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Super-resolution localization microscopy methods provide powerful new capabilities for 
probing biology at the nanometer scale via fluorescence. These methods rely on two key 
innovations: switchable fluorophores (which blink on and off and can be sequentially 
imaged) and powerful localization algorithms (which estimate the positions of the 
fluorophores in the images). These techniques have spurred a flurry of innovation 
in algorithm development over the last several years. In this Review, we survey the 
fundamental issues for single-fluorophore fitting routines, localization algorithms 
based on principles other than fitting, three-dimensional imaging, dipole imaging 
and techniques for estimating fluorophore positions from images of multiple activated 
fluorophores. We offer practical advice for users and adopters of algorithms, and we 
identify areas for further development.

The resolution of a light microscope was once thought 
to be limited to about half the wavelength of light1: light 
waves from sources separated by less than that distance 
form overlapping blurs when imaged. The past several 
years have seen remarkable progress in overcoming this 
limit via several innovative super-resolution approach-
es, including localization of switchable fluorophores2–5, 
localization of fluorophores from sequential images of 
bleachable fluorophores6,7, saturation of upward tran-
sitions8 and saturation of downward transitions9,10. 
Techniques based on localization of switchable fluoro-
phores go by a number of names: for example, photo-
activated localization microscopy (PALM)3, stochastic 
optical reconstruction microscopy (STORM)4 and flu-
orescence PALM (fPALM)5; we shall simply say ‘local-
ization microscopy’. Regardless of name, all of these 
approaches share two key innovations: (i) fluorophores 
that alternate stochastically between activated states 
(in which molecules fluoresce in response to excita-
tion light) and dark states (in which molecules do not 
fluoresce) and (ii) algorithms that can localize individual 
fluorophores from images. A high-resolution image is 
constructed from the fluorophore positions; the resolu-
tion of the reconstruction, and its fidelity to the underly-
ing specimen, depends on the density of the labels (the 

Nyquist criterion11) and the process of reconstructing 
the final image12 as well as the precision with which the 
fluorophores are localized12–14.

The density of the labeling and the precision with 
which fluorophores can be localized are both influenced 
by fluorophore properties, and the choice of fluorophore 
depends on the nature of the specimen and the target 
being labeled. Fluorophore development is therefore 
an area of broad and rapid innovation. Algorithms, on 
the other hand, tend to be applicable across broader 
categories of experiments and specimens. Localizing 
fluorescent probes predates super-resolution microsco-
py15,16 and builds on prior work in astronomy and other 
fields17,18; some current algorithms19 are even inspired 
by global positioning systems20. Not surprisingly, the 
advent of super-resolution microscopy, and the biologi-
cal insights it enables, has led to a new wave of algorithm 
development. Issues important to localization micros-
copy include the stochastic on-off process21, imaging 
in three dimensions (3D), the effects of dipole orienta-
tion22 and the effects of local structure23. Localization 
microscopy is used for many structures, including fluo-
rophores closely spaced along a line but sparsely spaced 
in the direction perpendicular to the line (such as micro-
tubules24 or even photolithographic structures25), point 
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ization precision. We then survey methods for localizing isotropic 
point sources in 2D; these methods are the most mature, and they 
illustrate issues common to other situations. Next, we highlight 
issues in imaging fixed dipoles (i.e., fluorophores that emit radia-
tion with an anisotropic angular distribution, producing noncircular 
images). Finally, we consider localizing fluorophores that are close 
enough to produce overlapping images. These techniques enable 
imaging of faster processes but are somewhat less mature. We also 
discuss localization algorithms in 3D super-resolution. Throughout, 
we identify practical guidelines for users and areas of potential 
improvement.

The principles of localizing single isotropic point sources
Estimation, precision and accuracy. Estimating a fluorophore 
position from an image is, in some sense, an exercise in geometry: 
without noise, an image of an isotropic light emitter would be a disk 
(possibly surrounded by diffraction rings) centered on the position 
of the fluorophore. Pixelation is only a minor complication: shift-
ing a fluorophore by a fraction of a pixel (Fig. 1) causes detectable 
image asymmetry, with the degree of asymmetry depending on the 

objects with correlated distributions 
(such as protein clustering26) or 
even clouds of diffusing ions (such 
as Ca2+ puffs27). Each situation poses 
unique challenges, and one should 
benchmark an imaging system and 
algorithm for the relevant type of 
structure23. Readers seeking inspi-
ration are encouraged to examine 

the image processing literature of other fields, especially astronomy, 
as there are undoubtedly many gems not yet harnessed for super-
resolution microscopy.

This Review begins with the concept of localizing a fluorophore, 
the effects of noise and background and the theoretical limit to local-

1/4 pixel shift right

Asymmetry

Centered Figure 1 | Subpixel and subwavelength 
information: small shifts of the 
fluorophore alter the spatial distribution 
of light and the asymmetry of the image.

The point spread function (PSF) of an imaging system describes 
the shape of the blur formed when a point source is imaged; 
it is proportional to the average number of photons at a given 
position relative to the source. High-accuracy PSF calculations 
require accounting for numerous factors, particularly the 
collection angle (numerical aperture) of the lens, interfaces 
between the sample and lens (such as coverslips and immersion 
oil) and the dipole moment of the light source.

For an isotropic point source (emitting light equally in all 
directions), the most common models used in high-precision 
work are the Richards-Wolf model99, which accounts for the 
vector nature of light waves, and the Gibson-Lanni model100, 
which also accounts for coverslips and other interfaces between 
the sample and the lens. (An example image generated with 
the Richards-Wolf model is shown in Fig. 2.) As long as the lens 
is well-corrected for aberrations, the general pattern will be 
a central bright spot whose width corresponds roughly to the 
wavelength of light. However, although software is available 
for computing the Richards-Wolf and Gibson-Lanni PSFs (for 
example, an ImageJ plug-in51), the formulas are complicated. 
Many investigators therefore approximate the PSF with an 
Airy function, which is somewhat simpler for mathematical 
calculations31,35. The Airy PSF is most valid when the lens has 
a low numerical aperture, but it has sufficient qualitatively 
validity to be a useful approximation in many investigations.

Even the Airy PSF is still tedious for many practical 
calculations. Consequently, people often approximate the PSF of 
an isotropic source with a Gaussian function

I(x, y) = I0 exp(–a × k2((x – x0)
2 + (y – y0)

2)) + b� (3)

where k is 2p divided by the wavelength of light in the 
specimen, a is a numerical factor that specifies the width of 
the PSF (often close to 0.25, though the precise value depends 
on the model being fit to37) and the other variables are defined 
as in equation (1). Both formulas are good approximations 

to more realistic PSFs and may thus be useful approximations 
in many situations (though the user is advised to make a 
careful choice of PSF width to ensure accuracy). Indeed, almost 
any realistic PSF will look roughly similar to a Gaussian bell 
curve near the peak of a focused image (though it can differ 
substantially out of focus, as discussed in the companion 
Review28 and in ref. 54), which is the main reason why the 
Gaussian approximation gives useful and reasonably accurate 
results in many investigations involving focused images of 
fluorophores (for example, most of the ones cited in this 
Review). If, however, the image is defocused (a common 
situation in 3D), then the PSF shape can be considerably more 
complicated51.

The Gaussian approximation remains useful in the presence 
of astigmatism if the exponent of equation (3) is modified to 
give an elliptical profile (i.e., different coefficients for the x 
and y terms)40. If, however, the pattern is asymmetric owing 
to dipole effects, random scattering or coma aberration, the 
Gaussian approximation is not necessarily valid. Additionally, 
in the tails, the approximation can break down (Fig. 2), as a 
Gaussian decays more rapidly than many PSFs. This poses issues 
in minimizing discrepancies between the model and the data 
in the edges of the image, so one must make a judicious choice 
of region-of-interest (ROI) size. Using a small ROI discards 
useful information, but a large ROI includes tails, where model 
mismatch effects may be substantial.

Another implementation issue is pixelation: the signal on a 
pixel is the sum of the photons striking different parts of it, 
which is proportional to the integral of the PSF over the pixel 
area. If the size of the pixel is substantially smaller than the 
PSF width (a fraction of a wavelength in the object plane, for 
a typical diffraction-limited PSF), the signal can usually be 
approximated with the PSF value at the center of the pixel. 
However, if the pixel is larger, or if high precision is required, 
the integral of the PSF over the pixel area must be used (for 
example, an error function for the Gaussian PSF).

BOX 1  THE PSF AND THE GAUSSIAN APPROXIMATION
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of lens aberrations and reflections at the lens surfaces, the inhomo-
geneity of the sample will introduce some amount of aberration. 
Nonetheless, some PSF models are more accurate than others. 
Misspecifying the shape of the PSF is known to affect localization 
precision in 2D (ref. 31) but generally does not introduce bias if 
the PSF is approximately symmetric, as is often true in 2D (ref. 32). 
However, many 3D imaging techniques require estimation of the 
width, shape or orientation of the PSF (in addition to its center in 
the 2D image), as do analysis techniques for dipoles. A misspecified 
PSF model might cause systematic biases in shape estimation and, 
thus, inaccuracy in the fluorophore’s axial coordinate.

Image formation and noise models. The most mathematically rig-
orous approach to estimating a fluorophore’s position is to treat it as 
a problem in statistics: one writes down a model for how the signal 
I(x, y) on a pixel at (x, y) depends on the coordinates of the fluoro-
phore, its photon emission rate, the background in the experiment 
and, perhaps, other parameters (such as aberrations or the depth of 
the source relative to the focal plane33). The parameters are varied 
to find the values that give the best ‘fit’ to the data, and fit is typically 
measured by either the maximum-likelihood criterion31,34–36 or the 
least-squares (LS) criterion15,16,18,37. Once the best fit is found, coor-
dinates are inferred from the fit parameters.

Fitting models are typically assumed to be of the form

I(x, y) = I0h(x – x0, y – y0) + b� (1)

where h is the PSF of the imaging system, I0 is the peak intensity and 
is proportional to the photon emission rate and the single-frame 

distance moved. This asymmetry is the fundamental source of sub-
pixel spatial information. Any automated procedure (which we shall 
commonly call an ‘estimator’) for determining fluorophore position 
from an image is, on some level, working from that subpixel infor-
mation.

Real images contain several factors that complicate position esti-
mation, the most important being shot noise (i.e., the signal is a ran-
dom variable with a Poisson distribution). Photons are not distrib-
uted smoothly over the detector in exact accordance with the point 
spread function (PSF) of the system (Box 1; several example PSF 
shapes are illustrated in Fig. 2). Instead, they arrive at random posi-
tions; the PSF predicts only the mean number of photons on each 
pixel. As photon arrival positions are random, the image will deviate 
from the ideal PSF shape in a manner equivalent to adding noise to 
an ‘ideal’ image of the fluorophore. Consequently, each image will 
have a slightly different center, and any procedure for estimating 
the fluorophore’s position will give different results for each image. 
The amount by which the position estimate varies among images is 
measured by the standard deviation of the estimates (as discussed 
in the Review by Deschout et al.28). The variation of the estimates is 
commonly referred to as precision, in keeping with common termi-
nology for describing experimental data. A larger standard deviation 
implies less precision, as the estimates vary more widely.

Another confounding factor is background from out-of-focus 
fluorophores or scattered light. Besides adding noise to the image 
via fluctuations in the background, background shifts the ‘aver-
age’ photon position either to the center of the image (for uniform 
background, i.e., the same average number of background photons 
on each pixel) or toward the region of brightest background (for 
nonuniform background). In either case, the position estimates con-
tain systematic errors, resulting in bias. The correction of uniform 
background is usually straightforward and is a key aspect of many 
algorithms discussed below. Correcting for nonuniform background 
is a harder problem than correcting for shot noise because nonuni-
form background will be (by definition) irregular and will depend 
on the particular distribution of out-of-focus sources and/or scat-
terers in the sample being studied. The most promising approaches 
thus far for nonuniform background still require that background 
be similar between subsequent frames and therefore would not cor-
rect for an out-of-focus fluorophore that blinks29. The PSF and noise 
distribution, on the other hand, tend to be more consistent across 
different samples. For lack of well-motivated models of nonuniform 
fluctuating background, this Review will mostly consider uniform 
background, which is easier to study and correct.

An issue related to background—one crucial to accuracy—is 
determining whether a camera frame has only one focused image of 
a fluorophore, or multiple focused (or nearly focused) images over-
lapping21,30. Position estimation from overlapping images is possible 
(see “Localization of fluorophores from multiple-fluorophore imag-
es”), but it requires an algorithm that can identify such images. Many 
researchers use analysis algorithms that work with only single-fluo-
rophore images, in which case one must either remove the multiple- 
fluorophore images from the analysis or work under conditions in 
which only a very small fraction of the fluorophores is activated (to 
minimize the number of overlap images). Analyzing multiple-fluo-
rophore images with an algorithm that assumes a single fluorophore 
will produce inaccurate or even meaningless results.

An additional issue is misspecification of the PSF. Any PSF model 
will be approximate at some level; even with a rigorous treatment 
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Figure 2 | Point spread functions. (a) Focused image of a fluorophore 
calculated from the Richards-Wolf model. The image is two wavelengths 
across. (b) The image in a, pixelated with one-fifth–wavelength pixels, and 
with shot noise (assuming 1,000 total photons in the image). (c) Cross-
section of the pixelated image and approximate Airy and the Gaussian 
models for comparison. The widths of the model PSFs are based on standard 
theoretical models37. The heights are proportional to the photon count in 
the image. (d) Same as c but shown on a logarithmic scale to emphasize the 
discrepancy in the tails.
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Also, the simulation’s noise model should be matched to the camera, 
taking into account its quantum efficiency, additive read noise and 
(when appropriate) multiplication noise. The localization precision 
should be benchmarked against the theoretical limit to precision (the 
Cramér-Rao lower bound). A comprehensive understanding of the 
algorithm’s performance requires testing on images with a range of 
photon counts from the fluorophore and also a range of background 
levels.

It is also important to remember that benchmarking the localiza-
tion precision and accuracy of an algorithm is not the same as deter-
mining the resolution of an image produced by that algorithm. The 
precision and accuracy of a position estimate only tell the reliability 
of that particular fluorophore’s estimated position. Image resolution 
also depends on whether the structure was labeled densely enough 
to resolve fine details (much as a ruler with 1-millimeter marks can-
not be used to measure with 0.1-millimeter precision) and whether 
artifacts have been introduced during the analysis and reconstruction. 
Refining these ideas into information-theoretic measures is an impor-
tant area of ongoing investigation12–14. A promising approach, taken 
from electron microscopy, is to examine different possible reconstruc-
tions using just half of the position estimates and seeing how similar 
these reconstructions are. The degree of similarity is determined by 
correlating the Fourier transforms of the images, producing a natural 
quantitative measure of resolution. The key lesson is that image reso-
lution and localization precision are not synonymous and should not 
be confused when evaluating algorithm performance.

Localizing isotropic point sources via fitting
The most rigorous approach to localizing fluorophores from diffrac-
tion-limited image data is to fit a PSF model (of the form in equa-
tion (1)) to the data and vary the parameters to minimize mismatch 
between the data and model. It is usually straightforward to use an 
optimization routine to find such parameter values and obtain high-
precision and (when background is included in the model) unbiased31 
results. The task for the user is to decide how to quantify mismatch. 
We describe here the two most common measures (LS and maximum 
likelihood estimation, MLE) and compare their strengths and weak-
nesses.

The least-squares criterion. LS fits require no detailed knowledge of 
the camera’s noise, and they are common in other areas of data analy-
sis. The error is the difference between the predicted signal and the 
actual signal, and one sums the weighted squares of the errors on all 
pixels.

(data–model prediction)2

expected variance of data
S = ∑pixels

� (2)

The parameters are varied to find values that minimize this weighted 
sum of squared errors (S), typically via the widely used and efficient 
Levenberg-Marquadt algorithm31,51,52. The weight in the denomina-
tor is the expected variance of the signal on that pixel. For Poisson 
noise, this variance is equal to the model’s prediction for the signal 
on the pixel. Intuitively, weighting can be understood as comparing 
actual errors to expected errors. If the signal on a pixel is expected to 
have a large variance, then a large error does not necessarily reflect a 
poor fit; but if the expected variance is small, then even a small error 
may be a substantial problem. LS fits with weighting to the expected 
variance are mathematically equivalent to MLE (discussed below) 

acquisition time, (x0, y0) are the fluorophore’s coordinates, and b is 
the average background per pixel. Including background is impor-
tant; failure to correct for background can bias estimates toward 
the center of the image, thereby decreasing accuracy. Some models 
assume a PSF whose width, shape and orientation depend on addi-
tional parameters: for example, the axial shift of the fluorophore 
relative to the focal plane33,38–42. Most fitting algorithms estimate 
all four (or more) parameters (x0, y0, I0, b, etc.), but some estimate 
just the coordinates16.

The difference between the measured signal and the model in 
equation (1) is due to a combination of model mismatch31 (usually 
an inaccurate PSF) and noise. Model mismatch can be minimized by 
an intelligent choice of PSF, but noise is inevitable. The most com-
mon problem is shot noise, which is a result of the random nature 
of photon emission. Even if the detector is 100% efficient (i.e., every 
photon is successfully registered as an electronic signal), the number 
of photons emitted in a given time interval is typically a random 
variable following a Poisson distribution43. Consequently, the signal 
from the fluorophore and the out-of-focus background both fol-
low Poisson distributions, as does their sum34,36. However, if one 
uses an electron-multiplying charge-coupled device (EMCCD), the 
electron multiplication process introduces additional noise44–46. To 
our knowledge, few existing algorithms explicitly account for mul-
tiplication noise, and one of the more notable algorithms to do so is 
optimized for low light levels46. Most work with EMCCD cameras 
has used localization algorithms that approximate the noise with 
Poisson statistics, often achieving excellent precision47, but users 
should understand that such models are often only approximate.

The camera can also add ‘read noise’ (typically with a Gaussian 
distribution) in the process of converting an optical signal to an elec-
trical signal. When the photon count from the in-focus fluorophore 
and background is low, Gaussian read noise may be non-negligible. 
The task of the user is to make an informed choice of noise model 
and PSF (whether an approximate formula or a measured pro-
file42,48), use that information with a good localization algorithm, 
and interpret the results with appropriate caveats. Maximum-
likelihood algorithms that take into account the noise character-
istics of individual pixels in scientific complementary metal-oxide 
semiconductor (sCMOS) cameras are available49 but require the 
user to experimentally characterize the noise in each pixel. When 
a key variable is not well known, the task is to either make a suit-
able approximation or pick an algorithm that can handle limited 
information.

Guidelines for evaluating a localization tool. Evaluating a localiza-
tion algorithm and its PSF model usually requires testing with simu-
lated data: creating an ensemble of images of the same fluorophore 
(each image distorted by noise), passing those images to the software 
and determining the mean and standard deviation of the position 
estimates. It may seem intuitive that the best test is with experimental 
data. However, unless one has a calibration sample in which the posi-
tion and orientation of the fluorophore are known with high preci-
sion and accuracy, it is hard to distinguish between miscalibration 
of the sample and errors in the localization algorithm. Images can 
be simulated using a realistic PSF, realistic background and realistic 
noise, enabling tests in which the ‘right answer’ is known. Calibration 
standards have been developed on the basis of DNA rulers4 and DNA 
origami50, but simulated images remain important complements to 
experimental images when benchmarking localization algorithms. 
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the estimates. The inverse of this quantity is the expected variance 
of the parameter (position) estimates, and it has the name ‘Cramér-
Rao lower bound’ (CRLB) after Cramér and Rao, who indepen-
dently derived a fundamental limit to statistical estimation in the 
1940s57,58. It is not always possible to estimate a parameter with the 
precision given by the CRLB, but when that degree of precision is 
achievable, the estimator that achieves it is MLE, and such high-
precision estimation has been demonstrated in practice with realistic 
images31,47. Software is available to compute the CRLB for position 
estimates for given values of the pixel size, camera read noise, PSF 
width and shape, background level and photon count from the fluo-
rophore31. A general guideline is that the standard deviation of the 
position estimates will be proportional to the PSF width (often the 
wavelength) divided by the square root of the number of photons 
detected.

The utility of the CRLB is twofold. First, in designing an experi-
ment, one can estimate the best-case outcome for a given situation. 
Second, one can assess the performance of analysis software by feed-
ing a representative ensemble of images to the software, obtaining 
position estimates and comparing the variance of the estimates with 
the CRLB.

Guidelines for choosing between LS and MLE. The greatest advan-
tage of LS (especially unweighted LS) is that LS requires less detailed 
information on camera noise. Weighted LS requires knowing the 
variance of the noise on a given pixel but not a detailed probability 
distribution for the noise. Unweighted LS does not even require the 
variance, making it simple to use when noise is poorly characterized. 
(This is equivalent to doing MLE with a constant-variance Gaussian 
noise model.) MLE, on the other hand, requires a good understand-
ing of one’s camera, including gain, excess noise due to electron mul-
tiplication (for an EMCCD) and readout noise44–46,49. Shot noise has 
gotten the most attention because it is less mathematically tedious 
to incorporate than a model that combines shot noise and Gaussian 
read noise35, but for many cameras it is not necessarily the most 
accurate model. Also, the variance of Gaussian read noise often dif-
fers between pixels, and the optimal way to address it in MLE is to 
incorporate pixel-by-pixel measurements of the noise49. In princi-
ple, one could do MLE without detailed knowledge of camera noise 
parameters, by including them as fit parameters, but it is dangerous 
to compensate for lack of knowledge by substantially increasing the 
number of adjustable parameters. The key point is that proper use 
of MLE requires a carefully measured noise model.

Beyond the issue of robustness against noise, several recent studies 
have compared LS and MLE in the presence of a number of com-
plicating factors31,47,53. The most exhaustive comparison between 
MLE and LS is that of Abraham et al.31. As others have47,53, they 
found that for a wide variety of photon counts and background lev-
els, MLE gets closer to the CRLB, with LS typically being about 25% 
worse at low photon counts. At higher photon counts (whether due 
to brighter fluorophores or greater out-of-focus background), LS 
performs almost as well as MLE. The reason is that when the photon 
count is large, the shot noise has an approximately Gaussian distri-
bution34,36, and the LS criterion is mathematically equivalent to the 
maximum-likelihood criterion if the noise is Gaussian. However, at 
lower photon counts, shot noise cannot be well approximated with a 
Gaussian distribution, and adding Gaussian read noise to shot noise 
results in a very different noise distribution. Consequently, LS esti-
mates may exhibit greater variance than MLE. Also, both approaches 

when the noise can be approximated as Gaussian. For high-back-
ground fluorescence (for example, ten or more photons per pixel), 
this is often a good approximation53.

There are two important points to note when weighting data in 
LS. First, weighting gives extra importance to the tails of the PSF, 
where the expected signal (and variance) is low. If one has an accu-
rate model for the tails of the PSF, weighting the tails is reasonable. 
If, however, the PSF is only approximate in the tails, errors that 
are small in absolute terms can be large in relative terms, owing to 
weighting by a small PSF. Consequently, some LS implementations 
do not use weighting16,31,54,55. When weighting is used most effec-
tively, it is often with a PSF constructed from experimental data42 
(rather than an approximate formula). Model mismatch is not an 
issue with measured PSFs, provided that sample nonuniformity 
does not substantially alter the PSF and that it was measured from 
a calibration sample that could be shifted with subpixel precision. 
Misspecifying the PSF tail is also less of an issue when there is sub-
stantial background fluorescence such that the average background 
is comparable to or larger than the PSF tail53,56.

Second, weighting should be done with respect to the expected 
variance (i.e., the model prediction), not a variance computed from 
measurements. Weighting to measured data means weighting to a 
combination of signal and noise; this runs counter to the goal of 
comparing a discrepancy between model and data with an expected 
baseline. Moreover, downward fluctuations in the data (due to noise) 
can result in small denominators, which may give greater weight to 
noisy pixels53.

Maximum-likelihood estimation. This approach is prescribed by 
theorems34,36 stating three key results. First, for any parameter that 
one might wish to estimate in statistics (for example, estimating 
the position of a molecule by analyzing a noisy image), there is a 
theoretical limit to the variance of unbiased estimates, or a maxi-
mum achievable precision. Second, when this maximum precision 
is attainable by an unbiased estimator (a condition that is not always 
assured), MLE will achieve it. Third, the variance of the maximum-
likelihood estimate approaches the theoretical limit for a large data 
set.

MLE requires a model of signal (PSF) and noise (shot noise, 
for example, or shot noise plus Gaussian read noise). With this 
model, one computes the likelihood of obtaining the observed sig-
nal, assuming some estimated parameter values (x0, y0, I0, b, etc.). 
Discrepancies larger than the typical noise level are unlikely; the 
likelihood of the data thus measures the fit between the data and 
the model. The parameters are varied to maximize the likelihood 
of the data. Because photons are usually independent of each other 
in imaging experiments, the likelihood of the data can be calcu-
lated by multiplying the likelihoods of the signals detected on each 
pixel. It is generally more convenient to work with the logarithm 
of the total likelihood, and the log likelihood is a natural measure 
of ‘goodness of fit’ between the data and the model47. A number 
of tools31,47,52,53,56 perform MLE fits on single-fluorophore images.

MLE and localization precision. Besides estimating position with 
(often) the highest possible precision, a key advantage of MLE is 
that that precision is known. One can calculate the inverse of the 
Fisher information (roughly, the second derivative of the log likeli-
hood)34–36 and average it over all possible data sets (images) con-
sistent with the model, which gives a prediction for the variance of 
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(to account for defocus). The Newton-Raphson method60 helps 
with fast convergence, but it is only a partial fix. An MLE algorithm 
adapted from the Levenberg-Marquadt LS algorithm has also been 
developed61. An additional safeguard is to start with a good posi-
tion estimate—the closer that the initial parameter values are to the 
maximum-likelihood values, the fewer iterations needed for MLE 
to converge. A reasonable method for generating initial parameter 
estimates is to begin with LS53. LS converges quickly and generates 
an estimate that is (often) close to MLE.

In summary, one is well advised to favor MLE when adequate 
information is available on PSF shape and camera performance. 
Highly distorted PSFs, with complicated shapes due to scattering or 
aberrations, may be candidates for unweighted LS, as would imag-
ing with a camera that exhibits large but poorly characterized fixed-
pattern noise (i.e., performance varying pixel by pixel). These points 
are summarized in Table 1.

Localizing isotropic point sources without fitting
Fitting is not the only way to localize fluorophores. Fitting requires 
evaluating a model on each pixel, comparing the model with data 
and then adjusting parameters and repeating the process. This can 
be cumbersome and requires (at least) a PSF model. Most alterna-
tives to fitting attempt to be model independent, achieving both 
speed and broad applicability. Some of these algorithms are quite 
accurate and precise: no theorem or principle precludes an estima-
tor from coming very close to the CRLB. Because of the prospect of 
high precision and fast, model-independent performance, alterna-
tive localization algorithms are of continuing interest.

Representative nonfitting algorithms. The simplest alternative to 
fitting is the centroid. If a photon is assumed to arrive at the center 
of the pixel, the average photon position, or centroid, can be com-
puted quite easily, yielding a good estimate of fluorophore position. 
The principle is that slightly displacing the fluorophore within a 
pixel makes the corresponding side of the image slightly brighter, 

moving the average photon position (Fig. 
1). Although this is not the universally best 
estimator, there are super-resolution analy-
sis tools such as the popular QuickPALM 
software that use centroid estimates62,63, 
and it has been shown to have advantages 
for localizing diffusing fluorophores, large-
ly because of minimal assumptions about 
image shape64. At the very least, the centroid 
is a good first estimate for the beginning of 
an iterative fitting routine, but caution is 
required when it is used on its own.

Background biases the centroid toward 
the center of the image, giving a sys-
tematic error that does not average to 0. 
Consequently, centroid estimators require, 
at a minimum, correction for background. 
A good background-corrected centroid esti-
mator, called virtual window center of mass 
(VWCM)63, gives results competitive with 
LS fitting. VWCM utilizes the fact that the 
centroid is unaffected by background if the 
fluorophore happens to be perfectly cen-
tered in the ROI. VWCM iteratively redraws 

can face problems from misspecification of the PSF, with MLE being 
more robust against misspecification of the PSF width and LS being 
more robust against misspecification of the PSF shape (for example, 
Airy vs. Gaussian)31.

In both LS and MLE, PSF misspecification is most problematic in 
the tails because of small denominator problems. In LS, this arises 
from weighting: the expected signal is small in the tails, leading to a 
small denominator. In MLE, the formula for the log likelihood has 
an expected photon count in the denominator (see Smith et al.47 for 
a particularly good derivation of this formula). This issue is most 
noticeable when fitting a Gaussian PSF (which decays rapidly in the 
tails) to an image generated with a PSF that decays more slowly in 
the tails. Model mismatch is especially problematic if the image is 
off-center in the region of interest (ROI)56 because much of the data 
comes from the PSF’s tail. The Gaussian PSF decays very rapidly, so 
the probability of detecting many photons in the tails is incredibly 
small. Consequently, even small fluctuations in the tail cause large 
relative changes in the likelihood of the data. This reinforces the 
need for a judiciously chosen ROI size, balancing the need for large 
photon count against mismatch in faint tails. An additional, simple 
safeguard is to recenter the ROI whenever the fitting routine esti-
mates a fluorophore position more than one pixel from the center.

Both approaches can be implemented efficiently. A particularly 
fast implementation of LS is the Gaussian mask estimator16, which 
varies only two parameters: the coordinates x0 and y0. A fast MLE 
implementation is also available, one that separately estimates x0 
and y0 by first summing rows of pixels in the ROI and fitting the 
resulting data sums to a model for how the signal depends on the 
vertical coordinate y (giving a maximum-likelihood estimate of 
y0) and then summing columns to do the same for x0 (ref. 56). If 
the ROI size (in pixels) is L × L, then each process works on only 
L inputs instead of L2 inputs. MLE has also been implemented on 
graphics processing units (GPUs) for further speed improvements 
via parallelization47,59. Nonetheless, MLE sometimes takes longer 
to converge, especially if one varies the PSF width as a fit parameter 

Table 1 | Comparison of the MLE and LS criteria for localization of single isotropic point 
sources
Maximum-likelihood estimation Least-squares criterion
• �Can, in principle, achieve theoretical limit of 

precision
• �Often has lower precision but close to 

MLE precision for high photon counts and 
background

• �Works best with a good model of camera noise • �Requires no information about noise; equivalent 
to MLE for Gaussian noise

• �Requires a good PSF model for optimal 
performance but can use approximate PSF 
shape; PSF width can be a fit parameter

• �Robust against misspecification of PSF shape 
but requires well-specified PSF width, or PSF 
width can be a fit parameter

• �Takes more time to converge if PSF width is a fit 
parameter

• �Typically implemented with analytical PSF (i.e., 
a formula) but has been implemented with 
measured PSFs for 3D imaging41,48

• �Potential small-denominator problem when 
background is low and PSF tail is misspecified; 
this is solvable by proper centering and sizing 
of the ROI

• �Suitable for GPU implementation; fast algorithm 
available that fits x and y independently56

• �Suitable for GPU implementation; fast algorithm 
available that fits only x and y and ignores 
other fit parameters16 
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ground merits further study. So far the most promising approach 
to nonuniform-background estimation is to consider background 
only in the immediate vicinity of the activated fluorophore and to 
compare frames with and without the activated fluorophore29. This 
approach can correct for background that varies rapidly in space but 
not in time; the problem of background from defocused blinking 
fluorophores remains open. The Fourier-domain approach65 also 
seems especially promising for this task.

Localizing single fluorophores with oriented dipoles
A circular PSF is a valid assumption if the fluorophore’s dipole 
moment (the axis along which charge oscillates, analogous to an 
antenna) undergoes rotational diffusion during image acquisition, 
i.e., if the signal is averaged over many dipole orientations. The best 
empirical support for the isotropic assumption is simply that it usu-
ally works: the ability to localize fluorophores with precision close 
to the CRLB in many of the studies cited above, using experimental 
data and isotropic PSF models, suggests that in numerous situations 
the fluorophores are rotating enough to give approximately isotropic 
PSFs. However, not all dipoles rotate, and, as discussed by Deschout 
et al.28, a dipole with fixed orientation will preferentially emit light 
in directions perpendicular to the dipole moment.

From an image-processing standpoint, the issue is models, not 
algorithms. Given an accurate model for the image formed by a 
dipole with a given position and orientation69–71, one can fit that 
model to the image. Tools are available to implement those models 
in MLE53,72 as well as LS73. However, displacing a dipole along the 
optic axis (i.e., perpendicular to the focal plane) can produce lat-
eral shifts of the image centroid22. Thus, a good model is not always 
enough: one could get position estimates that are very precise (i.e., 
clustered in a narrow range) but also very inaccurate because of the 
systematic lateral shift. For high-precision imaging of fixed dipoles, 
it is thus advisable to combine a good model with an experimental 
approach that provides 3D information as discussed in the next sec-
tion. The double-helix PSF method is particularly suitable, as image 
asymmetry carries information on dipole orientation while image 
orientation carries 3D information74,75. Polarization information 
can also be used75,76, though a full analysis of the achievable resolu-
tion must take into account noise limits on polarization measure-
ments77. Fundamental limits to polarization-sensitive super-resolu-
tion merit further study.

A harder problem is that a dipole that moves enough to partially 
‘smear out’ the PSF but not so much that the PSF is fully isotropic. 
Such images should be very dependent on the fluorophore’s local 
environment, so it isn’t clear what sort of model to use. Work on this 
question is needed, particularly for rotational subdiffusion.

3D super-resolution
Whereas most 2D super-resolution experiments follow similar 
principles, 3D super-resolution experiments work from a variety 
of distinct principles, and in each case the estimation of the third 
coordinate (z) involves distinct image processing tasks. The com-
panion Review by Deschout et al.28 discusses hardware issues for 
these different implementations; we just note here that each 3D 
super-resolution approach produces images with distinct charac-
teristics that require appropriate fitting models. In some cases, the 
extensions of 2D approaches are straightforward. For instance, in 
astigmatism-based imaging24,40, fitting an elliptical PSF model is 
sufficient (wherein the eccentricity is a proxy for the z coordinate) 

the ROI, trimming off fractions of pixels if needed, to center the 
fluorophore until the centroid estimate converges to a stable value. 
Although not as precise as fitting, it is model independent and serves 
as a good first-pass estimate for a fitting routine.

Another model-independent approach uses the insight that the 
Fourier transform of a single-fluorophore image is the phase-shifted 
Fourier transform of the PSF65. Position estimation becomes a prob-
lem of phase estimation, which can be done in a single iteration after 
a fast Fourier transform. Although this technique is not as precise 
as fitting, many imaging and spectroscopy techniques move from 
space- or time-domain concepts to frequency-domain concepts as 
they mature; further innovations along these lines may be useful.

A particularly common alternative to fitting, which has been 
implemented in an integrated image analysis package66, is fluoro-
Bancroft, based on the principle of triangulation19. Because the sig-
nal on a pixel is determined by the distance to the fluorophore, one 
could (in principle) triangulate position using three pixels; to com-
bat noise, one combines signals from more pixels. A model-inde-
pendent algorithm is radial symmetry32,67, valid when the PSF is 
circularly symmetric, so that contours of constant photon count are, 
neglecting noise and pixelation, circular. If one were to draw lines 
perpendicular to the surfaces of these circles, they would intersect at 
the center, i.e., the fluorophore position. The radial symmetry algo-
rithms draw lines perpendicular to contours of constant signal and 
look for the point of closest intersection. These algorithms achieve 
performance close to the CRLB (and superior to fluoroBancroft) in 
a single iteration, even for many noncircular images.

When to choose a nonfitting method. In general, fitting methods 
(especially MLE) are best when accurate noise models and PSFs are 
available. When computational simplicity is crucial (for example, 
field-programmable gate array implementation on-chip68), single-
iteration approaches may be preferable. Single-iteration estimates 
can also be used as starting values for an iterative fitting routine. 
Algorithms that make fewer detailed assumptions about the PSF 
shape (for example, VWCM63 and radial symmetry32,67) may also 
be preferable for deep-tissue imaging with highly distorted PSFs. 
However, users are cautioned that nonfitting approaches are not usu-
ally designed for particular noise sources and might not approach 
the CRLB of localization precision in the presence of multiple noise 
sources.

Areas for further development. The key insight of radial symme-
try algorithms is that constant-signal contours contain positional 
information. An intriguing question is whether similar insights 
could work for oriented dipoles. The PSF of a dipole is a combina-
tion of spherical harmonics of low order, raising the possibility that 
the contours have universal patterns that carry spatial information. 
Another issue is camera noise. Detailed noise models are generally 
associated with MLE approaches, but it is an open question whether 
camera-specific noise issues can be compensated for in nonfitting 
algorithms.

Nonuniform background has not been well explored in most 
studies. Uniform background is a reasonable first approximation 
of experimental conditions, and it is unlikely that any algorithm 
could compensate for background varying substantially on distances 
comparable to the PSF width. (Indeed, the definition of out-of-focus 
fluorophores is that their images do not vary over short distances.) 
However, performance in the presence of slowly varying back-
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to have straightforward image processing requirements that scarcely 
differ from those of 2D techniques.

Single-fluorophore image analysis issues beyond position 
estimation
In addition to estimating fluorophore positions, super-resolution 
image analysis algorithms must identify an ROI and determine how 
many fluorophores are activated in the ROI.

ROI identification. Identifying bright spots is a common task. 
What is more particular to localization microscopy is determin-
ing whether the spot contains a single-fluorophore image21,29, as 
single-fluorophore (or, increasingly, few-fluorophore) images are the 
key to super-resolution. The criteria for ROI identification deter-
mine the types of images passed for position estimation. At high 
signal-to-noise ratios (i.e., with photon count exceeding background 
fluctuations), essentially all single-fluorophore bright spots will be 
analyzed. However, low signal-to-noise ratios (relevant for thick 
specimens with substantial out-of-focus background) will give many 
marginal cases. Consequently, CRLB calculations based on averages 
over all possible images may not tell the whole story. One should 
compute the variance of the position estimates for the images that 
are actually passed to the position estimator.

Rejecting multiple-fluorophore images when using single-
fluorophore models
Distinguishing single-molecule images from multiple-molecule 
overlaps has implications for the accuracy of image reconstruction 
(Figs. 3 and 4). In a densely labeled region with many fluorophores 
in close proximity, overlaps are highly probable. If one were to pass 
an overlap spot to a localization algorithm, the algorithm would 
typically estimate a position intermediate between the fluorophores 
that actually formed the image. A rejection step will reduce the den-
sity of such inaccurate localizations, as evidenced by a comparison of 
the reconstructions with and without a multiple-molecule rejection 
step (Fig. 3). The contrast between labeled and unlabeled regions 
is noticeably improved by rejecting overlaps with a shape test, as is 
evident from a visual comparison of the images as well as a quantita-
tive comparison of localization densities. Moreover, without a shape 
test there may be substantial artifacts in the reconstruction (Fig. 4).  
Clearly, rejecting multiple-fluorophore images leads to a more accu-
rate reconstruction, i.e. one with fewer artifacts.

Owing to the demonstrated importance of rejecting overlaps, 
most single-fluorophore localization algorithms have implicit or 
explicit criteria for identifying noncircular images. The criterion 
may be the image’s ellipticity4,56 (which is convenient if the test is 
done before position estimation) or the fit between data and model 
(which is common when the test is done after position estimation). 
In testing the fit between data and model, one is implicitly testing 
whether the image shows a single fluorophore.

Besides improving image quality, removing overlaps directly 
affects experimental design: increasing the activation probability per 
fluorophore increases the rate at which information can be acquired 
(temporal resolution) but also increases the risk of obtaining overlap 
images. If one can reject multiple-fluorophore overlaps, one can use 
higher activation probabilities to conduct faster experiments21,29. 
The relevant parameters are the acceptance probabilities for single-
fluorophore and multiple-fluorophore images54,84,85. These prob-
abilities are related to the recall and stochastic precision metrics54 

and has been implemented on GPUs with precision close to the 
CRLB47. A tool for MLE with an elliptical PSF and data with many 
overlapping images is also available78. Biplane imaging38 is even 
simpler from an image-processing standpoint, requiring just the fit-
ting of two circular PSFs with variable width. Estimating z involves 
comparing the widths of two different images, which is feasible via 
LS fits to measured (rather than theoretical) PSFs, yielding results 
that compare favorably with astigmatism42. This approach can be 
generalized to more focal planes and more complicated PSFs79,80.

Imaging with double-helix PSFs41 requires fitting to a double-
lobed PSF, and the orientation of the pair of lobes (vertical, hori-
zontal or an intermediate diagonal) is directly proportional to the z 
coordinate (hence, ‘helix’ in the name). The PSF model is, naturally, 
more complicated than a 2D isotropic PSF, especially if one takes 
separate images in each polarization channel75. The CRLB for all 
three coordinates is better than in biplane or astigmatic imaging, 
and the localization precision is more robust against axial displace-
ments39,81. One cautionary note is that when the PSF model has 
many parameters, there is the danger that an inaccurate estimate of 
one parameter might accidentally be compensated for by inaccuracy 
in another parameter because there are more ways to achieve a simi-
lar degree of match between data and model. When benchmarking 
an algorithm with several PSF parameters, one is thus cautioned 
to check the accuracy of all of the parameter estimates, not just the 
coordinates.

Although the approaches described here do not exhaust the list of 
3D super-resolution microscopy techniques, they do cover most of 
the more popular methods, and many other 3D techniques82,83 tend 
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Figure 3 | Simulated localization microscopy images. (a) Simulated image 
of a US Air Force test pattern, assuming a dense labeling exponential 
distribution of photon counts. Localization was done with a fast MLE 
routine56. The image was reconstructed with multiple-fluorophore overlaps 
removed via a test of ellipticity. (b) Reconstruction without multiple-
fluorophore overlaps removed. More points are visible in the reconstruction, 
but smaller features are not visible. (c) Horizontally averaged density of 
localizations (digital number per pixel, or DN) vs. vertical coordinate in 
boxed purple regions in a and b. Numbers above peaks refer to groups of 
bars on the edge of the test pattern.
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Localization of fluorophores from multiple-fluorophore 
images
Some algorithms estimate positions from overlapping images of 
closely spaced fluorophores. Using multiple-fluorophore images 
enables one to activate more fluorophores simultaneously. Better 
image processing thus translates directly to a faster experiment 
and insights into processes on shorter time scales49. Algorithms for 
multiple-fluorophore images can be categorized by their outputs: 
either lists of positions or density profiles. The first category com-
prises straightforward extensions of algorithms discussed above. 
Algorithms in the second category typically give maps that are 
‘fuzzy’ on length scales comparable to the localization precision.

Fitting-based methods. In these methods, one fits a multiple-
fluorophore model to the data. The model is a sum of PSFs from 
fluorophores at different positions, and those positions are among 
the parameters varied to minimize mismatch between the data and 
model (Fig. 5). The most mathematically rigorous approach is, of 
course, MLE, and it has been implemented for multiple-fluorophore  
models by multiple groups87, including GPU implementa-
tions49,88,89. Using MLE to obtain multiple fluorophore positions 
from an overlap image actually predates the synthesis of controllable 
blinking and localization that enabled super-resolution localization 
microscopy90. One particularly important implementation is highly 
optimized for the noise characteristics of sCMOS cameras49. An LS 
implementation (DAOSTORM) for multiple-fluorophore models is 
available91 and is based on an algorithm from astronomy92.

Many of the above comparisons of MLE and LS still apply: MLE 
can, with a reasonably accurate model, approach the theoretical 
minimum variance, but it tends to be computationally complex and 
requires a noise model. The most important performance bench-
marks for multiple-fluorophore fitting algorithms are the localiza-
tion precision, false positive rate (the number of position estimates 
that do not correspond to a fluorophore position) and localization 

and can be computed by passing single-fluorophore and multiple-
fluorophore images to analysis software.

Guidelines for users. Useful rejection criteria for overlap images 
depend in part on the shape and feature size of the fluorescently 
labeled structure. Consider, for instance, a linear cytoskeletal filament, 
a commonly imaged feature in localization microscopy24 (Fig. 5). In 
order to be resolved, the filament must be densely labeled along its 
axis, with fluorophore separations shorter than the typical filament 
spacing (the Nyquist criterion11). Overlapping images from fluoro-
phores located on different tubules will usually be highly elliptical and, 
hence, easy to reject. Conversely, overlaps of fluorophores located on 
the same tubule will often be from fluorophores separated by short 
distances and thus may be less elliptical and harder to reject. However, 
erroneously accepting these images will give positions that are still 
located on the same tubule; therefore, even these erroneous estimates 
will still be consistent with the structure. The key point is that rejec-
tion algorithms need to be benchmarked for their performance on 
multiple-fluorophore images with different fluorophore separations 
and distributions, and the relevant cases will depend on the expected 
structure of the specimen23,29.

Fluorophore characteristics must also be taken into account. 
Photon count is not a perfect proxy for the number of activated 
fluorophores because the time in the activated state is a random 
variable4. However, a sufficiently large photon count is still a plau-
sible indicator of a multiple-fluorophore image, enabling rejection 
of at least some images of closely spaced fluorophores and thus 
loosening performance tolerances for shape tests29. This requires 
adequate knowledge of how the fluorophore’s quantum efficiency is 
affected by local environment. Moreover, assembling an image from 
fluorophore positions requires information on fluorophore blinking 
dynamics: if two frames have fluorophores at nearby positions, the 
details of the fluorophore’s on-off process determine the probability 
that the frames show the same fluorophore86.

a b

c d

Figure 4 | Effects of accepting or rejecting multiple-molecule overlap 
images. (a) Structure used to generate the images. (b) Simulated 
diffraction-limited image if all fluorescent labels are simultaneously 
activated. (c) Reconstruction in which all bright spots are passed to an MLE 
algorithm. (d) Reconstruction in which only those bright spots passing an 
ellipticity test are included. Removing the elliptical spot makes folds more 
distinctive and removes artifacts. Scale bars, 500 nm (wavelength of light). 

Figure 5 | Schematic comparison of single-fluorophore and multiple-
fluorophore analysis. If we fit to a single-molecule model, only the top left 
pair of fluorophores (top  left bright region) form an overlap image that is 
circular enough to be accepted by the algorithm. The position estimate (red 
X) is intermediate between the two fluorophores and is still on the fiber that 
they both label. The right pair form an ellipse that is not accepted by a single-
fluorophore algorithm. However, if we fit to a multiple-fluorophore model, four 
position estimates (black Xs) can be obtained from this one frame.
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residual or log likelihood reaches a user-determined threshold. If this 
criterion is somewhat arbitrary and ignores actual fluorophores, it at 
least ignores those making only small contributions to the signal.

Image estimation. Alternately, one can estimate a local density (or 
concentration) of fluorophores. In principle, this density should 
be 0 everywhere except at the position of a fluorophore. Density is 
estimated on a grid that is finer than the pixelated raw image (for 
example, dividing each pixel into 8 × 8 subpixels; refs. 93,94). In 
super-resolution, this task has been accomplished by borrowing 
tools from different fields, in particular Richardson-Lucy (RL) 
deconvolution93,95,96 and compressed sensing (CS)94. RL deconvo-
lution is an MLE approach to the problem of finding a fluorophore 
density map: for a given density map, PSF and noise model, one can 

fraction (the fraction of activated fluorophores correctly identi-
fied). MLE is known to achieve localization precision close to the 
CRLB88,90. In at least one implementation (PALMER89), MLE has a 
lower false positive rate and higher localization fraction than a com-
mon LS implementation (DAOSTORM91).

The multiple-fluorophore case also brings additional issues. An 
algorithm might favor a model with more fluorophores than are 
actually present, as adding more parameters to a model can often 
improve fit without conveying information on real phenomena. If the 
PSF width is a fit parameter (to account for defocus), then adding a 
fluorophore with a wide PSF and small photon emission rate might 
improve the fit by modeling chance nonuniformity in the background. 
It is thus necessary to pick parameters on the basis of more than just 
fit. Most algorithms stop adding fluorophores to the model when the 

Table 2 | Summary of some openly available localization algorithms discussed in this article
Fitting approach  
and PSF

Common 
implementations Noise model Notes for use

Single-
fluorophore fits

MLE with isotropic PSF Ober laba, 
Lidke lab (GPU 
implementation47), 
rapidSTORM52, M2LE56

All assume shot noise; 
Ober’s software also allows 
Gaussian camera read noise

Good for fluorophores with freely rotating dipole moments. 
Usually use a Gaussian PSF. Defocus can be accounted for 
via variable PSF width. M2LE includes an ellipticity test for 
rejection of multiple-fluorophore images

MLE with elliptical PSF Lidke lab, rapidSTORM Shot noise Most useful for astigmatism-based 3D imaging if the 
model assumes an ellipse oriented along one of the 
detector axes. Useful for rejection of two-molecule 
overlaps when the ellipse is arbitrarily oriented

MLE with isotropic 
PSF, EMCCD excess 
noise and read noise

UAIM by Ober lab46 Combination of Poisson 
noise, electron-
multiplication noise of 
EMCCD and Gaussian read 
noise

Optimized for use with very high magnification, but the 
noise model is applicable to almost any single-molecule 
experiment with an EMCCD

LS with experimental 
PSF

Bewersdorf lab41 No detailed assumptions, 
but performance approaches 
theoretical limit if noise 
is a Gaussian; background 
correction is possible

Developed with particular attention to defocused 
fluorophores for 3D biplane imaging

Fast LS with circular 
Gaussian PSF

Gaussian mask16 Practical when the PSF is not known in detail or when 
computational time is crucial

Center of mass Virtual window center 
of mass (VWCM)63

No detailed assumptions Appropriate for diffusing fluorophores64. Good first-pass 
estimate to seed an iterative fitting routine. Designed for 
background correction

fluoroBancroft19 LivePALM66 No detailed assumptions Assumes a Gaussian PSF and requires single iteration

Radial symmetry Parthasarathy lab32, 
Ma lab67,68

No detailed assumptions PSF is only assumed to be radially symmetric. 
Performance is good even for nonradial PSFs32

Multiple-
fluorophore fits

MLE with multiple-
fluorophore model

Lidke lab88, 
PALMER87,89, 
Bewersdorf lab49,  

3D DAOSTORM78

Poisson noise in all 
implementations, sCMOS 
camera read noise in some 
implementations49

Assumes a Gaussian PSF and has fast GPU implementation

LS fits to multiple-
fluorophore models

DAOSTORM91 No explicit assumptions, but 
LS fits approach theoretical 
limit when noise is Gaussian

Good for imaging with a high density of activated 
fluorophores producing overlapping spots. PSF model 
allows for elliptical PSF found in 3D astigmatic imaging

Estimating a 
fluorophore 
density

Bayesian estimation 3B (ref. 97) Poisson noise plus Gaussian 
read noise

Good for imaging a high density of activated fluorophores 
producing overlapping spots. Computationally intensive 
but can be sped up with cloud computing98

Compressed sensing Zhu lab and Huang 
lab94

No detailed assumptions in 
current implementations, 
but incorporating a detailed 
noise model is a direction 
for future work

Designed for imaging with a high density of activated 
fluorophores producing overlapping spots. Most useful if 
the PSF is the same for all fluorophores, but the PSF does 
not necessarily have to be circular

Deconvolution deconSTORM93 Poisson noise Good for high-density images with multiple fluorophores 
producing overlapping spots. ahttp://www.wardoberlab.
com/software/estimationtool/

This summary is non-exhaustive, and new tools are continually being developed. Readers are encouraged to look for tools that have been benchmarked by other users and successfully deployed 
in applications relevant to the reader’s intended experiment.
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activation (i.e., single-fluorophore vs. multiple-fluorophore 
models) and whether the fluorophore’s dipole moment is 
fixed. The gold standard for comparisons is MLE because it 
can often achieve the minimum variance in the position esti-
mates, provided that the user possesses sufficient informa-
tion. Alternative algorithms may be desirable for speed or 
for ‘seeding’ an MLE package with an initial estimate. Table 2  
provides a non-exhaustive summary of some of the algorithms 
discussed here. Issues meriting more exploration include cam-
era noise, multiple-fluorophore fits in 3D, and distinguishing an 
image of a single oriented dipole from asymmetry created by the 
overlap of two images from different fluorophores. Given the reli-
ance of super-resolution localization microscopy on good image 
processing, further advances in localization algorithms will likely 
further expand our experimental capabilities.
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Corrigendum: Fluorophore localization algorithms for super-resolution 
microscopy
Alex Small & Shane Stahlheber
Nat. Methods 11, 267–279 (2014); published online 27 February 2014; corrected after print 23 July 2014

In the version of this article initially published, 3D DAOSTORM was erroneously characterized in Table 2 as using least-squares fits. In fact, 
3D DAOSTORM uses an implementation of maximum likelihood estimation (MLE). The error has been corrected in the HTML and PDF 
versions of the article.
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