Rule-based Modeling of Signal Transduction

Jim Faeder

Theoretical Biology and Biophysics Group (T-10) Los Alamos National Laboratory

> q-bio Summer School July 25, 2007

Cell signaling - *cellular information processing* - is critical to the survival of all organisms and plays a critical role in human health and disease.

Our goal is to develop predictive models of cell signaling to better understand and control these processes.

Cell signaling in allergic responses

Marshall, Nat. Rev. Immunol. (2004)

Mast cell "degranulation" is a critical component of many allergic responses

3 min. after exposure to allergen

Movie: An immune cell in action

Original film from David Rogers (Vanderbuilt University)

http://www.biochemweb.org/fenteany/research/cell_migration/neutrophil.html

Goals

- Predictive understanding
 - Different stimulation conditions
 - Protein expression levels
 - Manipulation of protein modules
 - Site-specific inhibitors
- Mechanistic insights
 - Why do signal proteins contain so many diverse elements?
- Drug development
 - New targets
 - Combination therapies

Los Alamos approach to modeling: The past (70s-90s)

B. Goldstein, in Theoretical Immunology, Part One, Ed. A. S. Perelson

Toward models of intracellular signaling

J. Rivera and A. Gilfillan, J. Allergy Clin. Immunol.117, 1216 (2006).

Modularity of signaling proteins

Signaling proteins contain domains and motifs that mediate interactions with other proteins

Experiments probe the function of protein modules

These modules may mediate both protein-protein and protein-lipid interactions

Honda et al., Mol. Cell. Biol. (2000), 20, 1759.

Experiments probe the kinetics of multiple phosphorylation sites

Zhang et al., *Mol. Cell. Proteomics* **4**, 1240 (2005).

Early IgE receptor signaling exhibits combinatorial complexity

354 species / 3680 reactions

<u>Combinatorial complexity</u> = small number of components and interactions gives rise to a large network of species and reactions

Goldstein et al. Mol. Immunol. (2002) ; Faeder et al. J. Immunol. (2003)

Multiplicity of sites and binding partners gives rise to combinatorial complexity

Epidermal growth factor receptor (EGFR)

Multiplicity of sites and binding partners gives rise to combinatorial complexity

Multiplicity of sites and binding partners gives rise to combinatorial complexity

Epidermal growth factor receptor (EGFR)

...but the number of interactions is relatively small.

What functional role do protein domains and motifs play in signaling?

Combinatorial complexity

- Modularity of protein structure
- *Multivalent interactions*

BioNetGen language provides explicit representation of molecules and interactions

Molecules are structured objects (hierarchical graphs)

Faeder et al., Proc. ACM Symp. Appl. Computing (2005)

BioNetGen language provides explicit representation of molecules and interactions

Molecules are structured objects (hierarchical graphs)

Rules define interactions (graph rewriting rules)

BNGL: $A(b) + B(a) <-> A(b!1) \cdot B(a!1) kp1, km1$

a bond between two components

Faeder et al., Proc. ACM Symp. Appl. Computing (2005)

Rules generate events

Example of reaction generation:

Rules may specify contextual requirements

Rules may generate multiple events

Second example of reaction generation:

Iterative application of rules generates standard mass action reaction network

Observables use patterns to define model outputs

- Microscopic species generated by applying rules to molecules are difficult to observe directly.
- Observables define quantities that can be measured in experiments.

FcεRI

γ₂

Receptor dimerization

 γ_2 phosphorylation

Elements of BNG Model

parameters

- defined anywhere
- math expressions provide annotation

seed species

Any molecule with non-zero initial concentration

• reaction rules

observables

- define model outputs

actions

- network generation
- simulation
- output
- change parameters

BioNetGen2: Software for graphical rule-based modeling

http://bionetgen.lanl.gov

Advantages of BNGL

- Precise and flexible modeling language
- Human readable
 - Rules can be embedded in wikis, databases, applications, and papers (Ty Thomson)
- Machine readable
 - Forms basis for SBML L3 proposal (Blinov)
 - Interoperability (Vcell, Dynstoc, Kappa Factory, ...)
 - Molecule and rule definition could be automated using databases of protein-protein interactions as a source

Hlavacek et al. (2006) Sci. STKE, 2006, re6.

Two interfaces to BNG

Terminal interface (text-based input)

RuleBuilder GUI

	X xterm
ntal:"/shared/Conferences/RTK-trainingcourse2006 f /Users/faeder/BioNetGen_2.0.40/Per12/BNG2.pl	faeder\$ BNG2 AB.bngl
BioNetGen version 2.0.40	
Reading from file AB.bngl	
Read 1 parameters.	
Read 2 species.	
Kead 1 reaction rule(s).	
Iteration 0t 2 encodes 0 pyres 0 00et0	
Iteration 1: 3 species 1 ryns 0 00e+00	n CPU e
Iteration 2: 3 species 1 rxns 0.00e+00	0 CPU s
Cumulative CPU time for each rule	
Rule 1: 1 reactions 0.00e+00 CPU s 0.00e+00	CPU s/rxn
Total : 1 reactions 0.00e+00 CPU s 0.00e+00	CPU s/rxn
Wrote network to AB.net.	
CPU TIME: generate_network 0.0 s.	
Network simulation using UDEs	
full commands "/loons/factor/PicNetCon 2.0.40/bin	/num notwork maa" as "OP" as guide as 10-00 as 10-00 as "OP not" "OP not
" 0 5 2	Tallietwork_mac o Hb p cyode a te vo i te vo g Hb,net Hb,net
Read 1 parameters	
Read 3 species	
Read 1 reaction(s)	
1 reaction(s) have nonzero rate	
Read 0 group(s) from AB.net	
Initialization took 0,00 LPU seconds	
time n steps n deniu calls	
0.50 308 355	
1.00 352 404	
Time course of concentrations written to file AB.	cdat.
Propagation took 0.00 CPU seconds	
Program times: 0.00 CPU s 0.00 clock s	
Updating species concentrations from AB.cdat	
LPU lIME: simulate_ode 0.0 s.	
rinished processing tile HB,Dhgl CPU TIMEt total 0.3 c	
ntal: *//shared/Conferences/RTK-trainingcourse2006 i	faeder\$

A Third Way - Virtual Cell Interface

iew Server Window Bi	oNetGen Help			
0	Model			
	Physiology:	Applications		
	Unnamed compartment	BioModel1		
	000	BioNetGen	<u>U</u>	
	-	Rules Editor Messages Output	t Help	
	<pre># Apapter protein A of begin parameters 1 L0 1 2 R0 1 3 A0 5 4 kp1 0.5 5 km1 0.1 6 kp2 1.1 7 km2 0.1 8 p1 10 9 d1 5</pre>	Onen hool file	receptor tyrosine.	4 P
		open ungi me (kun biowetten) s	tob provetnem	

Ty Thomson & Drew Endy (MIT)

Ty Thomson & Drew Endy (MIT)

000	Pheromone/Receptor/G protein interactions – Yeast Pheromone Model C
🔶 🧼 🤿	😰 🚹 🚊 💿 http://yeastpheromonemodel.org/wiki/Pheromone/Receptor/G_protein_interactions 🔹 🔹 🔘 💽*
Getting Started Latest	Headlines 🏦 BioNetWiki 🔻 BNA Entrez PubMed LANL 🖲 Modeling Tools 🔻 Mail 🔻 News 🔻 Reference 🔻 Journals 🔻 KMC 🔻 Conferences 🔻
Storta Ste20	2 Log in / create account
Stell PP	Pheromone/Beceptor/G protein interactions
Fus3 Spp	
Fus3 - PP	Back to main model page
Futa PP	
navigation	Contents [hide]
 Main Page Recent changes 	1 Receptor interactions with pheromone 1.1 Measured Binding Affinities
= Help	1.2 Effect of $G\alpha$ on receptor/pheromone binding affinity
search	1.3 Reaction Definition 2 Recentor interactions with G protein
Co Search	2.1 Reaction Definition
oolbox	3 Gα (Gpa1) interactions with Gβ:Gγ (Ste4:Ste18)
What links here	
 Related changes Upload file 	Receptor interactions with pheromone
 Special pages 	Coexpression of a Ste2 mutant that is defective in pheromone binding (S184R) and a Ste2 mutant that is defective in G protein binding (specific alanine replacement in any of
Printable version	the 3 intracellular loops along with C terminal truncation at residue 303) does not restore sensitivity to pheromone in a ste2Δ strain. This was judged by halo formation and
Permanent link	Fusi-lacz expression. Uninalitiet al. 2004 PMID 14764600 ge
	of pheromone to one Ste2 in a dimensional the other Ste2 in the dimen.
	These mutants were shown to form hetero-oligomers by FRET.
	Measured Binding Affinities
	= Kd = 6.4 nM when Ste2 is expressed off a multicopy plasmid (measured at 0°C). The strains used were <i>bar1</i> - to prevent pheromone degradation. Bajaj et al. 2004 PMID 15491163 g2
	Using a fluorescent pheromone analog [K ⁷ (NBD),Nle ¹²] α-factor, Kd = 3.6 nM when Ste2 is expressed from a CEN plasmid, and Kd = 7.4 nM when Ste2 is expressed from a multicopy plasmid. For Ste2 expressed off the multicopy plasmid, the on and off rates were also measured: kon = 1.6 * 10 ⁵ M ⁻¹ s ⁻¹ , koff = 1.1 * 10 ⁻³ s ⁻¹ . These values were all measured at 0°C.
	The fluorescent pheromone analog's binding kinetics fits better to a double exponential than to a single exponential.
	Kd = 6 nM. Experiment was done using ³⁵ S-labeled pheromone at 22°C. TAME was used to prevent pheromone degradation, and cells were treated with NaN ₃ and KF to prevent growth and other energy-dependent processes. Jenness et al. 1986 PMID 3023832 ar
	• koff = 9 * 10 ⁴ s ⁻¹ , Experiment was done using 35S-labeled pheromone at 22°C. TAME was used to prevent pheromone degradation, and cells were treated with NaN ₃ and KE to prevent growth and other energy-dependent processes. Kd was also measured, but later discounted by the same group. Jenness et al. 1983 PMID 6360376 gr
	Kd = 7 nM +/-1 nM (measured in triplicate). Experiments were done with ³ H-labeled pheromone at 22°C. TAME was used to prevent pheromone degradation, and cells were treated with NaN ₃ and KF to prevent growth and other energy-dependent processes. David et al. 1997 PMID 9182592 gr
	* Kd = 4.2 nM. Experiments were done with ³⁵ S-labeled pheromone, and the cells were treated with NaN ₃ and KF. The strains used contained a non-functional <i>bar/</i> -1 allele to prevent pheromone degradation. The experiment was performed at room temperature. Dosil et al. 2000 PMID 10866688 @
	- Kd - 4 5 pM Eventiments were done with 352 labeled observance, and the collowers tracted with NoN, and KE. The straight word exclaimed a new functional Austin 1 allela to

Structured wiki may offer a solution

00	Pheromone/Receptor/G protein interactions - Yeast Pheromone Model		0
þ. 🛃	💿 合 🚊 🗑 http://yeastpheromonemodel.org/wiki/Pheromone/Receptor/G_protein_interactions	* © G+	
etting Started Late	est Headlines BioNetWiki # BNA Entrez PubMed LANL # Modeling Tools # Mail # News # Reference # Journ	als T KMC T Conferences T	
	Receptor interactions with G protein		[edit]
	Gpa1 contains a Ste2 binding domain. Kallal et al. 1997 PMID 9111362 @		
	 The accepted model for G protein coupled receptors is that when ligand-bound, the receptor acts as a guanine nucleotid exchange results in the binding of GTP to the Gα subunit (Gpa1), which actvates the G protein leading to Gα (Gpa1) diss (Ste2). Preininger and Hamm 2004 PMID 14762218 p 	e exchange factor (GEF) for the G protein $ociation$ from both G $\beta\gamma$ (Ste4:Ste18) and	. Nucleotide the receptor
	G protein coupling to Ste2 in wvo requires the presence of functional Ste4.Ste18 and functional Gpa1. Blumer and Thorn	er 1990 PMID 2161538 @	
	 Ste2 mutated in the C-terminal cytosolic tail (N388S) exhibits reduced interaction with Ste4 and Gpa1, as determined by 11287148 gr 	2-hybrid assay. Duran-Avelar et al. 2001	PMID
	Upon pheromone treatment, less Gpa1 is associated with Ste2 than prior to treatment (co-IP). Wu et al. 2004 PMID 1519	7187 _@ 7	
	 Coexpression of a Ste2 mutant (alanine substitutions in the 1st intracellular loop) that is thought to be defective in Gpa1 binding/activation partially restores sensi 14764600 g? 	binding/activation with another Ste2 muta tivity to pheromone. Chinault et al. 2004	nt (alanine PMID
	The authors conclude from this that Ste2 monomers in a dimers cooperate to activate Gpa1.		
	Reaction Definition		[edit]
	We know that Gpa1 contains a Ste2 binding domain, so presumably the coupling of the G protein to the receptor is through 0 Ste2 in the absence of Ste4:Ste18. This leads to a model where Gpa1 binds Ste2 weakly, and Ste4:Ste18 greatly increases which is usually present in the heterotrimeric Gpa1:Ste4:Ste18 complex, binds to Ste2 with much higher affinity than Gpa1 (G Ste4:Ste18. A consequence of this relative affinity is that a single molecule or dimer of Ste2 could act enzymatically to cataly:	Spa1. We also know that Gpa1 couples in this binding efficiency. In other words, Gp (TP), which is usually present free of bind ze the nucleotide exchange on plany Gp:	efficiently to (GDP), ing to a1 molecules.
	Assumptions:		/
	# Above we've assumed that α-factor binding is not affected by the G protein, which is equivalent to assuming that G protein	n binding to Ste2 is not affected by prero	mone.
	Ste2's phosphorylation state has no effect on G protein coupling and Yck binding does not affect G protein coupling.		
	Gpa1's nucleotide state only indirectly affects G protein/receptor coupling by affecting Gpa1's affinity for Ste4-Ste18.		
	St2 binding to Ste2 does not affect G protein binding to Ste2 (see RGS(St2)/Gα(Gpa1)/Receptor(Ste2) interactions)		
	 The difference in affinity between Gpa1/Ste2 and Gpa1/Ste4/Ste18/Ste2 arises solely as differences in off-rates. 		
	<pre>Ste2(Gpa1_site) + Gpa1(Ste2_site, Ste4_site) <-> Ste2(Gpa1_site11).Gpa1(Ste2_site11, Ste4_sit</pre>	e)	
	Forward rate constant kon_Ste2_Gpa1	/	
	Reverse rate constant koff_Ste2_Gpa1		
	<pre>Ste2(Gpa1_site) + Gpa1(Ste2_site, Ste4_site!+) <-> Ste2(Gpa1_site!1).Gpa1(Ste2_site!1, Ste4_s)</pre>	ite!+)	
	Forward rate constant kon_Ste2_Gpa1Ste4Ste18		
	= Reverse rate constant koff_Ste2_Gpa1Ste4Ste18		
	There are specific constraints on these rate constants.		

BNG rules are used for precise reaction definitions

00	Pheromone/Receptor/G protein interactions – Yeast Pheromone Model	5
- 2	💿 🐴 📇 🔞 http://yeastpheromonemodel.org/wiki/Pheromone/Receptor/G_protein_interactions 🔹 🔹 💿 🕞	
etting Started Lat	est Headlines BioNetWiki * BNA Entrez PubMed LANL * Modeling Tools * Mail * News * Reference * Journals * KMC * Conferences *	
	Receptor interactions with G protein	[edit]
	Gnat contains a Ste2 hinding domain Kallal et al. 1997 PMID 0111362	
	The accepted model for G protein coupled receptors is that when ligand-bound, the receptor acts as a guanine nucleotide exchange factor (GEF) for the G protein. Nucleot exchange results in the binding of GTP to the Gα subunit (Gpa1), which activates the G protein leading to Gα (Gpa1) dissociation from both Gβγ (Ste4-Ste18) and the rece (Ste2). Preininger and Hamm 2004 PMID 14762218 to accepte the Gamma activity of the Gamma activity	tide ptor
	G protein coupling to Ste2 in wwo requires the presence of functional Ste4.Ste18 and functional Gpa1. Blumer and Thorner 1990 PMID 2161536 @	
	Ste2 mutated in the C-terminal cytosolic tail (N388S) exhibits reduced interaction with Ste4 and Gpa1, as determined by 2-hybrid assay. Duran-Avelar et al. 2001 PMID 11287148 ga	
	• Upon pheromone treatment, less Gpa1 is associated with Ste2 than prior to treatment (co-IP). Wu et al. 2004 PMID 15197187 ga	
	Coexpression of a Ste2 mutant (alanine substitutions in the 1st intracellular loop) that is thought to be defective in Gpa1 binding/activation with another Ste2 mutant (alanin substitutions in the 3rd intracellular loop) that is thought to be defective in Gpa1 binding/activation partially restores sensitivity to pheromone. Chinault et al. 2004 PMID 14764600 @	10
	The authors conclude from this that Ste2 monomers in a dimers cooperate to activate Gpa1.	
	Reaction Definition	[edit]
	We know that Gpa1 contains a Ste2 binding domain, so presumably the coupling of the G protein to the receptor is through Gpa1. We also know that Gpa1 couples inefficient! Ste2 in the absence of Ste4.Ste18. This leads to a model where Gpa1 binds Ste2 weakly, and Ste4.Ste18 greatly increases this binding efficiency. In other words, Gpa1(GDP) which is usually present in the heterotrimeric Gpa1.Ste4.Ste18 complex, binds to Ste2 with much higher affinity than Gpa1(GTP), which is usually present free of binding to Ste4.Ste18. A consequence of this relative affinity is that a single molecule or dimer of Ste2 could act enzymatically to catalyze the nucleotide exchange on many Gpa1 molecule	y to , ules.
	Assumptions:	
	Above we've assumed that α-factor binding is not affected by the G protein, which is equivalent to assuming that G protein binding to Ste2 is not affected by pheromone.	
	 Ste2's phosphorylation state has no effect on G protein coupling and Yck binding does not affect G protein coupling. 	
	Gpa1's nucleotide state only indirectly affects G protein/receptor coupling by affecting Gpa1's affinity for Ste4.Sta18.	
	 Sst2 binding to Ste2 does not affect G protein binding to Ste2 (see RGS(Sst2)/Gα(Gpa1)/Receptor(Ste2) interactions) 	
	 The difference in animity between Gpa1/Site2 and Gpa1/Site4/Site16/Site2 arises solely as differences in on-rates. 	
	Stc2(Gpal_site) + Gpal(Stc2_site, Stc4_site) <> Stc2(Gpal_site!1).Gpal(Stc2_site!1, Stc4_site)	
	Forward rate constant kon_Ste2_Gpa1	
	Reverse rate constant koff_Ste2_Gpa1	
	Ste2(Gpal_site) + Gpal(Ste2_site, Ste4_site!+) <-> Ste2(Gpal_site!1).Gpal(Ste2_site!1, Ste4_site!+)	
	Forward rate constant kon_Ste2_Gpa1Ste4Ste18 Bouerse rate constant koff_Ste2_Gpa1Ste4Ste18	
	There are specific constraints on these rate constants.	

Model is automatically generated from wiki

Systems Modeled

- IgE Receptor (FccRI)
 - Faeder et al. J. Immunol. (2003)
 - Goldstein et al. Nat. Rev. Immunol. (2004)
- Growth Factor Receptors
 - Blinov et al. Biosyst. (2006) [EGFR]
 - Barua et al. Biophys. J. (2006) [Shp2]
- TLR4, TCR, IFN γ , TNF- α , TGF- β , ...
- Carbon Fate Maps
 - Mu et al., submitted.

Key insights

- RBM's are straightforward to construct and do not require more parameters
 - New predictions
- Important role of multivalent interactions
 - Complex formation can produce ligand specificity (kinetic proofreading)
 - Intuition often fails
 - Oligomerization may be a common feature of biological signaling

Ambarish Nag

- Concurrency in biological information processing
 - Scaffolds can activate multiple pathways independently
 - Strong potential for interaction among pathways (largely unexplored)
A standard reaction scheme

Mass action kinetics gives rise to a set of ODEs, one for each species

A conventional model for EGFR signaling

The Kholodenko model*

Avoids combinatorial complexity by assuming that certain reaction events must occur in a particular order

*J. Biol. Chem. 274, 30169 (1999)

A conventional model for EGFR signaling

- 1. EGF binding to EGFR
 - R + EGF <-> Ra

- 1. EGF binding to EGFR
 - R + EGF <-> Ra

EGFR(1) + EGF(r) < -> EGFR(1!1).EGF(r!1)

1. EGF binding to EGFR

R + EGF <-> Ra

2. EGFR dimerization

Ra + Ra <-> R2

EGFR(1!1,d!3).EGF(r!1).EGFR(1!2,d!3).EGF(r!2)

1. EGF binding to EGFR

R + EGF <-> Ra

2. EGFR dimerization

Ra + Ra <-> R2

3. EGFR autophosphorylation R2 <-> RP

1. EGF binding to EGFR

R + EGF <-> Ra

EGFR(1!1,d!3,Y~U).EGF(r!1).EGFR(1!2,d!3,Y~U).EGF(r!2)

3. EGFR autophosphorylation

R2 <-> RP

Assumptions accumulate!

 $EGFR(d!+,Y\sim U) < -> EGFR(d!+,Y\sim P)$

Effect of assuming receptor activation is sequential

Adaptor protein binding

Binding is assumed to be competitive

- either 4 or 5 may occur but not both
- only 1 adaptor per EGFR dimer

Splitting the adaptor binding site

Splitting the adaptor binding site

4. EGFR(d!+,Y1092~P) + Grb2(SH2,SH3) <->
EGFR(d!+,Y1092~P!1).Grb2(SH2!1,SH3)

5. EGFR(d!+,Y1172~P) + Shc(PTB,Y317~U) <-> EGFR(d!+,Y1172~P!1).Shc(PTB!1,Y317~U)

Effect of assuming adaptor binding is competitive

Molecules, components, and Interactions of the Kholodenko Model

EGFR(1,d,Y1092~U~P,Y1172~U~P)

Dimeric species

Assumptions made to limit combinatorial complexity

- 1. Phosphorylation inhibits dimer breakup
- 2. Adaptor binding is competitive

Experimental evidence contradicts both assumptions.

Rule-based version of the Kholodenko model

- 5 molecule types
- 23 reaction rules
- No new rate parameters (!)

356 species3749 reactions

Blinov et al. *Biosystems* 83, 136 (2006).

Dimerization rule eliminates previous assumption

EGFR dimerizes (600 reactions)

Dimers form and break up independent of phosphorylation of cytoplasmic domains

Two models predict similar overall binding and phosphorylation kinetics

Strong differences when dimer dissociation rate is varied

Kholodenko model predicts lower activation for Shc Y317F

... because mutant Shc blocks binding of Grb2 (competitive binding)

Rule-based model predicts distinct kinetics for two phosphorylation sites

Rule-based model predicts distinct kinetics for two phosphorylation sites

Also predicts monomers make substantial contribution to steady state Sos activation

Principle of detailed balance: Making sure that models obey laws of thermodynamics

A ← → B ↓ ↓ D ← → C Around any loop in the reaction network, the total free energy change (Δ G) must equal 0.

$$\Delta G = \Delta G_{AB} + \Delta G_{BC} - \Delta G_{DC} - \Delta G_{AD} = 0$$

$$\Rightarrow -RT(\ln K_{AB} + \ln K_{BC} - \ln K_{DC} - \ln K_{AD}) = 0$$

$$\Rightarrow K_{AB}K_{BC} / K_{DC}K_{AD} = 1$$

Kholodenko model has 5 such constraints, but some subsequent models have not enforced these.

See reference list on the q-bio wiki (Lecture 2, Bibilography and Links).

Worked example: cooperative binding to a scaffold

Xmas chile scaffold (XCeS) protein

...but where's the SMOKING GUN?

Question is often raised: "Does the data available justify this complicated approach?"

We can argue with the question, but we are still looking for the definitive application where RBM is absolutely required and provides novel insight.

q-bio Model Inspection Program (aka Project 3)

"Looking for (Models of Mass Deception" (MMD)

Suspicious assumptions to look for (and test)

- Sequential activation
 - Particularly analyses whose results depend on such assumptions
- *Exclusive (one-at-a-time) interactions* or limits on the stoichiometry of complexes
- Violations of principle of detailed balance
 - Check model of Schoeberl et al. (*Nat. Biotechnol.*, 2002)
cellsignaling.lanl.gov

Michael Blinov Jin Yang Ambarish Nag Michael Monine Fangping Mu

Matthew Fricke Leigh Fanning Nathan Lemons James Cavenaugh Jeremy Kozdon Paul Loriaux Michelle Costa Agate Ponder-Sutton Michael Saelim Jordan Atlas William Hlavacek Byron Goldstein*

http://bionetgen.lanl.gov

<u>Collaborators</u> Ilona Reischl (NIH/FDA) Henry Metzger (NIH) Chikako Torigoe (Cornell) Janet Oliver (UNM) David Holowka(Cornell) Barbara Baird (Cornell)

Dipak Barua (NC State) Jason Haugh (NC State)

Josh Colvin (TGen) Rich Posner (TGen)

Ty Thomson (MIT)

Nikolay Borisov Boris Kholodenko

Funding NIH (NIGMS) DOE LANL-LDRD