ecological theory of
sensory processing?In Princeton Lectures on Biophysics. W. Bialek,
editor. World Scientific, Singapore.

Barkai, N., and S. Leibler. 1997. Robustness in simple biochemical net-
works.Nature.387:913–917.

Baylor, D. A. 1996. How photons start vision.Proc. Natl. Acad. Sci. USA.
93:560–565.

Baylor, D. A., A. L. Hodgkin, and T. D. Lamb. 1974. The electrical
response of turtle cones to flashes and steps of light.J. Physiol. (Lond.).
242:685–727.

Berg, H. C. 1990. Bacterial microprocessing.Cold Spring Harb. Symp.
Quant. Biol.55:539–545.

Bodoia, R. D., and P. B. Detwiler. 1985. Patch clamp recording of the light
sensitive dark noise in retinal rods from lizard and frog.J. Physiol.
(Lond.).367:183–216.

Bownds, M. D., and V. Y. Arshavsky. 1995. What are the mechanisms of
photoreceptor adaptation?Behav. Brain Sci.18:415–424.

Bray, D. 1995. Protein molecules as computational elements in living cells.
Nature.376:307–312.

Chen, C.-K., M. E. Burns, W. He, T. G. Wensel, D. A. Baylor, and M. I.
Simon. 2000. Slowed recovery of rod photoresponse in mice lacking the
GTPase accelerating protein RGS9–1.Nature.403:557–560.

Chock, P. B., and E. R. Stadtman. 1977. Superiority of interconvertible
enzyme cascades in metabolic regulation: analysis of multicyclic sys-
tems.Proc. Natl. Acad. Sci. USA.74:2766–2770.

Cover, T., and J. Thomas. 1989. Elements of Information Theory. Wiley
and Sons, New York.

Dowling, J. E. 1987. The Retina: An Approachable Part of the Brain.
Belknap/Harvard University Press, Cambridge, MA.

Fawzi, A. B., and J. K. Northrup. 1990. Guanine nucleotide binding
characteristics of transducin: essential role of rhodopsin for rapid ex-
change of guanine nucleotides.Biochemistry.19:3804–3812.

Gerhart, J., and M. Kirschner. 1997. Cells, Embryos, and Evolution.
Blackwell Science, Cambridge, MA.

Gold, G. H., and E. N. Pugh, Jr. 1997. The nose leads the eye.Nature.
385:677.

Gorczyca, W. A., M. P. Gray-Keller, P. B. Detwiler, and K. Palczewski.
1994. Purification and physiological identification of a guanylate cyclase
activating protein from retinal rods.Proc. Natl. Acad. Sci. USA.91:
4014–4018.

Gray-Keller, M. P., W. Denk, B. Shraiman, and P. Detwiler. 1999. Spatial
spread of second messenger signals in rod photoreceptor outer segments.
J. Physiol. (Lond.).519:679–692.

Gray-Keller, M. P., and P. B. Detwiler. 1994. The Ca feedback signal in the
phototransduction cascade of vertebrate rods.Neuron.13:849–861.

He, W., C. W. Cowan, and T. G. Wensel. 1998. RGS9, a GTPase accel-
erator for phototransduction.Neuron.20:95–102.

Klenchin, V. A., P. D. Calvert, and M. D. Bownds. 1995. Inhibition of
rhodopsin kinase by recoverin—further evidence for negative feedback
system in phototransduction.J. Biol. Chem.270:16147–16152.

Koch, K. W., and L. Stryer. 1988. Highly cooperative feedback control of
retinal rod guanylate cyclase by calcium ions.Nature.334:64–66.

Kolesnikov, S. V., and R. F. Margolskee. 1995. A cyclic nucleotide
suppressible conductance activated by transducin in taste cells.Nature.
376:85–87.

Koshland, D. E., Jr. 1980. Biochemistry of sensing and adaptation.Trends
Biochem. Sci.5:297.

Koshland, D. E., Jr., A. Goldbeter, and J. B. Stock. 1978. Amplification
and adaptation in regulatory and sensory systems.Science.217:220.

Koutalos, Y., and K.-W. Yau. 1996. Regulation of sensitivity in vertebrate
rod photoreceptors by calcium.Trends Neurosci.19:73–81.

Lamb, T. D., and E. N. Pugh, Jr. 1992. A quantitative account of the
activation steps involved in phototransduction in amphibian photorecep-
tors.J. Physiol. (Lond.).449:710–758.

Laughlin, S. B. 1981. A simple coding procedure enhances neuron’s
information capacity.Z. Naturforsch.36c:910–912.

Lauffenburger, D. A., and J. J. Linderman. 1993. Receptors. Oxford
University Press, Oxford.

Naka, K.-I., M.-O. Itoh, and R. L. Chappell. 1987. Dynamics of turtle
cones.J. Gen. Physiol.89:321–337.

Nikonov, S., N. Engheta, and E. N. Pugh, Jr. 1998. The kinetics of recovery
of dark-adapted salamander rod photoresponse.J. Gen. Physiol.111:
7–37.

Normann, R. A., and I. Perlman. 1979. The effects of background illumi-
nation on the photoresponses of red and green cones.J. Physiol. (Lond.).
286:491–501.

Pepperberg, D. R., M. C. Cornwall, M. Kahlert, K. P. Hoffmann, J. Jin,
G. J. Jones, and H. Ripps. 1992. Light-dependent delay in the falling
phase of retinal rod photoresponse.Vis. Neurosci.8:9–18.

Ptashne, M. 1992. Genetic Switch: Phage Lambda and Higher Organisms,
2nd Ed. (rev. printing 1998). Blackwell Science, Cambridge, MA.

Reed, R. R. 1990. How does the nose know?Cell. 60:1–2.

Rieke, F., and D. Baylor. 1996. Molecular origin of continuous dark noise
in rod photoresponses.Biophys. J.71:2553–2572.

Rieke, F., and D. Baylor. 1998. Origin of reproducibility in the responses
of single rods to photons.Biophys. J.75:1836–1857.

Rieke, F., and E. Schwartz. 1994. A cGMP gate current can control
exocytosis at cone synapse.Neuron.13:863–873.

Rieke, F., and E. Schwartz. 1996. Asynchronous transmitter release: con-
trol of exocytosis and endocytosis at the salamander rod synapse.
J. Physiol. (Lond.).493:1–8.

2816 Detwiler et al.

Biophysical Journal 79(6) 2801–2817



Rispoli, G., W. A. Sarher, and P. B. Detwiler. 1993. Visual transduction in
dialyzed detached rod outer segments from lizard retina.J. Physiol.
(Lond.).465:513–537.

Shapley, R. M., and C. Enroth-Cugell. 1989. Visual adaptation and retinal
gain controls.In Progress in Retinal Research, Vol. 3. N. Osborne and
G. Chader, editors. Pergamon Press, London. 263–346.

Simon, M. I., M. P. Strathman, and N. Gautam. 1991. Diversity of G-
proteins in signal transduction.Science.252:802–808.

Stadtman, E. R., and P. B. Chock. 1977.Proc. Natl. Acad. Sci. USA.
74:2761–2765.

Stryer, L. 1991. Visual excitation and recovery.J. Biol. Chem.266:
10711–10714.

Stryer, L. 1995. Biochemistry. Freeman, New York.

Tranchina, D., J. Sneyd, and I. D. Cadenas. 1991. Light adaptation in turtle
cones.Biophys. J.60:217–237.

Turrigiano, G., L. F. Abbott, and E. Marder. 1994. Activity-dependent
changes in the intrinsic properties of cultured neurons.Science.264:
974–977.

Wray, G. A. 1998. Promoter logic.Science.279:1871–1872.

Engineering Aspects of Signal Transduction 2817

Biophysical Journal 79(6) 2801–2817


